

USER MANAGEMENT RESOURCE ADMINISTRATOR 10.8

HELP DOCUMENTATION

UMRA Help

Contents

1. Welcome to UMRA 1

2. Release notes 2

2.1. User Management Resource Administrator release notes .. 2

2.2. Upgrading MASS projects from older versions ... 50

3. UMRA User Guide 1

3.1. UMRA Basics ... 3

3.1.1. Introduction .. 3

3.1.2. UMRA scripting ... 5

3.1.3. UMRA Projects .. 9

3.1.4. UMRA components ... 20

3.1.5. UMRA project management ... 1

3.2. Getting Started .. 3

3.2.1. Introduction .. 4

3.2.2. Mass updating network resources - Mass module ... 1

3.2.3. Delegating user account management tasks - Forms module 4

3.2.4. ... 4

3.2.5. User account provisioning - Automation module .. 7

3.2.6. Installing UMRA .. 9

3.2.7. Creating a MASS example project - Mass create users .. 12

3.2.8. Creating a Forms example project - Reset password ... 32

3.2.9. Appendix A - Script actions ... 64

3.2.10. Appendix B - Installing the UMRA Service .. 69

UMRA Help

3.3. Integrate UMRA with other applications using COM ... 75

3.3.1. UMRA COM ... 1

3.3.2. UMRA COM objects .. 3

3.3.3. UMRA COM in VB scripts .. 33

3.3.4. UMRA COM in IIS .. 47

3.3.5. References .. 74

3.4. Managing printer queues .. 77

3.4.1. Introduction .. 1

3.4.2. UMRA projects for managing printer queues ... 1

3.5. Managing Windows computer services .. 21

3.5.1. Project definition .. 1

3.5.2. Project structure ... 1

3.5.3. Step 1: Environment setup ... 2

3.5.4. Step 2: Form project - Collect Services ... 3

3.5.5. Step 3: Form project - Manage Services ... 6

3.5.6. Project execution .. 21

3.5.7. Contacts .. 23

3.6. Managing LDAP directory services using UMRA ... 25

3.6.1. Introduction .. 1

3.6.2. Concept ... 2

3.6.3. UMRA LDAP script actions .. 5

3.6.4. Directory Service tasks .. 15

3.6.5. Novell eDirectory .. 19

3.6.6. Linux OpenLDAP ... 57

3.6.7. Microsoft Active Directory .. 73

3.6.8. References .. 120

UMRA Help

3.7. Name generation .. 121

3.7.1. Generating user names... 1

3.8. UMRA tables ... 9

3.8.1. Introduction .. 1

3.8.2. The concept of tables in UMRA .. 3

3.8.3. Special table type - Generic table Variable ... 16

3.8.4. Processing user input .. 20

3.8.5. Formatting tables.. 23

3.8.6. Using tables in UMRA - Forms & Delegation - Hands-on 24

3.8.7. Contacts .. 36

3.9. Lotus Notes user guide ... 36

3.9.1. Configuring the UMRA console for use with Lotus Notes 37

3.9.2. Configuring the UMRA service for use with Lotus Notes 42

3.9.3. Administration Requests database ... 47

3.9.4. Lotus Notes example projects .. 54

3.10. Exchange 2007 .. 58

3.10.1. Introduction Exchange 2007 ... 1

3.10.2. Requirement UMRA Exchange 2007 support ... 1

3.10.3. Manage Active Directory with the UMRA Powershell Agent service 2

3.10.4. Managing Exchange 2003 with the UMRA Powershell Agent service 2

3.10.5. Setting up the Exchange 2007 Management Tools on a 32-bit platform 3

3.10.6. Using the Exchange Web Services with UMRA ... 7

3.11. Exchange 2010 .. 25

3.11.1. Introduction Exchange 2010 ... 1

3.11.2. Accessing Exchange 2010 functionality from an UMRA project 2

UMRA Help

3.12. Office 365 .. 4

3.12.1. Introduction Office 365 ... 1

3.12.2. Office 365 Users .. 1

3.13. Powershell Agent service .. 2

3.13.1. Powershell Agent service .. 2

3.13.2. UMRA - Powershell Agent service ... 3

3.13.3. UMRA action - Powershell script conversion .. 3

3.13.4. UMRA dynamic actions ... 3

3.13.5. Installation .. 3

3.13.6. Configuration and settings .. 18

3.13.7. UMRA dynamic actions ... 22

3.13.8. Manage Active Directory with the UMRA Powershell Agent service 72

3.13.9. Managing Exchange 2003 with the UMRA Powershell Agent service 73

3.13.10. Setting up the Exchange 2007 Management Tools on a 32-bit platform 74

3.13.11. Powershell Agent service session ... 78

3.13.12. UMRA Sessions .. 81

3.13.13. Configuring a secure web-site with IIS .. 83

3.14. UMRA Google Module .. 100

3.14.1. Google - Requirements ... 100

3.14.2. Google - Action: Google Setup Connection .. 101

3.14.3. Google - Connections .. 103

3.14.4. Google - Registry settings ... 103

3.15. UMRA SAP module ... 107

3.15.1. SAP - Requirements .. 107

3.15.2. SAP - Action: SAP Setup connection ... 108

3.15.3. SAP - Connections ... 108

UMRA Help

3.15.4. SAP - UMRA SAP child process .. 109

3.15.5. SAP - SAP Generic function module .. 109

3.15.6. SAP - Example projects ... 111

3.15.7. SAP - Registry settings ... 111

3.16. AFAS Online .. 115

3.17. Setup connection .. 115

3.18. AFAS get employees ... 115

3.19. AFAS get employees contract ... 116

3.20. AFAS Get organigram .. 116

3.21. AFAS Export Date .. 116

3.22. AFAS Update employee .. 117

3.23. Password Synchonization Manager .. 118

3.23.1. Goal ... 119

3.23.2. Installing UMRA PSM for the first time ... 119

3.23.3. Miscellaneous UMRA PSM topics ... 124

3.23.4. Manage Active Directory with the UMRA Powershell Agent service 132

3.24. Education .. 133

3.24.1. Aura connector installation .. 133

3.25. SOAP Synchronization template project .. 148

4. UMRA Reference Guide 1

4.1. Script action overview ... 3

4.1.1. User ... 3

4.1.2. ... 91

4.1.3. Active Directory .. 117

4.1.4. Exchange ... 156

UMRA Help

4.2. ... 162

4.3. ... 168

4.3.2. File System .. 341

4.3.3. Other actions .. 369

4.3.4. Windows computer services .. 373

4.3.5. Managing printers and printer queues ... 380

4.3.6. LDAP directory services .. 383

4.3.7. Lotus Notes ... 392

4.3.8. SAP actions ... 488

4.3.9. TOPdesk .. 488

4.3.10. Education .. 490

4.3.11. Variable actions... 527

4.3.12. Programming .. 567

4.3.13. Mail ... 575

4.3.14. Powershell... 578

UMRA Help

5. Context sensitive Help 607

5.1. UMRA PSM Domain Controllers Overview ... 607

5.2. Installation and upgrade wizard- Installation and upgrade options 608

5.3. Installation and upgrade wizard - Specify the target domain ... 609

5.4. Installation and upgrade wizard - Specify the target domain controller 609

5.5. Install/upgrade software... 609

5.6. Delete Options .. 610

5.7. Domain Controller Options ... 610

5.8. Reboot options .. 611

5.9. Refresh options ... 612

5.10. Advanced Settings - general settings .. 612

5.11. Advanced Settings - domains ... 612

5.12. Select domain controller wizard - Specify the target domain 612

5.13. Select domain controller wizard - welcome ... 613

5.14. Specify the name of the domain controller .. 613

5.15. Password Synchronisation Manager service settings ... 613

5.16. IDD_TAB_ACTIONITEM_LN_QUERY_ITEMS- forwarded 613

5.17. IDD_TAB_ACTIONITEM_LN_ACL -forwarded ... 613

5.18. IDD_TAB_ACTIONITEM_CYCOS_GET_ATTACHMENT ... 614

5.19. IDD_TAB_ACTIONITEM_CYCOS_GET_CUSTOM ... 614

5.20. IDD_TAB_ACTIONITEM_CYCOS_SET_CUSTOM .. 614

5.21. IDD_DIALOG_CYCOS_CUSTOMFIELD_OUTPUT .. 614

5.22. Value of text item. .. 614

5.23. Value of text list item .. 614

5.24. Value of date-time item .. 615

5.25. Value of numeric item .. 617

UMRA Help

5.26. Built-in variables ... 618

5.27. Condition criteria - Setup .. 622

5.28. Condition criteria - Setup criterion ... 623

5.29. Configure predefined variables .. 623

5.30. Control running UMRA service projects ... 624

5.31. Data specification - Text list .. 624

5.32. Database query - Database specification ... 626

5.33. Database query - Query .. 626

5.34. Database setup - MS-Access (Jet) ... 627

5.35. Database setup - Other databases ... 628

5.36. Expiration date.. 631

5.37. For each - Input variables ... 632

5.38. Form action - Check form input .. 634

5.39. Form action - Execute script of form .. 635

5.40. Form action - General ... 635

5.41. Form action - Iteratively execute project script ... 636

5.42. Form action - Return current form ... 637

5.43. Form action - Return other form .. 638

5.44. Form action - Set variable value ... 638

5.45. Form action - Execute command line at client workstation 638

5.46. Form fields - Button .. 639

5.47. Form fields - Checkbox ... 640

5.48. Form fields - Display ... 642

5.49. Form fields - Input text ... 644

5.50. Form fields - Name ... 646

5.51. Form fields - Picture .. 646

UMRA Help

5.52. Form fields - Radio button .. 647

5.53. Form fields - Static text ... 648

5.54. Form fields - Table - Columns ... 649

5.55. Form fields - Vertical space... 651

5.56. Form fields - Table - Data refresh ... 651

5.57. Form fields - Table - Exclusions ... 653

5.58. Form fields - Table - Fixed data .. 654

5.59. Form fields - Table - Generic table ... 655

5.60. Form fields - Table - Network call parameters ... 655

5.61. Form fields - Table - Network table .. 657

5.62. Form fields - Table - Options .. 659

5.63. Form fields - Table - Row icon image .. 660

5.64. Form fields - Table - Type ... 660

5.65. Form project - Form fields .. 661

5.66. Function modules ... 663

5.67. Generic table - Introduction ... 670

5.68. Generic table - Run test .. 671

5.69. Generic table - Table type .. 672

5.70. Generic table - Column names ... 674

5.71. Generic table - Variable .. 674

5.72. Interface modules ... 675

5.73. LDAP attributes - Attribute specification .. 675

5.74. LDAP attributes - Data conversion .. 679

5.75. ... 679

5.76. LDAP attributes - Data conversion routine ... 680

5.77. LDAP Directory Service - Encrypt input .. 684

UMRA Help

5.78. LDAP Directory Service - LDAP Search .. 686

5.79. LDAP Directory Service - LDAP Search Attributes ... 687

5.80. LDAP Directory Service - Setup LDAP modification data 688

5.81. LDAP search - Attributes ... 689

5.82. LDAP search - LDAP binding .. 694

5.83. LDAP search - LDAP Filter ... 697

5.84. LDAP search - Options .. 702

5.85. License code.. 705

5.86. License model ... 707

5.87. License matrix ... 709

5.88. Log information .. 711

5.89. Manage script actions ... 712

5.90. Lotus Notes Document Item Specification ... 715

5.91. Lotus Notes Item Specification: General .. 716

5.92. Lotus Notes Settings dialog .. 718

5.93. Managing service projects .. 719

5.94. Name Generation Algorithms ... 721

5.95. Name Generation: Default input names .. 723

5.96. Name Generation: Embedded algorithms .. 724

5.97. Name Generation: Formatting functions ... 724

5.98. Name Generation: Iteration ... 725

5.99. Name Generation: Manage algorithms .. 726

5.100. Network bar - Count users .. 728

5.101. Network data .. 729

5.102. Open UMRA project .. 729

5.103. Name Generation: Setup algorithm methods .. 729

UMRA Help

5.104. Password generation .. 731

5.105. Script action property value ... 732

5.106. Scheduler .. 733

5.107. Set items ... 735

5.108. Setup scheduling ... 735

5.109. Setup scheduling - Exceptions .. 739

5.110. Setup scheduling - Adding an exception .. 745

5.111. Setup scheduling - Preview ... 747

5.112. Script action property value with yes/no option .. 748

5.113. Script action property value output ... 748

5.114. Script action property value - Output only ... 748

5.115. Search and replace ... 748

5.116. Security - Access Control Settings ... 750

5.117. Security - Adding accounts and permissions .. 751

5.118. Security - Detailed permissions settings ... 752

5.119. Security - Overview ... 754

5.120. Security - Owner ... 755

5.121. Specify file input data ... 756

5.122. Specify group names ... 757

5.123. Specify input ... 757

5.124. Specify input name ... 757

5.125. Specify new name for UMRA project ... 758

5.126. Specify radio button text info ... 758

5.127. Specify variable info .. 758

5.128. Task scheduler overview settings ... 759

5.129. Task scheduler overview window ... 759

UMRA Help

5.130. UMRA Console - Command Line Options ... 763

5.131. UMRA Project Component - File data... 765

5.132. UMRA Project Component - Form .. 765

5.133. UMRA Project Component - Network data .. 765

5.134. UMRA Project Component - Preview ... 766

5.135. UMRA Project Component - Script ... 766

5.136. UMRA Project Properties - Description .. 767

5.137. UMRA Project Properties - Form Fonts .. 767

5.138. UMRA Project Properties - Form options ... 767

5.139. UMRA Project Properties - Format ... 768

5.140. UMRA Project Properties - General .. 769

5.141. UMRA workspace ... 770

5.142. UMRA Project Properties - Initial variables .. 770

5.143. UMRA Project Properties - Network data .. 771

5.144. UMRA Project Properties - Options .. 771

5.145. UMRA Project Properties - Security .. 771

5.146. UMRA service - Advanced options ... 772

5.147. UMRA service - license ... 773

5.148. UMRA Service - service access .. 773

5.149. UMRA service deletion - Delete all files ... 774

5.150. UMRA service installation - Admin group ... 774

5.151. UMRA service installation - Server ... 774

5.152. UMRA service installation - Port ... 775

5.153. UMRA service installation - Service account .. 775

5.154. UMRA service installation - Service directory .. 776

5.155. Variable generic table ... 776

UMRA Help

5.156. Variable list ... 778

6. No help available 778

7. Index 779

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

1. Welcome to UMRA

Welcome to UMRA.

What is UMRA ?

UMRA, User Management Resource Administrator, is a software solution for the easy specification,
execution and management of network administration related tasks.

Automated management of user accounts, (home) directories, shares, and e-mail are just a few
examples of its use.

Its primary focus is on the management of Microsoft's Active Directory, and many other administrative
network resources in networks based on Microsoft Windows.

It also has the capability to directly manage LDAP based directories, SQL databases, and IBM's Lotus
Notes environments.

Administrators can use UMRA to create form-based applications that perform specific network tasks,
and delegate the execution of those task to specific users in the network (for example helpdesk
employees).

Additionally to tasks started by means of forms , tasks can also be started on a regular basis by means of
the build-in scheduling mechanism, or started by an external application (for instance the company web
site) using either the available command-line application, or by means of the UMRA COM interface.

It is also possible to let UMRA cooperate with many Human Resource systems, for example to
automatically update the appropriate network resources when users are added to the HR system.

The main modules

1) The UMRA console.

This is the main application installed by the setup program of UMRA. It is used by an administrator to
create and configure the UMRA Project(s) that build the task. Each project contains a script with one or
more script actions.

Projects can be created locally in the console, and be executed by the console.

The console is also used to install and configure the UMRA service, and to create and configure form
based, scheduled and automation projects on the server.

2) The UMRA service

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

The UMRA service maintains and executes UMRA projects. Al projects (tasks) that require forms,
delegation, scheduling, or are started by external programs, are maintained by the service.

3) The UMRA Delegation Client

The UMRA Delegation Client, is a client application that is run by the end user (eg. the helpdesk
employee) to access and fill out the forms on the UMRA Service in order to perform a specific
administration task.

More information about the basic working of UMRA can be found in the UMRA User Guide on page 1

2. Release notes

Release notes

2.1. User Management Resource Administrator release notes
Version 10.9 Build 1664 may 18 2012

Major changes

1. Action: Get Active Directory permission (Exchange 2010) (new). Added support for the "Get-
ADPermissions" cmdlet in Exchange (1661, 25/april/2012)

2. Action: Manage Active Directory Permissions (Exchange2010) (new). Allows to set/remove access
rights on AD objects in the exchange environment. Mainly Used to Implement the "Send as" rights
on a mailbox, as this is not supported by the mailbox permissions actions.(1661, 26/april/2012)

3. Action: Manage Recipient Permissions(Exchange2010) (new). Allows to set/remove "SendAs"
rights in a hosted exchange configuration (1661, 27/april/2012)

4. PSM: (enhancement). The Password Synchronization Manager software plugin on the DC can now
optionally automatically switch between two or more UMRA services in case of connection failures.
In such a configuration, when the primary UMRA service is taken offline, synchronization
notifications are automatically rerouted to an alternative UMRA service so no notifications are
missed.

Fixes and enhancements

1. Action: It's Learning Get person info (enhancement). Added support to read the "Childeren" of a
user. (1660, 02/apr/2012)

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

2. Action: It's Learning Add child to parent (enhancement). Added. (1660, 02/apr/2012)

3. Action: It's Learning Create Person (enhancement). Added support to create a parent. (1660,
02/apr/2012)

4. Action: It's Learning Get persons (enhancement). Added a column Children, containing the
childeren of the user. (1660, 02/apr/2012)

5. Atvo3 (SOM) (enhancement): Added support for gzip compression. (02/apr/2012)

6. Action: SAP Set user detail (new): The parameter name is now always converted to uppercase.
(1660, 02/april/2012)

7. Action: Exchange2010 Create (enable) mailbox. (fix) Parameter
"ManagedFolderMailboxPolicyAllowed" is now only passed on when set to "true"
(1660,10/april/2012)

8. Action: Afas get employees (fix): The parameter Active Reference Date works now as expected.
(02/apr/2012)

9. Action: Create user and mailbox (Exchange 2010) (enhancement). Added support for
AddressListPolicy . (1661, 16 april 2012)

10. Action: Edit Mailbox (Exchange2010) (enhancement). Added support for AddressListPolicy.
(1661,/16/april 2012)

11. Action: Format variable value (enhancement): The function "Remove diacritical marks" wil now
also convert unicode caracters 0x1E60, 0x1E62, 0x1E64, 0x1E660, 0x1E68 to 'S' and 0x1E61,
0x1E63 0x1E65, 0x1E67,0x1E67, to 's' . (1661, 28/april/2012

12. Action: Create user (AD) (fix). Extended the support for creating accounts in Organizational Units,
in case the name of the OU contains characters that are illegal in a LDAP string. When the
Organizational Unit is specified as a separate property, illegal characters are now automatically
escaped correctly. Also implemented in the "Get user (AD)", "Create contact (AD), and "Create
object (AD)" actions. (1661, 01/may/2012)

13. Action: Generate Generic table (fix). Fixed a small memory leak when using database queries.
(1661, 02/may/2012)

14. Action: Manage table data - Remove Duplicate rows (case insensitive) (new): A new action option
is added to support case insensitive compare when removing duplicate rows (1661, 02/may/2012).

Version 10.8 BUILD 1659 (BETA) feb 14 2012

Fixes and enhancements

UMRA COM (fix/enhancement). When the IUmra method "ExecuteProjectScript". is called, it sends its
list of client-side variables to the UMRA service, as part of the initialization of the script to be executed.
After execution the modified list as generated by the projcect is returned to the client. Any next call to
ExecuteProjectScript will use this modified list for initialization. When the datasize of this list in the client
exceeded the limit of 5MB, the call would fail, and result in an critical error. This limit has been lifted.

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

Version 10.8 Build 1658, Dec 23 2011

Major changes

1. Office 365 Connector (new): The Office 365 environment is supported with a set of dedicated UMRA
actions. (1654, 06/December/2011)

Fixes and enhancements

1. Action: New MoveRequest (Exchange 2010) (enhancement). Added support for the
"AcceptLargeDataLoss" parameter.(1656, 12/dec/2011)

2. Action: Edit Mailbox (Exchange 2010) (enhancement). Added support for the
"RoleAssignmentPolicy" parameter.(1656, 12/dec/2011)

3. Action: List MoveRequests (Exchange 2010) (fix). The 'RequestStyle' property is now returned in
the table instead of the obsolete 'MoveType' property.(1656, 12/dec/2011)

4. Action: Load Ldap modification data (enhancement). The resulting LDAP stucture is no longer
unconditionally logged in the Umra log files. This logging is now optional, and is off by default
(1654,30/nov/2011).

5. RPC Communication Layer (Fix): Fixed an issue in the use of the memory manager for the RPC
layer, as for example used by the UMRA Com object. This could cause the calling application to
crash if a UMRA com method "execute project" was executed concurrently with another RPC using
the same memory manager .This has been fixed. It most notably solves an issue for the SSRPM
service when executing UMRA projects on password resets. (1656, 12/dec/2011).

6. Action: Copy directory (fix): When the input for this action is invalid such that the specified
destination directory itself is within the source scope, an endless recursion can occur. Basic validity
checks to prevent this have been added. (1650,12/october/2011)

7. Action: Send HTML mail message (fix): Unicode Characters in the mail body text that are not in the
standard ascii set, are now encoded as e.g. ´. This ensures that the mail client program can
display them properly. (1650,10/october/2011)

8. Action: Google Get users (advanced) (fix): When retrieving the users, the column names from
column 8 are incorrect. The name of column 9 was overwritten with the name of number 10.
Number 10 with the name of 11 etc. Therefor only 63 column names where shown. The contents of
the table where correct. Now the column names are correct. If a join is used on columnname of
one of the columns above number 8 make sure the join is working as intented.
(1650,5/oktober/2011)

UMRA Help

Copyright © Tools4ever 1998 - 2012 5

9. Action: Manage table (fix): When creating a new table, or adding a new column, now each column
will automatically get a default column name. This is because some other operations may depend
in specific circumstances on the availability of a column name. (1650,4/october/2011)

10. Action: Format variable value (enhancement): The function "Remove diacritical marks" wil now
also convert unicode caracters 0x1E20 en 0x1E21 to 'G' and 'g' respectively.
(1650,28/september/2011)

11. Service Installation (Enhancement): Increased minimum delay threshold in any query for the
servicesatatus. This should prevent initial connection issues after upgrade of UMRA service (1650,
29/september/2011)

12. RPC Communication Layer (Enhancement): Communication between different UMRA components
has been modified to support ip6 networks.(1649,28/september/2011)

13. Action: Convert to multi value variable (fix): Some of the memory resources used in this action
where not correctly released. This could cause a growth of the memory used by the Umra service
when this action was used frequently. This has been fixed. (1648,22/september/2011)

14. TeleTOP (enhancement): Added a option to set the maximum number of worker
threads.(1648,22/september/2011)

15. N@TSchool (fix): Groups can now successfully be retrieved recursively.(1648,22/september/2011)

16. IT's Learning (enhancement): An update to the IT's Learning Software has enabled us to implement
significant performance enhancements.(1648,22/september/2011)

17. IT's Learning (fix): Solved a memory leak in the connector.(1648,22/september/2011)

18. Action: SAP Generic function modules (fix): : Fixed the output of single numeric and date fields and
added support for single string fields.(1648,22/september/2011)

Version 10.7 Build 1648, June 30, 2011

Major changes

1. Exchange 2010 (Enhancement). Added several actions in order to support the export of mailboxes
to .pst files. (requires Exchange SP1) (1647,23/june/2011)

2. Exchange 2010 (Enhancement). Extended the "Create user and mailbox" action to support the
creation of linked mailboxes. (1647,23/june/2011)

3. Exchange 2010 (Enhancement). Extended the "create user and mailbox" action to support the
creation of room an equipment mailboxes. (1647,23/june/2011)

UMRA Help

Copyright © Tools4ever 1998 - 2012 6

Fixes and enhancements

1. PowerShell: Dynamic actions (fix): When the powershell script building from the xml specification
generates an exception in the UMRA service, further processing of the action is cancelled to
prevent potential critical errors in the Umra service engine. (1640, 20/December/2010)

2. Action: Get variable length (new): New action added that calculates the number of characters in a
text variable. (1640,27/December/2010)

3. Action: Create user (AD) (fix): When setting the "User cannot change password" flag in this action,
there was an error that could lead to a crash when specific inheritable rights where pre-existing on
the organizational unit in which the user was to be created. This has been fixed. The fix applies also
to all other actions that set this flag. (1640,28/december/2010)

4. Action: Set variable (enhancement): The option "resolve variable names in value immediately." is
now also implemented for text-list variables. (1641,29/December/2010)

5. Action: Send Mail Message (fix): The Send Mail Message action would truncate the mail message
send if there where any genuine UNICODE characters in the text (character codes higher than 255).
This is fixed. Note that the resulting text message is encoded with code page 1252.
(1641,30/December/2010)

6. General (fix): General issue with string conversion to and from unicode has been fixed, that could
cause truncation of strings with non-standard characters. (1641, 30/january/2011).

7. UMRA console (fix): When opening multiple projects at once, all projects that are not already open
in another workspace, will now open in the originally active workspace. Privously the default target
workspace could change if a project was encountered that was already open in another workspace.
(1641,30/march/2011)

8. Action: Format variable (enhancement). The variable to be formatted can be specified indirectly
e.g. "%%name%%" where the variable %name% contains the name of the actual variable to be
formatted, (1641,31/march/2011)

9. Action: If then Else (fix): The evaluation of the equations of the types like "older than # days"
would cause an exception for the date 1/1/1601 (a.k.a. 'never') when used in countries with
negative time zones. This is fixed. (1641, 5/april/2011)

10. Action: If then Else (enhancement): The evaluation of the type "older than # days" would not
differentiate between dates before 1 jan 1970. Now it differentiates between dates from 2.jan
1601 upwards. (1641, 5/april/2011)

11. Action: Setup LDAP session (fix): The "on error" handler was not always called if an error occurred.
This has been fixed. (1641, 5/april/2011)

12. Google Apps connector (fix): The "change password at next logon" option, that can be specified
when creating or editing Google users, was not effective. This has been fixed (1641, 8/april/2011).

13. Action: Lotus Notes Set item(s) (fix): Setting an item of type "textlist" to an empty list could cause
an critical exception. This has been fixed. (1641, 13/april/2011)

UMRA Help

Copyright © Tools4ever 1998 - 2012 7

14. Action: Lotes Notes Set Item(s) (fix): Items of type "textlist" where not completely stored when
exporting the project to an xml file, resulting in an empty list upon import. This has been fixed.
(1641, 13/april/2011)

15. Action: Manage multi-text value variable (fix): The option "sort values in descending order" would
clear the values. This has been fixed. (14/april/2011)

16. Action: List files and/or directories (change): In more circumstances the data collection will
continue after an error has been encountered. (18/april/2011)

17. Action: SAP Generic function modules (new): A new action is added to support multiple custom
RFC/BAPI function modules to be executed within the same SAP server session. (1641,
18/april/2011)

18. Action: Manage Table Data (fix): When Using de Table Data Operation "Complete rows", the
resulting column count is now updated to reflect the size of the largest row. (1641,22/april/2011)

19. Action: Edit user (no AD) (fix): The account expiration date can now successfully be specified by
means of a variable. (1641,22/april/2011)

20. Action: Create user (no AD) (fix): The account expiration date can now successfully be specified by
means of a variable. (1641,22/april/2011)

21. UMRA COM (fix): When the IUmra method "ExecuteProjectScript". was called without a prior
successful call to the method "Connect", this could cause an exception. This has been fixed.
(1642,06/may/2011)

22. UMRA COM (Enhancement): The UMRA com object has been extended with two methods in order
to allow access to individual records of the resulting log of the ExecuteProjectScript method. (1642
10/may/2011)

23. UMRA COM (Enhancement): The UMRA com object has been extended with a method
"GetVariableInfo". to retreive infomation of the type of data contained in a variable. Main purpose
is to be able to determine whether or not the variable contains a table. (1643, 19/May/2011)

Version 10.6, Build 1640, December 17, 2010

Major changes

1. AFAS Profit connector (new): The HR-system AFAS is supported with a set of dedicated UMRA
actions. (1638, 3/December/2010)

Fixes and enhancements

1. Google (fix): For all Google script actions, when an action returns result data as a table, and the
action succeeds but the result set is empty, a table with 0 rows is generated. Previously no output
was generated at all for the table variable when the result set was empty. Now table formating
functions will therefore work correctly on the result variable also if the result set is empty.(1635,
03/November/2010)

UMRA Help

Copyright © Tools4ever 1998 - 2012 8

2. Google (fix): Extended the log information in case Google returns errors as text/plain instead of
html or xml. (1637, 18/November/2010)

3. Google (fix): The UMRA service will stop all Google related activity when it receives a stop
command. (1637, 22/November/2010)

4. Action: Google get group info (fix): Fixed a crash when this action was used on a closed connection.
(1637, 18/November/2010)

5. Action: Google get user info (advanced) (fix): Fixed a rare situation causing a table row mismatch
resulting in a empty table. (1637, 18/November/2010)

6. Action: Google get user info (advanced) (fix): Advanced user information is now returned correctly
(especially birthdate and organizations). (1637, 18/November/2010)

7. Action: Google rename user (fix): Fixed some problems when renaming and using the cache. (1635,
05/November/2010)

8. Action: Google add nickname (fix): Fixed the problem of adding a nickname to a user when the user
name was not specified in lower case. (1635, 05/November/2010)

9. PSM: Installation (fix): When the installation of the PSM notification package had been initiated
from a UMRA console running on a Windows XP 32 bit OS, the PSM dll would fail to load on 64 bit
domain controllers. This has been fixed. (1637, 05/November/2010)

10. Action: Create User (AD) (fix): If the action failed because of rejection of the password by windows,
the error was logged, but the action returned a success code. Now it correctly raises an
error.(1736, 23/November/2010)

11. Action: Create user and mailbox(exchange 2007) (fix): The specified "display name" property is no
longer ignored by the action. (1637, 23/November/2010)

12. License Check (fix): The license check failed for licenses issued to an Organizational Unit that had
special characters in its name (like "+students"). This is fixed (1637,26 nov 2010)

13. Action: Update Group Memberships (AD) (fix): If the user to change was located in an
Organizational Unit with a forward slash ('/') in the name, the action failed. This is fixed. (1637, 26
November 2010)

14. Action: Format variable value (enhancement): The restriction on the maximum supported variable
size has been relaxed by a factor 1000. It will now only log a warning, except for extreme cases.
(1637,30 November 2010)

15. UMRA Forms table (adjustment): When specifying the column layout of a forms table at design
time, the column widths are not anymore automatically resized to a total of 100% of the form
width; instead, if the total width exceeds 100%, a horizontal scroll bar is shown in the resulting
form. (1637,1 December 2010)

16. Umra Forms table (adjustment) : When specifying the column layout of a forms table, double
clicking on an already configured column does not anymore remove the column from the list. (1638,
1 Dec 2010)

UMRA Help

Copyright © Tools4ever 1998 - 2012 9

17. Action: Set attribute (AD) (fix): When de AD object variable to modify was specified, but contained
no valid object, an error was logged and the action was not executed, but the "on error" actions
where not performed. Now they are. (1638, 2 Dec 2010)

18. Action: Send HTML mail message (fix): Mail messages with text or .csv attachments did not display
properly in some specific email clients. This has been fixed.

19. Action: Send HTML mail message (fix): Sending an email message could create and leave a
temporary file a root directory of the computer. Now it does not.

Version 10.5, Build 1634, October 29, 2010

Fixes and enhancements

1. FIPS compliancy (fix): The UMRA Powershell Agent service is updated to use FIPS compliant
encryption algorithms only (1632, 7/September/2010)

2. Action: Setup Exchange Session (Exchange 2010). (fix) Automatic reconnect on timeout works
now also without explicitly specified credentials. (1633, 10/October/2010)

3. SAP (fix): Support for the user detail 'PARAMETER1' in the Set detail and copy user actions. (1633,
23/September/2010)

4. Action: Send HTML mail message (enhanced): The port number of the SMTP E-mail server can now be
specified. (1631, 2/September/2010)

5. Action: Google Create contact (fix): Fixed the crash, caused by using this action (1630,
20/August/2010)

6. Action: Google Create user (fix): Fixed the problem when suspended users where created in the
cache, they also where connected to an invalid profile. (1630, 20/August/2010)

7. Action: Google Create user (fix): Fixed the problem of users where allowed to be created, while a
nickname with the same name as the new username, already existed. (1630, 20/August/2010)

8. Action: Google Rename user (fix): Fixed the problem of users where allowed to be renamed to a
username which was already being used as nickname. (1630, 20/August/2010)

9. Action: Manage mailbox email addresses (Exchange2007) (fix): The Remove address option is now
also applied to existing projects. (1630, 23/August/2010)

10. Action: Google Get contact info (new): A new action is added to retrieve all the single valued
attributes and all the primary table entries from a contact. (1630, 24/August/2010)

11. Action: Google Contact remove (fix): Fixed an error, which prevented the contact from being
removed, when the contacts cache was not used. (1630, 24/August/2010)

12. Action: Google get user info (enhancement): Added the nicknames as output property. (1631,
01/September/2010)

13. Action: Google get user info (advanced) (enhancement): Added the nicknames as output property.
(1631, 01/September/2010)

UMRA Help

Copyright © Tools4ever 1998 - 2012 10

14. Action: Google Remove member from group (fix): The action will now respect the 'Remove as
owner' property. (1633, 05/October/2010)

15. Google (fix): UMRA could crash if one script was closing the connection more times as it opened
connections and an other script was at the same time processing modifications. (1630,
20/August/2010)

16. Google (fix): Fixed a rare condition where a Google Close Connection could close the connection of
an other script. (1630, 24/August/2010)

17. Google (enhancement): Added more error checking and more information in case of errors in
requests. (1630, 24/August/2010)

18. Google (fix): Fixed the problem of not reinitializing the cache if the process changes got errors
other than 1300 or 1301 (entityexists or entitydoesnotexist). (1630, 20/August/2010)

19. Google (fix): Support for all unicode 2 bytes characters including diacritical marks and XML special
characters like '<'. (1631, 31/August/2010)

20. Google (fix): Better support when retrieving big environments and the user/profile data is changed
wile retrieving. (1632, 06/September/2010)

21. Action: @VO Get students courses/classes (new): A new action to retrieve a students courses and
classes from an @VO3 environment. (1631, 01/September/2010)

22. Action: @VO Get students custom fields (new): A new action to retrieve a employees custom fields
from an @VO3 environment. (1631, 01/September/2010)

23. Action: @VO Get employees custom fields (new): A new action to retrieve a employees custom
fields from an @VO3 environment. (1631, 01/September/2010)

24. Action: @VO Get employees courses/classes (new): A new action to retrieve a employees courses
and classes from an @VO3 environment. (1631, 01/September/2010)

25. Action: @VO3 Get caregivers (fix): The action will return all the care givers, instead of just the ones,
who have only one student when the normal filters or the legal representive filters are used. (1633,
10/September/2010)

26. @VO (fix): Fixed some school year and password issues causing the use of the current school year
and corrupting the passwords in the authorization functionality. (1631, 01/September/2010)

27. TeleTOP (fix): The course year is not send to TeleTOP when an old environment is used. (1631,
01/September/2010)

28. Action: N@TSchool Get user info (enhancement): The action has an option to not return the user
attributes to improve speed (1633, 7/September/2010)

29. Action: N@TSchool Get user info (fix): Correctly return the user attributes, when requested. (1633,
7/September/2010)

30. N@TSchool (fix): Now all traffic is routed thru a proxy when requested. Some traffic was not routed
thru a proxy, when proxy information was specified. (1633, 7/September/2010)

UMRA Help

Copyright © Tools4ever 1998 - 2012 11

31. UMRA COM (fix): The UMRA client session between the UMRA COM object and the UMRA Service is
automatically unique for each instance created for the UMRA COM object. In previous version this
could cause a problem when the UMRA COM object was accessed by the same user in multiple ASP
or ASPX pages simultaneously (1631, 7/September/2010).

Version 10.5, Build 1630, August 20, 2010

Fixes and enhancements

1. Action: Send HTML mail message (new): A new action to send HTML E-mail message that can also
contain one or more attachments. See Script Action: Send HTML mail message for more information.
(1626,10/August/2010)

2. Action: SAP Generic function module (new): A new action is added to support any RFC/BAPI
function module. See SAP - SAP Generic function module for more information. (1625, 9/August/2010)

3. Action: Setup Exchange Session (Exchange 2010). (fix) Modified optional prerequisite test to
better reflect the current prerequisites. (1625, 27/July/2010)

4. Action: Edit Distribution Group (Exchange 2010) (fix) The "Room List" switch is now not specified
at all (instead as false) when not explicitly set, to prevent errors in outlook live, that does not
support this parameter. (1625,27/July/2010)

5. Action: Add Distribution Group member (Exchange 2010) (new): A new action is added to add an
Exchange 2010 distribution group member to an existing distribution list. See Introduction to

Exchange 2010 (see "Introduction Exchange 2010" on page 1) for generic information on using
Exchange 2010 UMRA actions. (1625, 27/July/2010)

6. Action: List Distribution Group members (Exchange 2010) (new): A new action is added to list the
members of an Exchange 2010 distribution list. (1625, 27/July/2010)

7. Action: Remove Distribution Group member (Exchange 2010) (new): A new action is added to
remove a member from an Exchange 2010 distribution list .(1625, 27/July/2010)

8. Action: Sap get users (fix): When the search pattern is was used, it was ignored by the action. This
issue is fixed (1623, 16/June/2010)

9. Action: List mailboxes (Exchange 2010) (enhancement): Added MailboxPlan column to advanced
table. so it can be listed if it is supported in the used Exchange 2010 environment, for instance in
Outlook Live. (1623,17/June/2010)

10. Action: Create user and Mailbox (Exchange 2010) (enhancement): Added optional MailboxPlan
specification for Outlook Live support (1623,17/june/2010)

11. Action: Edit Mailbox (Exchange 2010) (enhancement): Added option MailboxPlan specification for
Outlook Live support. (1623,17/june/2010)

12. Action: List mailboxes (Exchange 2010) (enhancement): Added optional RecipientTypeDetails
filter parameter. (1623,17/june/2010)

UMRA Help

Copyright © Tools4ever 1998 - 2012 12

13. Action: List Users (Exchange 2010) (enhancement) Added optional RecipientTypeDetails filter
parameter. (1623,17/june/2010)

14. Action: List Contacts (Exchange 2010) (enhancement) Added "Error when not found" option flag.
(1623,17/june/2010)

15. Action: Sap Set user detail (fix): When the detail value is table with multiple rows, not only the last
row is send to SAP multiple times, but all different rows are send to SAP. (1623,07/July/2010)

16. Action: Manage mailbox email addresses (Exchange2007) (fix): The Remove address option worked
incorrectly (1623, 15/july/2010)

17. Action: Create Mail User (Exchange2010) (fix): Removed the mandatory tag from some action
properties to allow use for Outlook Live. (1627,13/august/2010)

18. Action: Create Mail Contact (Exchange2010) (fix): Removed the mandatory tag from some action
properties to allow use for Outlook Live. (1627,13/august/2010)

19. Action: Sap Remove user detail (fix): Sometimes the detail was not cleared in rare conditions, this
is fixed. (1626,12/August/2010)

20. Google (enhanced): The support of google apps is enhanced. See UMRA Google module for more
information. (1623, 16/June/2010)

Version 10.4, Build 1623, May 28, 2010

Major changes

1. SAP (enhanced): The support of SAP systems is enhanced. See UMRA SAP module for more
information. (1613, 15/April/2010)

2. Exchange 2010 (New): Official support for Exchange 2010 has been added. Over 50 dedicated
actions to support various exchange 2010 features to manage mailboxes, distribution lists, public
folders and more (1619, 18/may/2010)

3. @VO 3 connector (new): The hosted student information system @VO is supported with a set of
dedicated UMRA actions (1615, 22/April/2010)

4. Avetica Moodle connector (new): The hosted student information system Moodle is supported,
when hosted by Avetica, with a set of dedicated UMRA actions (1615, 22/April/2010)

5. Edictis connector (new): The webservices of Edidictis are supported with a set of dedicated UMRA
actions (1615, 22/April/2010)

6. Google Apps connector (new): The action Google Rename user is added to the Google Apps
connector (1615, 28/April/2010).

Fixes and enhancements

1. Action: Set variable (enhancement): The name of the variable to create now may contain names of
earlier defined variables. This allows for the names of the variable to be dynamic. For instance

UMRA Help

Copyright © Tools4ever 1998 - 2012 13

%%NewVarName%%. or %Administrator of %CurDomain%%. T4E_ID 680 (1601, November 27,
2009)

2. Action: Manage Table data (enhancement): Table data operation "Get the number of table
rows",now sets the found rowcount to 0 even if the specified table does not exists. Previously the
rowcount variable was not generated at all in that situation. This could cause issues if the script did
not explicitly check for errors. t4E_ID 777 (1601, November 26, 2009).

3. Action: Delete Directory (fix): When the "Delete directory option" was specified in order
additionally delete the specified directory itself, and an error occurred in the deletion process of
this directory, the "on error" handler was not invoked. Now the "on Error" handler will be correctly
invoked. T4E_ID 776 (1601, November 26, 2009).

4. Action: If-Then-Else (fix): When specifying a date-time value as a condition criteria, the value is
updated when the interface dialogs are re-opened. The difference in time corresponds with the
difference between local and GMT time zone settings. The issue is fixed (1615, 22/April/2010)

5. Action: Update database (enhancement): An option is added to prevent to contents of database
statement being shown in the log files. This is useful if the statements contain sensitive
information, for instance a password. See Script Action: Update database - SQL Statements on page 539
for more information. (1615, 28/April/2010).

6. Action: Execute command line (enhancement): A property is added to prevent the command line
being shown in log file. This is useful is the command line contains sensitive information, for
instance a password (1615, 28/April/2010).

7. Action: Format variable value (enhancement): A option is added to prevent the input and output
text values from being shown in the log files (1615, 28/April/2010).

8. UMRA Forms (fix): When a UMRA Forms project used an initial project and the initial project
accessed the UMRA Powershell Agent service, memory errors could cause the UMRA Service not to
respond correctly. This issue is fixed (1613, 19/April/2010).

9. UMRA Forms (fix): When the UMRA Forms client is started, the File, Exit menu option did not
always work when the application was not connected to an UMRA Service. The issue has been
resolved (1613, 19/April/2010)

10. UMRA Forms (fix): When an UMRA Forms table was configured with multiple selection disabled and
the index of the selected item was stored in a variable, the index could be incorrect if the end-user
resorted the UMRA Forms table. The issue has been resolved (1614, 27/April/2010).

11. UMRA Forms (fix): When a generic table, generated in a previously executed project, is sorted
before it is shown in the UMRA Forms client, the indices of selected items could be incorrect. This
issue has been resolved (1615, 28/April/2010)

12. NTFS file system (fix): When specifying the file and directory security settings an error can occur
when specifying a deny permission entry. UMRA will deny the permissions as specified, but also the
so called synchronize permission is denied. The issue has been resolved (1614, 20/April/2010).

UMRA Help

Copyright © Tools4ever 1998 - 2012 14

13. UMRA Automation (fix): When scheduled projects run for over 24 hours, the UMRA Session could
expire in previous versions. This might cause problems when UMRA Session variables are used. The
problem has been resolved (1615, 22/April/2010)

14. UMRA COM (enhancement): The UMRA COM object is extended with method HideVariable to
prevent the contents of the variable data from being shown in log files. See HideVariable for more
information (1619, 3/May/2010)

15. Generic table (fix): The octet string data type, used in Active Directory to represent for instance SID
and GUID values is now supported in UMRA (1618, 29/April/2010).

16. TeleTOP connector (enhancement): Added support for the TeleTOP course code enhancements.
Also improved connection stability in unstable network environments (1615, 22/April/2010)

17. Google Apps connector (fix): Fixed the retrieval of user memberships information when the cache
is overridden (1615, 22/April/2010)

18. Google Apps connector (enhancement): Added support for renaming users (1615, 22/April/2010)

19. It's Learning connector (enhancement): Improved the performance and overall connection
stability of the connector (1615, 22/April/2010)

Version 10.3, Build 1601, November 19, 2009

Major changes

1. TOPdesk connector (new): The helpdesk information system TOPdesk , http://www. is supported
with a set of dedicated UMRA actions (1587, 26/August/2009)

2. Google Apps connector (new): The information system Google Apps is supported with a set of
dedicated UMRA actions (1587, 26/August/2009)

3. TeleTOP connector (new): The student information system TeleTOP is supported with a set of
dedicated UMRA actions (1587, 26/August/2009)

4. N@tSchool connector (new): The student information system N@tSchool is supported with a set of
dedicated UMRA actions (1575, 10/June/2009)

5. It's Learning connector (new): The student information system It's Learning is supported with a set
of dedicated UMRA actions (1599, 4/November/2009)

6. Aura connector (new): The school library system Aura is supported with a set of dedicated UMRA
actions (1575, 10/June/2009)

7. Execute command line at UMRA Forms client (new): When an UMRA form is submitted, as a
response, a command line can be executed by the UMRA Forms client computer. See Form action -

Execute command line at client workstation for more information (1560, 2/April/2009).

8. Get Out-Of-Office info (Exchange 2007) (new): The action collects the Out-Of-Office information of
a particular account. See Script Action: Get Out-Of-Office info (Exchange 2007) for more information
(1572, 2/June/2009)

http://www./

UMRA Help

Copyright © Tools4ever 1998 - 2012 15

9. Set Out-Of-Office info (Exchange 2007) (new): The action sets the Out-Of-Office information of a
particular account. See Script Action: Set Out-Of-Office info (Exchange 2007) for more information
(1572, 2/June/2009).

Powershell

1. Powershell Agent service - Session time to live (enhancement): The time-to-live idle time of a
Powershell Agent service session on page 78 can be configured by setting a registry value. See Registry
settings for more information. (1570, 12/May/2009).

2. Script action: Check Powershell Agent service session (new): The action can be used to check if an
previously created Powershell Agent service action is still available and removed upon expiration.
See Script Action: Check Powershell Agent service session for more information (1570, 13/May/2009).

3. Keep-alive signalling (enhancement): To prevent expiration of idle Powershell Agent sessions, the
UMRA Forms client sends keep-alive signal to the UMRA Service. The UMRA Service forwards these
signals to the Powershell Agent service, keeping the sessions initialized through the UMRA Forms
client alive. In case the UMRA Forms client is open for a longer period, e.g. a day, the session
information is not lost.(1570, 19/May/2009)

4. Variable list (enhancement): The available variables that can be used in script properties,
generated from dynamic actions, is now limited to the properties section of the dynamic actions. In
previous version, also variable names from the script section were copied to the variable list. Since
these variable are not available in the UMRA variable list, these variables should not be presented
to the end-user. (1570, 22/May/2009)

5. Powershell not installed (fix): When Powershell is not installed on the machine that runs the
Powershell Agent service, a correct error message is shown when executing the action Setup

Powershell Agent service session. In previous versions, the Powershell Agent service and the call
UMRA software could crash (1571, 25/May/2009)

6. Powershell Agent service import library (fix): When importing the Powershell Agent service library,
some incorrect error message were shown. The issue has been resolved (1571, 25/May/2009)

7. Project execution using UMRA COM (fix): When using UMRA COM to execute projects that access
the UMRA Powershell Agent service, a problem could occur causing projects not to terminate
completely. The issue has been resolved. (1578, 17/June/2009)

8. Powershell Agent service manual installation (enhancement): A online help topic is added that
described how to setup the Powershell Agent service manually. See Manual installation of the

Powershell Agent service for more information. (1579, 30/June/2009)

Lotus Notes

1. Lotus Notes - action: Execute agent script (new): The action creates, executes and deletes a Lotus
script agent in an existing database. The action can be used for instance to automate the approval
of administration process requests. See Script Action: Execute agent script on page 485 and Lotus Notes

example projects (on page 54) for more information (1558, 30/March/2009).

UMRA Help

Copyright © Tools4ever 1998 - 2012 16

2. Lotus Notes - action: Execute agent script (enhanced): The action is extended with some new
properties to better control the action. See Script Action: Execute agent script on page 485 and Lotus

Notes example projects (on page 54) for more information (1593, 28/September/2009).

3. Lotus Notes - action: Get item size (new): The action retrieves the size of a single specified Lotus
Notes document item. See Get item size on page 464 for more information. (1558, 30/March/2009).

4. Lotus Notes - action: Set item(s) (enhanced): The action now checks the total size of the item. If
the action would exceed the Lotus Notes item size limit, the action is not executed. The action size
limit is 32k bytes for summary items and 64k bytes for all other items. (1558, 30/March/2009)

5. Lotus Notes - action: Set item(s) (enhanced): The action now checks the total size of the item. If
the action would exceed the Lotus Notes item size limit, the action is not executed. The action size
limit is 32k bytes for summary items and 64k bytes for all other items. (1558, 30/March/2009)

6. Lotus Notes - action: Update profile document (enhanced): The action now supports different
Lotus Notes type values and can also be used to delete fields and/or sign profile documents only.
See Script Action: Update profile document on page 478 for more information (1568, 24/April/2009).

7. Lotus Notes - action: Update profile document (enhanced): The action is further enhanced to add a
profile document field that contains the date and time of the profile document signature. See Script

Action: Update profile document on page 478 for more information (1569, 1/May/2009).

8. Lotus Notes - action: Register person (advanced) (fix): The action is extended with 2 new
properties, 'Roaming - Replica servers' and 'Roaming - Create replica files in background' to support
roaming profiles. See Script Action: Register person (advanced) for more information. (1585,
24/July/2009)

9. Lotus Notes - example project 'Remove Roaming profile' (new): An example project is added to
show how to create an administration request to remove the roaming profile of a Lotus Notes user
account. See Lotus Notes example projects (on page 54) for more information (1585, 24/July/2009).

10. Lotus Notes - example project 'Lotus Notes ID Vault - Reset password' (new): An example project
is added show how to use the Lotus Notes ID Vault to reset password of user accounts in Lotus
Notes. See ID Vault and Lotus Notes example projects (on page 54) for more information (1593,
28/September/2009).

11. Lotus Notes - action: Delete document (new): New properties are added to support another
method to specify the note or document to be deleted. See Script Action: Delete document for more
information (1593, 28/September/2009).

Actions

1. Update numeric variable - Convert number to text (format) (new): The action is extended with the
option to convert a number to a text value according to a C-language 'printf' format specification.
See Script Action: Update numeric variable on page 550 for more information (1558, 30/March/2009).

2. Execute command line (enhanced): A property is added to specify the maximum output buffer size
in case the output is to be stored in a variable. See Script Action: Execute Command Line on page 369
for more information (1579, 26/June/2009).

UMRA Help

Copyright © Tools4ever 1998 - 2012 17

Fixes and enhancements

1. Action: Update date-time variable - subtract date-time value (new): A new function is added to
subtract a date-time value stored in a variable from another date-time value. See Script Action:

Update date-time variable on page 552 for more information (1566, 17/April/2009).

2. Action: Set variable (fix): For hidden variables, in log files, the value of the variable was not shown
but when the action was executed, it was shown. The issue has been resolved (1577, June 12,
2009).

3. Set attribute (AD) (fix): The escape sequences, introduced in UMRA build 1558, are changed to
[\r], [\n], [\r\n] and [\t] to allow attribute specifications containing for instance \t:
\\SERVERNAME\Share\tsmith. See Script Action: Set attribute (AD) on page 124 for more information.
(1563, 9/April/2009).

4. Add action to script - window update (fix): When composing an UMRA script using menu option
Add action to script, the script window is now updated correctly. In previous versions, the actions
displayed were not always updated immediately. (1562, 7/April/2009)

5. Script action: Set Terminal Services user settings (fix): In special circumstances, UMRA could crash
when the action was executed and failed with the following error message: Cannot determine
NETBIOS domain controller name of domain controller... The issue has been resolved (1562,
7/April/2009).

6. Powershell Agent service (fix): When received a stop signal, the Powershell Agent service is now
stopped more gracefully (1562, 8/April/2009).

7. Generic table - LDAP table column name (fix): The name of a column of a LDAP generic table is set
to the name of the attribute. This was changed in build 1558 to the display name but causes
problems in existing implementations. (1565, 15/April/2009)

8. Vista - Windows Server 2008 - UAC (fix): The UMRA Console is started with elevated administrative
access on the Vista and Windows Server 2008 platforms. In previous versions, this was not the
case. Depending on the system configuration access denied errors could occurs for instance when
the UMRA Service was installed. (1566, 17/April/2009)

9. Action: Update database (fix): When testing the statements of action Update database, the option
to Run test on UMRA Service is no longer available. In previous version, the option could be
selected but was not functional (1566, 17/April/2009).

10. 64-bit UMRA COM DLL (fix): In UMRA 10.1, build 1577, the 64-bit UMRA Automation DLL
UmraCom64.dll had an incorrect version number (1577, June 12, 2009).

11. PSM, UMRA session (fix): When accessing an UMRA project through UMRA PSM, the global UMRA
session list is now correctly updated. In previous versions, the UMRA Service was not updated
correctly. (1588, August 31, 2009).

UMRA Help

Copyright © Tools4ever 1998 - 2012 18

Version 10.0, Build 1558, March 27, 2009

Major changes

1. Session support of the Powershell Agent service: A Powershell Agent service session allows a more
interactive usage of the Powershell runtime environment. For instance to store Powershell
variables that can be used in subsequent Powershell scripts. For more information, see Powershell

Agent service session on page 78. (1528, 10/November/2008)

2. SAP support (new): Over 30 actions are added to support SAP. The UMRA SAP actions can be used
to create SAP accounts, reset passwords, add users roles and profiles and so on. See UMRA and SAP
for more information. (1480, 5/September/2008)

3. UMRA Console: Open referenced project (new): When configuration a project with the UMRA
Console application, the menu option Open referenced project opens the associated project for
For-Each and Execute script actions. (1546, 29/January/2009).

Actions

1. Get Out-Of-Office info (Exchange 2000/2003) (new): The action collects the Out-Of-Office
information of a particular account. See Script Action: Get Out-Of-Office info (Exchange 2000/2003) on
page 174 for more information (1539, 6/January/2009).

2. Set Out-Of-Office info (Exchange 2000/2003) (new): The action sets the Out-Of-Office information
of a particular account. See Script Action: Set Out-Of-Office info (Exchange 2000/2003) on page 178 for
more information (1539, 6/January/2009).

3. Set variable - hidden variable (enhancement): With action Set variable on page 544 it is possible to
hide the value of the variable. In log files, the value is not shown. (1528, 6/November/2008)

4. Edit share (enhancement): The property 'Cache parameter' is added to support share caching options
on page 364 (1543, 28/January/2009).

5. Set attribute (AD) (enhancement): The action supports carriage return, line-feed insertion in the
Active Directory attribute. See Script Action: Set attribute (AD) on page 124 for more information.
(1546, 30/January/2009).

6. Delete multiple variables (new): The action supports deletion of multiple variables from the project
variable list with a single action. (1546, 6/February/2009)

Table management

1. Manage table data - Get the number of table columns (new): The new action is added. See Script

Action: Manage table data on page 528 for more information (1546, 5/February/2009).

2. Manage table data - Copy row (new): The new action is added. See Script Action: Manage table data on
page 528 for more information (1546, 5/February/2009).

UMRA Help

Copyright © Tools4ever 1998 - 2012 19

3. Manage table data - Copy multiple rows (new): The new action is added. See Script Action: Manage

table data on page 528 for more information (1546, 5/February/2009).

4. Manage table data - Copy table (new): The new action is added. See Script Action: Manage table data
on page 528 for more information (1546, 5/February/2009).

5. Manage table data - Remove multiple rows (new): The new action is added. See Script Action:

Manage table data on page 528 for more information (1546, 5/February/2009).

6. Manage table data - Remove a specified column (new): The new action is added. See Script Action:

Manage table data on page 528 for more information (1546, 5/February/2009).

7. Manage table data - Sort on column name (new): The new action is added. See Script Action: Manage

table data on page 528 for more information (1546, 5/February/2009).

8. Manage table data - Convert multi-value variable to table (new): The action accepts single value
variables. (1546, 11/February/2009).

9. Manage table data - Replace column name (new): The new action is added. See Script Action: Manage

table data on page 528 for more information (1546, 5/February/2009).

10. Manage table data - Get column name (new): The new action is added. See Script Action: Manage

table data on page 528 for more information (1546, 5/February/2009).

11. Manage table data - Search table (new): The action is extended with search features. See Script

Action: Manage table data on page 528 for more information (1546, 5/February/2009).

Powershell - dynamic actions

1. Time Powershell Agent service (fix): The time as shown in log messages generated by the
Powershell Agent service is now correct (1520, 21/October/2008).

2. Upgrade of dynamic actions (fix): The upgrade procedure of dynamic actions is enhanced (1520,
17/October/2008)

3. Directory of Powershell Agent service (enhancement): It is now possible to specify the directory
where the Powershell Agent service is installed (1542, 13/January/2009).

4. Powershell Agent service - UMRA Service (fix): When multiple (> 10) scheduled tasks access the
Powershell Agent service simultaneously from within the UMRA Service, the RPC service can
become to busy, causing errors and Powershell scripts not being executed. The error is now
handled correctly and the RPC call is retried until it succeeds or the expiration period is passed
(1506, 7/October/2008).

5. Powershell Agent service - UMRA Service (fix): In rare circumstances, the UMRA Service could
crash when multiple scheduled tasks access the Powershell Agent service simultaneously. This is
caused by some XML libraries not being thread-safe. The issue has been resolved (1506,
7/October/2008).

UMRA Help

Copyright © Tools4ever 1998 - 2012 20

UMRA COM object

1. New interface methods (new): A number of interface methods are added, mainly dealing with
UMRA COM object tables. Methods are added to check license information, store tables in the
variable list, manage table contents and column names using the UmraDataTable interface. See
UMRA COM object reference on page 6 for more information (1543, 27/January/2009).

Lotus Notes

1. Lotus Notes - Update profile document (enhancement): The action is extended: item flags can be
specified for the updated profile document and the profile document can be signed when changes
are applied (1536, 12/December/2008).

2. Lotus Notes - Copy document (new): Copy a Lotus Notes document from one database to another
Lotus Notes database. See Script Action: Copy document on page 459 for more information (1536,
23/December/2008).

3. Lotus Notes - Get quota (new): Retrieve the quota and size of a Lotus Notes database. See Script

Action: Get quota on page 445 for more information.

4. Lotus Notes - Update profile document, 'Log archiving' (new): Online help is updated to show how
the action is used to set log archiving for a Lotus Notes database on page 478 (1543, 28/January/2009).

Fixes and enhancements

1. Password Synchronization Manager (fix): Some memory issues are resolved in the Password
Synchronization Memory DLL (1480, 10/September/2008)

2. Password Synchronization Manager (fix): An issue is fixed for domain controllers with a name of 15
characters. In previous versions, error 111 could occur, generated by the Password Synchronization
DLL, running on the domain controller. (1506, 7/October/2008)

3. XML (fix): The handling of special characters (white-space, carriage return, line feed, tab) in XML
export and import procedures is now correct (1480, 5/September/2008).

4. XML (fix): For some UMRA objects, the XML export was not complete, e.g. the result file did not
contain all of the UMRA object data. This could lead to incomplete backups. (1480,
5/September/2008)

5. XML (fix): The indentation of exported projects to XML files is now correct. (1527,
30/October/2009)

6. XML (fix): When importing a project from an XML-file that contains a generic table with an
imported file, the separator character settings are now correct. In previous version, the comma (,)
separator was always selected (1546, 5 February/2009).

7. Recent projects (fix): In rare circumstances, the UMRA Console application lost the list with recent
projects. The issue has been resolved (1515, 16/October/2008)

UMRA Help

Copyright © Tools4ever 1998 - 2012 21

8. Logging of service projects cache parameters (enhancement) The projects cache parameters are
now logged in the UMRA Service log in startup. The log message has the following format: Service
projects cache initialized with parameters 'Enabled=1', 'Delay=300' (1522, 22/October/2008)

9. Manage service projects (fix): When the buttons of the 'Manage service projects' are clicked in a
certain order, the UMRA Console application could crash. The issue has been resolved. (1528,
7/November/2009).

10. Thread mechanism (enhancement): To prevent delays in large networks, specific tasks are
performed in separate threads. (1543, 14/January/2009).

11. Form security - group selection (enhancement): When setting the accounts for form project
security, available groups are now by default shown in the dialog to select User and/or Groups
(1542, 12/January/2009).

12. Importing project files with period (.) in file name (fix): It is now possible to import a project file
with multiple periods (.) in the file name. Example: form.with.period.ufp (1543, 13/January/2009).

13. Name generation - output variable (enhancement): The names of output variables can now be
renamed when configuration name generation algorithms. (1546, 29/January/2009).

Version 9.1 Build 1478, August 1, 2008

Major changes

1. XML project file format (new): UMRA supports the XML standard to import and export UMRA
projects and scripts. See UMRA XML project and script files for more information (1458, 3/June/2008).

2. Password Synchronization Manager (PSM) (new): This new PSM module will catch every password
change in a Windows Active Directory domain and start an UMRA project. The UMRA project will
forward the password change to other systems and applications. Refer to the section on PSM on
page 119 for more information (1474, 8/July/2008).

Groups

1. Update group memberships (AD) (new action): The new action allows the addition, removal and
synchronization of group memberships for an account. Lists can be specified for each operation.
For example, when synchronizing, the user account (or other type of account) will only be a
member of the specified groups when the action is completed. See [Script Action: Update group

memberships (AD) on page 131] for more information (1437, 2/April/2008).

2. Create group (AD) (fix): The Common Name of a new group can now start with a #-character (1462,
12/June/2008).

UMRA Help

Copyright © Tools4ever 1998 - 2012 22

Tables

1. Manage table data, Set column name (enhancement):. The action Manage table data now supports
the function to set the name of a column (1433).

2. Manage table data, Search cells with matching contents (enhancement): In a table, search through
all rows and the specified or all columns to find tables cells with matching text contents (1441,
14/April/2008).

3. Manage table data, Complete rows (enhancement): Search through all rows of a table and add
empty text values to each row so that the total number of columns is equal for all rows. If all rows
already have an equal number of cells, no changes are made (1441, 14/April/2008).

4. Get user (AD) (enhancement): The action is extended with property Globally Unique Identifier
(GUID). When the user object is successfully retrieved, the GUID of the user account can be stored
in a variable (1458, 2/June/2008).

5. Get users table (locked out/Disabled/Password) (AD) (fix): When the domain Account lockout

duration is specified as 0 (account is locked out until administrator unlocks it), the action functions
correctly (1462, 12/June/2008).

6. Store indices of selected rows in table variable (new): The indices of the selected rows of UMRA
form tables, can be stored in a table variable (11/June/2008, 1462).

Actions

1. For Each (enhanced): The dialog window to configure the For-Each action is extended with more
options to configure the column variables passed to child project (1435, 21/March/2008).

2. Execute command line (enhanced):. A property is added to allow the removal of carriage-return
line-feed characters at the end of the output variable value (1438, 3/April/2008).

3. Generate random number (enhanced): For the minimum and maximum values, variable names can
now be specified. (1441, 14/April/2008)

4. Delete directory (enhanced): The logic to calculate the correct directory name is improved to
support directory names with multiple dots (.) in the full path (1441, 14/April/2008).

5. Execute script (enhanced): The action description as shown in the script window of an UMRA
project now shows the name of the script to execute (1442, 18/April/2008).

6. Get user (AD) (fix): When an output variable is specified for the display name, and no display name
is found for the user account, no UMRA error is generate. (1456, 29/May/2008).

7. Format variable value (new): The functions of the action ‘Format variable value’ can now be
specified using variables. Also, when formatting functions are used in name generation algorithms,
variables are supported (1437, 28/March/2008).

8. Format variable value (enhanced): The case conversion functions of the action now supports the
special characters ä, Ä, ö, Ö, ü and Ü. (1471, 2/July/2008).

UMRA Help

Copyright © Tools4ever 1998 - 2012 23

9. Get attribute (AD) (fix): When an attribute is not found, and property 'Convert to text flag' is set to
'No' and no errors must be generated if not found, the action now no longer generates an error
(1462, 16/June/2008).

10. Create local group (fix): When the group cannot be created since it already exists, no error is
generated if 'Error if group already exists' is set to 'No'. (1473, 9/July/2008).

Exchange

1. Manage mailbox e-mail addresses (Exchange 2007) (enhancement): The action now contains an
additional property Domain controller to allow specific server binding and avoid replication issues
(1462, 16/June/2008).

2. Enable distribution group (Exchange 2007) (new): A new action to mail-enable distribution groups
(1462, 16/June/2008).

3. Set client access attributes (Exchange 2007) (new): A new action to set client access attributes
including Outlook Web Access (OWA), MAP, IMAP and POP (1462, 16/June/2008).

Powershell

1. Powershell agent service: The service now supports more data types used to return output tables.
For example the data of file system ACL’s. (1425, 11/Feb/2008)

2. Powershell agent service (fix): A memory issue with encrypted data has been resolved. When using
encrypted script phrases, the agent service could consume little memory resources that were not
released properly. Eventually (after months or years without a reboot), this might cause problems
for the computer running the Powershell Agent service (1425, 18/Feb/2008)

3. Powershell return data (new): Simple string and data values can be returned to UMRA with a more
simple method. See Single value output data for more information (1467, 26/June/2008).

4. Powershell encrypted variable input (new): For input text properties, the value can be encrypted.
In this case, the actual contents of the property is not shown in log files, UMRA script files and so
on. See Encrypted properties for more information (1467, 27/June/2008).

5. Powershell - Active Directory permissions management (new): New UMRA actions are added to
manage Active Directory permissions: Script Action: Get AD permissions on page 578, Script Action: Add

AD permission on page 583, Script Action: Remove AD permission on page 588, Script Action: Set AD

permissions (advanced) on page 593, Script Action: Get owner on page 595, Script Action: Set owner on
page 597 (1473, 8/July/2008).

6. Powershell - Group management (new): New UMRA actions are added to manage Active Directory
groups: Script Action: Set Managed By on page 599, Script Action: Get (nested) group memberships on page
601 (1473, 8/July/2008).

7. Powershell - File system (new): A new action is added to get disk space information: Script Action:

Get disk space on page 602 (1473, 8/July/2008).

UMRA Help

Copyright © Tools4ever 1998 - 2012 24

8. Powershell - Active Directory utility (new): A new actions is added to determine the role of the
primary domain controller: Script Action: Get PDC (AD) on page 605 (1473, 8/July/2008).-

Lotus Notes

1. Lotus Notes - Support new action to reset the password of an Lotus Notes ID file. See Lotus Notes

action: Generate recovery password (see "Script Action: Generate recovery password" on page 440) for
more information (1433).

2. Lotus Notes - Support new action to configure Out-Of-Office. See Lotus Notes action: Out-Of-Office
for more information (1433).

3. Lotus Notes - Move person (advanced) (new): The existing action Move person cannot be used to
move a person if the person is currently located in an organizational unit. To support this
operation, the action Move person (advanced) is added. See [Script Action: Move person (advanced) on
page 436] for more information (1438, 3/April/2008).

4. Lotus Notes - Update profile document (new): The new action can be used to specify the value of a
specific field of a database' profile document. See Script Action: Update profile document on page 478
for more information (1473, 8/July/2008).

5. Lotus Notes - Sign/Unsign document (fix): In previous versions, the action could apparently
execute with no error, but the resulting document (adminp request) was not accepted. The error
occurred when creating administration requests for Domino version 7 servers. (For version 6.X
Domino servers, the problem was not found). The issue has been resolved (1440, 9/April/2008).

6. Lotus Notes - Update ACL (fix): The ACE name that is specified as part of the Access Control Entry
specification can now hold variables. In previous versions, variables were not replace at run-time
by their actual values. (1142, 21/April/2008).

7. Lotus Notes - UMRA Service fix: When using an initial project with UMRA Forms projects, the
UMRA Service did not properly release the resources used for Lotus Notes databases that were
initialized in the initial project. Eventually, this could prevent the UMRA Service and other
applications being able to access Lotus Notes databases (1435, 19/March/2008).

8. Lotus Notes - Create document (enhancement): The action now exports the document e.g. notes
ID of the created document.

9. Lotus Notes - Register person (advanced) (enhancement): The action now supports the creation of
mail file replicas using property Mail – Mail file replicas (1447, 29/April/2008).

10. Lotus Notes - Set items (fix): The order of text item values of text list items as specified with action
Set items is now preserved. (1462, 12/June/2008).

11. Lotus Notes - Example projects (new): Several UMRA Lotus Notes example projects are added.
Almost all of these project show how to setup Lotus Notes administration requests in order to
manage Lotus Notes accounts and mailboxes.

UMRA Help

Copyright © Tools4ever 1998 - 2012 25

Forms:

1. Variable generic table column names (new): The names of columns in a variable generic table can
be specified as variables (%NameColumnA%, %NamceColumnB%, etc) (1458, 2/June/2008).

2. Name of client computer (new): When a form is submitted by clicking a button, a variable,
%UmraClientComputerName%, is generated. The variable holds the name of the client computer
and can be used by the UMRA Service. See Built-in variables on page 618 for more information (1462,
11/June/2008)

Database

1. Database connection lost when database reset. With UMRA Forms, an error could occur when
databases were reset or restarted. In these situation, the UMRA Service was not able to reconnect
to the database unless the UMRA Service was restarted. The problem was caused by an incorrect
update of the database connection cache maintained by the UMRA Service (1433).

2. UMRA Console log with test query (new): When executing a test query of a table from the UMRA
Console application (Setup generic table, Run test, Test...) the query is now written to the UMRA
Console log (1458, 2/June/2008).

Automation

1. UMRA Automation 64-bit support (new): The UMRA Automation software is now available for both
32-bit and 64-bit platforms. As a result, web-pages that are part of IIS web-site can run on 32-bit
and 64-bit IIS platforms. See UMRA COM on 64-bit platforms on page 73 for more information (1445,
23/April/2008).

2. Name of automation project (fix): When creating a new automation project, the new project must
now have an unique name. (27/May/2008, 1455)

3. Automation log files (fix): The specific automation log file settings, e.g. maximum log files size and
maximum number of log files per project are now preserved when the UMRA Service is restarted
(1462, 12/June/2008).

General

1. UMRA on Vista and Windows Server 2008 (fix): All UMRA applications now run on Windows Vista
and Windows Server 2008 with no problems (1462, 12/June/2008).

2. Fix error 20403: When transferring large amounts of data (> 1 MB) from either UMRA Forms or
the UMRA Console application, an error could occur with error code 20403. This specially
happened when variables storing big tables were used. (1433)

3. Project name variable: When a project is executed, the name of the project is now stored in a
variable. Two variables are used for this purpose: %UmraProjectName% and
%UmraProjectNameStack%. Variable %UmraProjectName% contains the name of the (deepest)
project that is currently executed. %UmraProjectNameStack% contains the name of all projects:

UMRA Help

Copyright © Tools4ever 1998 - 2012 26

the deepest child project and all parent projects. See Built-in variables on page 618 for more
information (1435, 20/March/2008).

4. When a project is executed, the following new UMRA variables are generated:
%CurrentSystemDate%, %TimeStamp%, %UmraFormSubmitDomain%,
%UmraFormSubmitUsername%, %UmraPath%, %SystemRoot%. See Built-in variables on page 618
for more information (1455, 28/May/2008).

5. Error importing large amount of projects. An error could occur when importing large amounts (>
250) of projects in a single operation. The operation has been changed to support more projects
(1433).

6. Distinguished names with slash (/): The following actions – properties are updated to support
distinguished names containing one or more forward slashes: action Set attribute (AD), property
Active Directory object LDAP name, action Create object (AD), property LDAP Container, action Set
group memberships (AD), property Active Directory name, action Create user (AD), property LDAP
Container, action Remove specific group memberships (AD), properties Group name (LDAP) and
Account name, action Move cross domain, properties Source object and Target container, action
Create contact (AD), property LDAP Container, action Get user table (…), property LDAP path,
action Create group (AD), property LDAP Container, action Move – rename (AD), property OU-
Container LDAP name, action Get object (AD), property LDAP name (1438, 8/April/2008).

7. Script error handling (fix): When the error handling settings of a script action are updated, the
project is now marked as dirty (e.g. needs to be saved due to changes in the project) (1458,
2/June/2008).

8. Log variables - Display of Carriage Return Line Feed: When a variable value contains carriage-
return and/or line-feed characters, the action Log variables will show these characters
([cr],[lf],[crlf]).

9. Scheduler tab shown (fix): When an automation project is scheduled to run once, and the run time
is passed, the project window now shows the scheduler tab. In previous versions, the scheduler tab
was only shown if the project schedule time was in the future (1462, 11/June/2008).

10. Drop down lists, edit field (fix): In a number of dialogs and tabbed windows, the the edit field of
drop down lists now automatically scrolls in a horizontal direction when text is entered. In previous
versions, the length of the entered text was limited (1462, 13/June/2008).

Version 9.0 Build 1425, February 1, 2008

New Features

1. Major new area of functionality: Support of Powershell. The UMRA software is extended with
the Powershell Agent service. The service supports the integration of UMRA and Powershell.
New actions that can use any Powershell cmdlets can be added to UMRA in a dynamic manner
to extent the functionality of UMRA. For more information, see Powershell Agent service on page 2.

UMRA Help

Copyright © Tools4ever 1998 - 2012 27

2. Major new area of functionality: Support of Exchange 2007. Based on the new Powershell Agent
service, over 25 new action are added to UMRA to support the management of Exchange 2007
mailboxes and other resources. For more information, see Exchange 2007 (see "Introduction
Exchange 2007" on page 1).

This new functionality is licensed as a separate module. Existing users should contact
Tools4ever for an upgrade of their licence keys when required.

Version 8.0 Build 1343, May 4, 2007

New Features

1. Major new area of functionality: Management of IBM's Lotus Notes environments. In addition to
the existing possibility to manage the Lotus Notes Directory with LDAP, UMRA has been
extended to interface with native Lotus Notes environments; it can now create, delete and move
Lotus Notes user's and resources directly, and perform a vast number of other Lotus Notes
related actions. This functionality is completely integrated with the current functionality of
UMRA. For this purpose no less then 25 new UMRA script actions have been created see Lotus

Notes Actions on page 392 for an overview.

For a description how to configure umra to start using these actions, see Configuring the UMRA

Console for use with Lotus Notes on page 37 and Configuring the UMRA service for use with Lotus Notes
on page 42 .

This new functionality is licensed as a separate module. Existing users should contact Tools4ever for
an upgrade of their licence keys when required

2. New project hierarchy for server based projects.
The projects on the server can now be organized in a tree structure. Note that the tree structure
is currently only for display purposes, and is visible when the projects listed with the menu
option UMRA Service, Manage server Projects.

3. Update the license Mechanism. Updated the license mechanism to facilitate a new licence that
specifically allows the SSRPM (Self Service Reset Password Management) product of Tools4ever
to interface with UMRA.

4. New Action. A new action Script Action: Count licensed - domain/OU accounts on page 371 has been
added. Use this action in a script to find out how many user accounts are there in the domain/ou
and compare these with the number allowed according to the license. This action allows to find
out if a domain is nearing the limit specified in the license. You may want to use this in a
scheduled script that sends an email to an UMRA administrator if the license count is almost
reached.

UMRA Help

Copyright © Tools4ever 1998 - 2012 28

Enhancements

1. Action enhanced: For Each. The maximum number of possible variables that can be coupled to
the table columns in the called project, has been increased from 20 to 300. (1307-1338)

2. Action enhanced: If - Then - Else. The variable argument was only allowed to exist of exactly a
single variable. It has been modified so that is is allowed to consist of a text string that contains
variables. (1307)

3. Action enhanced: Move - rename user (AD). The action has been extended to allow for the move
and rename of other objects than users, like for instance contacts. Therefore the action has
been renamed to Move - rename (AD).(1307)

4. Action enhanced: Load LDAP Modification Data. The name of the attribute to modify can now
also be specified as a variable, instead of fixed in the action.

5. Action extended: Manage Table data. The action is extended with three table data operation
functions.

 Convert multi-text variable to table. Used to convert a variable of the type text-list to a table
of a single column, and a row for each value in the text-list.

 Convert multi-value variable to table.

 Convert table column to multi text variable. Used to convert a specific column of a table to a
text-list variable.

6. Action extended: Fomat variable value.New formatting functions have been added: Delete:
Leading blank characters and Delete:Trailing blank characters

7. Logging. Added an option to be able to enable or disable logging to memory for server projects.
With the project script tab selected, choose Actions, Project script properties, and select the
options tab to access this functionality. switching it off may significantly increase performance
when running projects from the delegation client.(1307)

8. MySQL datatypes. For MySql server support is added for the date datatype, which contains only
the date, not a time. As UMRA itself does only support date-time, as a datatype, when reading it
will be converted to a date-time value with the time set at 12.00 hr pm.(1307)

Major Fixes

1. Generic table. A memory leak has been fixed which occurred when reading multi-value values in
a generic table; for instance when querying the Memberof attribute in an LDAP query. (1303)

2. Action Create user (AD). When a user cannot be created due to password complexity
requirements, the temporarily created user object is now correctly removed from Active
Directory(1307)

3. Script Action: Move Exchange Mailbox. A fix has been created for an crash problem introduced
by SP2 of Exchange 2003.due to incompatiblities of the updated Exchange software.(1307)

4. Script Action: Modify exchange mailbox permissions 2000/2003. A memory leak has been fixed
(1307)

UMRA Help

Copyright © Tools4ever 1998 - 2012 29

5. Script Action: Move Exchange Mailbox. Action could cause an exception if the specified user
object variable was not valid, for example if it was the result of a failed Get user Action. Now it
gives a correct error message and continues with proper error handling as specified.(1311)

Minor fixes

1. Sheduler. When a project was sheduled for daily execution, the scheduling could not be disabled
(it could still be configured as never though). This has been fixed (1309)

2. Generate generic table-LDAP Query. The LDAP query filter could not contain variables, they
where not resolved at run time. This has been fixed.(1309)

3. Script Action: Execute script. The name of the script to execute could not contain variables. now
it can. (1311)

4. Script Action: Update date-time variable. The action parameters can now contain variables.
(1311)

5. Script Action: Format variable value, the formating function Delete, all matching characters,

specified as ASCII codes deleted both upper and lowercase of the specified value when
applicable. That is, when specifying 97, in order to delete 'a' accidentally also all occurrences of
'A' where deleted. This has been fixed.

6. Script Action: copy directory. When the copy fails because the destination drive is full, UMRA
logged a correct error message, but the error handler (the "on error" part of the action) was not
invoked. Now the error handler is invoked correctly.(1311)

Version 7.6 ,Build 1302, August 23rd, 2006

New Features

1. Project Scheduler. A major new mechanism to run projects has been added to the UMRA
service: the UMRA Scheduler. UMRA projects can now be executed automatically at scheduled
times by the UMRA service. Open a project and choose Actions-->Scheduler to view and specify
scheduling information for the active project. Choose View-->Scheduler to see the scheduling
overview of the UMRA Service. Press F1 in those windows for more information.

2. New action - Join Table Data. The Script Action: Join table data on page 533 has been added.

3. New action - Manage table data. The Script Action: Manage table data on page 528 is extended with
an option to sort a table based on the column name.

4. Action extended : Generate generic table. The Script Action: Generate generic table on page 527 , is
extended with the option to generate a table from a .csv file, and to specify the names of the
columns explicitly.

5. Security improved. All RPC communication between the UMRA console, UMRA Service,UMRA
Com and the UMRA forms client is now encrypted by means of SSL.

UMRA Help

Copyright © Tools4ever 1998 - 2012 30

6. Aborting scripts. A mechanism has been added to see which scripts are currently actively
running, and also to make it possible to abort those running scripts if required. choose UMRA
Service -> Control Running projects from the menu to go to the overview.

7. Search and Replace. A "search and replace" option has been added to search (and or replace)
through all configured action property values and specifications in all projects in the active
workspace. Useful for instance if you want to rename a variable that is used in a lot of places.

Enhancements

1. Service logging. The service can be configured (choose UMRA Service-->Service
properties;Advanced tab) to create user specific cyclic log files rather than general ones. The
names of the log files are derived from the name of the account with which the a user connects
to the service.

2. Project logging. Previously, at the start of each project execution, the values of all variables in
the project where logged. This could be a lot of uninteresting data, especially if a project was
called many times within a "for each" action. Now this can be switched off in the project options
of a specific project (choose Actions-->Project script properties;Options tab)

3. UMRA Com performance. UMRA Com is extended with a new interface call (EnableReturnLog) to
specify whether or not the log info generated by the service should be returned to the calling
Com Object. By default the log information that the called service project generates is returned
to the calling Com Object, so that it can be displayed if required. If this option is switched off, no
log information is returned to the calling Com object. In both cases the log information is logged
in the logfiles on the server. Disabling the return of log information increases the performance.

4. UMRA command line Application. The UMRA command line application "UMRACmd.exe", now
has an extra command line option (-NoLog), which suppresses log information shown on the
command line and increases performance.

5. Column names in Database Query. Form tables with database query: When the query is run in
the console in the test tab, the column names as implicitly returned by the query are stored , so
that they subsequentially can be used with the specification of the columns to show.

6. Action enhanced: Manage table data. The Script Action: Manage table data on page 528: Within the
sub-option "Export to .csv", it is now optionally possible to write a header with the column
names to the file.

7. Extra variables in automation projects. The %NowDay%, %NowYear% default variables are now
also available in automation projects.

8. Console GUI: When creating a new project, the project name is now first proposed, before being
used.

9. Extra output variables in script actions. The actions Script Action: Create User (AD) on page 3, Script

Action: Create group (AD) on page 138 and Script Action: Create object (AD) on page 117 have been
extended, so they will now optionally output the Object Distinguished Name of the object they
have just created, to a variable. In larger scripts, this name was often needed further on in the

UMRA Help

Copyright © Tools4ever 1998 - 2012 31

script. Previously it had to be explicitly retrieved by using for example the "Get attribute" script
action. and that is now no longer required.

10. Action enhanced: For-Each. The Script Action: For-Each on page 572 is extended with the
possibility to specify which variables should be available to use for the called project. Making
unavailable variables that are not used in the called project can drastically (> 10 times faster)
improve performance.

Major Fixes

1. Table in forms Client. When a selection was made in a table, clicking on a column header to
resort the table would change which items where selected. This has been fixed.

2. Logging mechanism. A potential critical error in the internal working of the logging mechanism
on the service has been fixed. In some circumstances, when the execution of form script did not
finish within the timeout period, and several other conditions where met, an error in the cyclic
log mechanism could cause a critical failure in the UMRA service. This has been fixed.

3. Script action Update date-time variable. The Script Action: Update date-time variable on page 552
did not work if the option "convert to 100ns interval since 1-1-1601" was chosen. This has been
fixed.

Minor Fixes

1. Service logging - Several log files use a method of cyclic logging; that is, when a file log1 has
reached a specified limit, logging continues in file log2, etc. In some circumstances a few log
messages that where generated at the time of file change, were not correctly written to file. This
has been fixed.

2. LDAP name syntax. If the name-part of an object contains a forward slash "/", the format that
LDAP uses to specify the name of the object was not handled correctly by UMRA. This has bee
fixed.

3. Script action "Manage table data", option "export to .csv file". The output file contained
incorrect "new line" like characters. When read in certain applications (MS Access for example),
this would result in the display of additional empty lines.This has been fixed.

4. The Action "Set variable" did not write a message to the log when it was executed. Now it does.

5. When creating a completely new name generation algorithm, it was not created with the
specified name, but with a number. This has been fixed.

6. If a workspace contains more than 1 project, and has been modified, the user will be prompted
to save the workspace when exiting the console.

7. A project is now also marked dirty when a script action is removed from the script. So the user is
correctly prompted to save when exiting.

8. The next issue only occurred when using a forms project containing an initial project with a
"Generate generic table" script action. The contents of this table can be stored in a variable and

UMRA Help

Copyright © Tools4ever 1998 - 2012 32

shown afterwards in a Form Table. The order of the entries as shown in the table was not the
same as the order of the entries in the original file. This has been changed, so that, if no sorting
method is selected, the original order of entries read from the file is maintained.

9. When using the Script Action: Generate generic table on page 527 to perform an LDAP search query,
the specified time-out values where not correctly used. For those queries which take a very long
time to return the result, this could cause the search to fail. This has been fixed.

10. The Ctrl-C and Ctrl-V copy and paste actions now also work for the static text and input text
fields in the forms client

11. The Set variable action has been modified. If the current value of a variable contains a reference
to itself, it is no longer resolved even when the option "resolve now" is on.

12. When a project is opened, and closed immediately thereafter, it is now added to the list of
recent projects. Previously, it was not added.

13. In Script Action: Create Exchange Mailbox (2003/2000) on page 156. The name of the variable used for
the User Object can now be specified. Previously this was always fixed to %UserObject%. and
thus the action could not be used if the user object was stored in a different variable.

 Cosmetic Fixes

1. The icons in the main button bar corresponding to the project tabs (script, form ,preview,
network data etc), are now checked/unchecked depending on the existence of the associated
project tabs in the active project.

2. Action format variable,sub-action Replace substring with ASCII codes. The description field has
been enlarged.

3. Some irregularities in the display after vertically scrolling a form in the Forms Client have been
fixed.

4. The UMRA log file UMRASvcFormLog.txt contained superfluous extra new line characters
between log messages. This has been fixed.

Build 1263, May 12th, 2006

New features

1. Workspace - A new feature is the introduction of workspaces. This allows the user to structure
complex projects more efficiently. For more information, see UMRA workspace on page 770.
(1263)

2. GUI - The main interface has been drastically improved. The key project concept of UMRA has
always been the creation of an UMRA project script using input data from various sources ((CSV)
files, databases, other applications). The main interface has been reworked to support this
concept more strongly. See also UMRA Basics on page 3 for more information on UMRA's basic
concepts. Depending on the kind of solution you want to create (MASS, Forms, Automation),

UMRA Help

Copyright © Tools4ever 1998 - 2012 33

UMRA will include the relevant project components for the selected project. Also, as part of the
overall interface makeover, the Personal Assistant, What's this help and Project Wizards have
been removed. (1263)

3. IMPORTANT - All MASS projects created in previous versions of UMRA (.UPJ files) have to be
upgraded. Please follow the procedure as described in Upgrading MASS projects from previous

versions on page 50 to upgrade these files. (1263)

4. Copy directory script action - when using this script action, the date, time and attribute stamps
are now copied as well. (1263)

5. NETBIOS name of the computer accessing the UMRA Service is now stored in the UMRA variable
%UmraClientComputer%. (1263)

6. Remove SID History script action - A script action has been added to remove the SID history of a
(removed) user account. See Script Action: Remove SID history on page 130 for more information.
(1263)

7. Rename directory service object (LDAP) script action - UMRA contains several script actions to
manage LDAP directory services. A script action has now been added to change the distinguished
name of an entry in the directory service (only available for LDAP version 3). See Script Action:

Rename directory service object (LDAP) on page 390 for more information. (1263)

Major fixes

1. Setup LDAP session - in the previous UMRA version, LDAP version 3 was not correctly initialized.
LDAP sessions exist in version 2 and 3. Version 3 offers more functionality, which is why UMRA
initializes the session based on version 3. This was incorrectly implemented, resulting in an error
on Windows 2003. This has been fixed. (1263)

Minor fixes

1. Command line tools: In previous versions, the port option of the command line did not work.
This has been fixed. (1263)

2. Modify exchange mailbox permissions (2000/2003): In previous versions, an error in a scenario
where you have users A, B and C. User A has a mailbox and user B gets permissions for this
mailbox. If user B was removed from Active Directory and a third user granted permissions to
the mailbox of user A, an error would occur. This has been fixed. (1263)

3. Set user group memberships (AD) - In some rare situations, the group selections were
unexpectedly cleared. This has been fixed. (1263)

4. UMRA service - In previous versions, if you had changed the data cache retry value, this value
would be reset to the default value if the UMRA service was restarted. This has been fixed.
(1263)

UMRA Help

Copyright © Tools4ever 1998 - 2012 34

Cosmetic fixes

1. Execute script script action: The combo box for the Project property has been enlarged to
display long path names. (1263)

Build 1227, January 6th, 2006

Major fixes

1. Setup Security - All directories and files for which security was set (using either propagation
mode or not), were made read-only. This has been fixed. (1227)

Build 1225, December 23rd, 2005

New features

1. Script actions to manage LDAP directory services: Script Action: Setup LDAP session on page 383,
Script Action: Load LDAP modification data on page 386, Script Action: Delete directory service object

(LDAP) on page 389, Script Action: Add directory service object (LDAP) on page 387, Script Action: Modify

directory service object (LDAP) on page 388, Script Action: Search LDAP on page 391. Examples of such
directory services are Novell eDirectory, Linux OpenLDAP and Microsoft's Active Directory. All
these directory services can now be managed using UMRA. (1225)

For general information on using UMRA for managing LDAP directory services using UMRA, see
Managing LDAP directory services using UMRA on page 25.

2. New action - Delete attribute value (AD): Script action has been added to delete a specific
attribute value. For more information, see Script Action: Delete attribute value (AD) on page 129.
(1225)

3. New action - Execute script: Script action has been added to execute the script of another
project and merge the updated variables into the current project. For more information, see
Script Action: Execute script on page 571. (1225)

4. New action - Generate password: Script action has been added to generate a password. For
more information, see Script Action: Generate password on page 565. (1225)

5. New action - Get user table: Script action has been added to generate a table containing
information regarding locked-out users, disabled users and other user account control states.
For more information, see Script Action: Get user table (AD) on page 51 (1225).

6. New action - List files and/or directories: Script action has been added to obtain a list of files
and directories in a variable. This variable can in turn be displayed in a form table. For more
information, see Script Action: List files and/or directories on page 367. (1225)

UMRA Help

Copyright © Tools4ever 1998 - 2012 35

7. New action - Set encrypted variable: Script action has been added to set the value of the
specified variable to the encrypted value of the entered text. For more information, see Script

Action: Set encrypted variable on page 546. (1225)

8. Enhanced - Check form input: An option has been added to check the string length of text which
has been entered by the user in an input box. The variable contents check specification has been
restyled. For more information, see Form action - Check form input on page 634. (1225)

9. Enhanced - Form property Initial Project: The Initial Project tab has been renamed to Execution
control and now includes an option to set a time-out for script execution. (1225)

10. Enhanced - Manage table data script action: Option has been added to remove rows and
columns of a table. (1225)

11. Enhanced - Return project form: Option has been added to specify a variable for the returned
project form. (1225)

12. Enhanced - Table form field options: An option has been added which can be activated to
execute a default button when the user doubleclicks a table entry. For more information, see
Table form field - Options on page 659. (1225)

Major fixes

1. Manage exchange recipient mail addresses (2000/2003) script action: In previous versions,
UMRA would crash if a non existing AD had been specified. This has been fixed. (1225)

Minor fixes

1. Edit User (AD) script action: In previous versions, the on error actions did not work for this script
action. This has been fixed. (1225)

2. Execute service command script action: The text in property Wait for status completion has
been changed from "If set, the action will not complete until the services reports the requested
state or the time-out period is expired." to "If set, the action will not complete until the service
has the requested state or if the time-out period has expired." (1225)

3. For-Each script action: In previous versions, when a network location was specified in the Script

project property, the path of the standard project location was included, which resulted in an
execution error. This has been fixed (1225).

4. Form elements - Display tab: In previous versions, the option "Vertical pixel offset" would only
work for text fields. It now also works for tables, checkboxes, radio buttons and standard
buttons. (1225)

5. Generate name(s) script action: In the previous versions, the text under the Iteration property
read "can only be used for mass projects". This is incorrect. It can also be used for Forms projects
in a loop. This text has been removed. (1225)

UMRA Help

Copyright © Tools4ever 1998 - 2012 36

6. Generic table type Variable: In previous versions, when you specified the table height in the
Options tab, this specification would not be used if the variable did not contain any items. This
has been fixed. (1225)

7. LDAP attribute variables: In previous versions, when the LDAP query of an existing LDAP Search
was changed, any variables assigned to these attributes would disappear. In the new build, the
variable specification remains intact when you add attributes to your LDAP search. When you
change the order of appearance however, the mapping will no longer be correct. This is by
design. (1225)

8. Licensing: In previous versions, when a DNS domain name had been licensed, UMRA would not
accept a DNS name for the domain. This has been fixed. (1225)

9. User name generation algorithm: In the previous version, if you specified an “Arbitrary
sequence” (e.g. “01,02,03”) and clicked OK and then opened the iterator again, the iteration
object had changed to “01, 02, 03” (spaces added). These spaces would also end up in the user
account name. Each subsequent cycle would add another space. This has been fixed. (1225)

Cosmetic fixes

1. Table columns: Table columns are now always dynamically resized when the table dimensions
are adjusted. (1225)

2. Project forms display name: Project forms now also have a display name. By default, the display
name is identical to the project name and is also shown in the Forms project client tree. (1225)

3. Project execution status info: When a form project is processed by the UMRA Service which
takes a long time to complete, the message "Please be patient while your request is being
processed" is displayed. (1225)

Build 1201, September 30th, 2005

New features

1. New action - Configure service: Script action has been added to configure Windows computer
services. To be used in combination with the new script action List services status on page 373. For
more information, see Script Action: Configure service on page 379. For an example project on how
to use these script actions, see Managing Windows computer services on page 21. (1201)

2. New action - Convert value of variable: Script action added to convert the value of a variable
(logical AND, large integer to date-time or large integer to specified text). For more information,
see Script Action: Convert value of variable on page 554. (1201)

3. New action - Delete object (AD): Script action has been added to delete an existing Active
Directory object. For more information, see Script Action: Delete Object (AD) on page 119. (1201)

4. New action - Edit share: Script action has been added to edit an existing share. For more
information, see Script Action: Edit share on page 364. (1201)

UMRA Help

Copyright © Tools4ever 1998 - 2012 37

5. New action - Execute print job command: Script action has been added to start, resume, pause
or delete a print job. To be used in combination with the new script action List printer documents
on page 380. For more information, see Script Action: Execute print job command on page 382. For
an example project on how to use these script actions, see Managing printer queues on page 77.

6. New action - Execute service command: Script action has been added to manage services, to be
used in combination with the new script action List services status on page 373. For more
information, see Script Action: Execute service command on page 377 and Script action: List services

status on page 373. For an example project on how to use these script actions, see Managing

Windows computer services on page 21. (1201)

7. New action - Get terminal services user settings: For more information, see Script action: Get

terminal services user settings on page 111. (1201)

8. New action - Get user info: Script action has been added to retrieve specific flags of the
userAccountControl bitmask attribute (e.g. Account disabled" and "User must change password
at next logon"). For more information, see Script Action: Get user info on page 101. (1201)

9. New action - List printer documents: Script action has been added to collect the printer
documents for a specific printer. To be used in combination with the new script action Execute

print job command on page 382 to manage printer queues. For more information, see Script Action:

List printer documents on page 380. For an example project on how to use these script actions, see
Managing printer queues on page 77. (1201)

10. New action - List services status: See item 6. (1201)

11. New action - Move cross domain: Script action has been added to move a user account to
another domain. For more detailed information, see Script Action: Move cross-domain on page 67.
For an example project on how to use this script action, see $$$. (1201)

12. New action - Move Exchange mailbox: Script action added to move an Exchange mailbox. For
more information, see Script Action: Move Exchange mailbox on page 167. (1201)

13. New action - Update database: Script action added to update the record set of an existing
database. For more information, see Script Action: Update database - introduction on page 539.
(1201)

14. New action - Update date-time variable: Script action has been added to performs basic numeric
operations on date-time variables (e.g. to return the current date). For more information, see
Script Action: Update date-time variable on page 552. (1201)

15. Enhanced - Checkbox form element: Added the option to set the initial state of a checkbox. For
more information, see Checkbox form field on page 640. (1201)

16. Enhanced - database support for all database types: For more information, see Database setup -

Other databases on page 628. (1201)

17. Enhanced - Default service log file: Increased from 1 MB to 20 MB. (1201)

18. Enhanced - Error messages: Error messages for database actions have been enhanced to get
better insight into errors returned for database queries (update and select queries). (1201)

UMRA Help

Copyright © Tools4ever 1998 - 2012 38

19. Enhanced - For-Each: Added a break condition for a For-Each loop. (1201)

20. Enhanced - Format variable value: Four formatting options added to search and replace for a
string ending or starting with a specific substring. (1201)

21. Enhanced - Form export: Illegal file name characters are now replaced by underscores. In
previous version, exporting forms did not work if a title included a colon (":"). (1201)

22. Enhanced - Form projects: Before a form is shown, the script of another form project can be
executed by specifying an initial project. See also UMRA Project Properties - Form Options on page
767. (1201)

23. Enhanced - General: Shortcut keys have been added for Open (CTRL + O), Save as (CTRL+shift+S)
and Close CTRL+W (all related to projects). (1201)

24. Enhanced - Generic table: Added the possibility to use temporary variables for testing purposes.
Variables can be specified which will be filled during run-time during the test. (1201)

25. Enhanced - Generic table - Table type "Variable" added: Using this table type, the content of a
variable can used as a generic table. For more detailed information, see Viewing data from Active

Directory, LDAP, databases on page 9. (1201)

26. Enhanced - Get Object (AD): class name, path, parent path, schema and guid properties can now
be saved as a variable. (1201)

27. Enhanced - Generic table - Database query: The data type Memo in MS Access is now supported
as well. (1201)

28. Enhanced - Generic table - Exclusions: In the previous version a message was displayed in the
delegation client and the UMRA service log file if the service or console application could not
manage to determine the members of an excluded global group. This is now also displayed in the
console application if the preview window is constantly updated (see # 30 as well). (1201)

29. Enhanced - Generic table - Exclusion tab: Doubleclicking a global group now starts the edit
function. (1201)

30. Enhanced - Generic table - error messages: If a database query returns a data type which is not
supported by UMRA, the error message is only displayed for the first row. Note that this also
applies to a situation where a table contains one row with multiple unsupported data type fields.
(1201)

31. Enhanced - If-Then-Else script action: now includes the option to check if a text-list type
variable contains a specific text. (1201)

32. Enhanced - Log window: Log Window now supports scrolling for longer messages.

33. Enhanced - Manage table data: Option has been added to add tables (assuming the number of
columns in both tables is identical). (1201)

34. Enhanced - Manage table data: Option added to export table to a CSV file. (1201)

35. Enhanced - Radio buttons: Initial state of a radio button can now be set according to a variable.
(1201)

UMRA Help

Copyright © Tools4ever 1998 - 2012 39

36. Enhanced - standard name generation algorithms: these can now be pushed to any UMRA
project. (1201)

37. Enhanced - UMRA forms: option added to specify if the form content, as shown in the preview,
should be constantly updated during form design. See also UMRA Project Properties - Form options
on page 767. (1201)

38. Enhanced - Update numeric variable: Several options added to perform basic calculations on
numeric variables. For more information, see Script Action: Update numeric variable on page 550.
(1201)

39. Change - Form projects - Preview window: The preview window in the console is now generated
by the UMRA service. In the previous versions, the preview window was generated by the
console (only the script was executed by the service). (1201)

40. Change - General - Project timeout: In the previous version, if a form was submitted in the client
(in preview) and the cache was still empty, a timeout was given when the project could not be
executed within 60 seconds. This timeout has been increased to 300 seconds. (1201)

41. Change - Method of counting the number of user accounts: this has changed for dns/ou license
keys. Accounts ending on "$" (computer accounts) are no longer included in the user count. For
netbios keys nothing has changed. See also Network bar - Count users on page 728. (1201)

42. Change - Tree structure for script actions: Variable actions have now been placed in Variable
actions folder with subfolders for Variable operations, Table, Database, Name generation,
Programming and Mail. (1201)

Major fixes

1. Create user script action: In previous versions, if the password of a newly created user did not
meet the complexity requirement, an iteration occurred. As a result, the user was created 100
times. This has been fixed. (1201)

2. Exporting Form projects: In previous versions, file was exported even when the "Cancel" button
had been clicked. This has been fixed. (1201)

3. For-Each script action: In the previous version, the label assigned to the For-each script action
was no longer present if the project was saved, closed and opened again. Jumping to the label
was then no longer possible. This has been resolved. (1201)

4. Fomat variable value script action: In the previous version, if a comma was replaced with a
string which also included a comma, this comma would in turn also be replaced, resulting in a
loop. This has been fixed. (1201)

5. Generic table - Database queries: In the previous version, an error message was displayed when
a query retrieved data of an unsupported data type and the remaining fields would be placed in
the wrong columns. This has been fixed. (1201)

6. Generic table - Database queries: In the previous version, no values were returned if the query
included two fields containing unsupported data types. (1201)

UMRA Help

Copyright © Tools4ever 1998 - 2012 40

7. Generic table - Database queries: In the previous version, numeric and autonumber data fields
were interpreted as text, leading to an incorrect sort order in UMRA forms. This has been fixed.
(1201)

8. Generic table - Database queries: In the previous version, Date-time fields were not retrieved
correctly. This has been fixed. (1201)

9. Script action Generate generic table: binding to a variable. In the previous version, if the script
action was executed several times, the binding variable would be overwritten by the actual
value. (1201)

Minor fixes

1. Create User script action: Logon hours property. If the current settings were edited and
cancelled, the changed logon hours would appear if you clicked the Edit button once more. This
has been fixed. (1201)

2. Form project - Minimize window: In the previous version, if the window had been minimized,
this setting would not be undone after restarting the console. This has been fixed. (1201)

3. General: If a script action was deleted in the previous version, the window focus was not
automatically set to the next script action (e.g. to perform another delete operation). This has
been fixed. (1201)

4. Generate generic table script action: In the previous version, the name of the output variable for
the generic table did not appear in the combo box for other script actions. This has been fixed.
(1201)

5. Generate random number: In previous versions, if the Generate random number action appears
twice in a script, with an identical range, the same value was returned when the script was
executed (in other words, the number was not entirely random). This has been fixed. (1201)

6. Generic table - lastLogon attribute: In the previous version, if the last logon data for a user
account were retrieved through a generic table, the data were sorted on time instead of date.
This has been fixed. (1201)

7. Generic table--->LDAP Query--->Attributes Tab-->"Delete ALL" button: In the previous version,
this button only worked if entries in the attributes list had been selected. It now also works if
this is not the case. (1201)

8. Get attribute script action: In the previous version, the list of values in the LDAP attribute display
name property did not include "memberOf". This has been fixed. (1201)

9. Get object script action: In the previous version, no error message was displayed when a
variable name was entered which was not specified between percentage signs
(%<NameVariable>%.). This has been fixed. (1201)

10. If-Then-Else script action: In the previous version, if a label was specified for the Else condition
and then disabled by deselecting the Else checkbox, the Else condition would still be executed.
This has been fixed. (1201)

UMRA Help

Copyright © Tools4ever 1998 - 2012 41

11. Log Window: the log window now supports scrolling for longer messages. (1201)

12. Logging variables: When logging variables containing large text arrays (e.g. the multi text result
of an LDAP search action), the log now displays the number of text elements. In previous
versions, this action resulted in an "Invalid error string" message in the log file. (1201)

13. Mass projects, Generate Generic Table, test page: In the previous version, the option "Run test
on UMRA service" was available even though Mass does not use the UMRA service. This has
been fixed.Send mail message action - In the previous version, "%Username%" was shown in the
log file instead of the resolved value. This has been fixed. (1201)

14. Manage table data script action: In the previous version, the field Cell data value for the option
Set the data for the specified row and column of the table only accepted a string of a limited
pixel length. This has been fixed. (1201)

15. Search Object script action: In the previous version, the property values for this script action
were not shown correctly in the log file (the action itself was executed correctly). This has been
fixed. (1201)

16. Send mail message script action: In the previous versions, the "X-Sender:" field could not be
edited. This has been fixed. (1201)

Cosmetic fixes

1. Log variables script action: In the previous version, the name of this script action changed to
""Write the current script variables in the log" when it was dragged to the script action window.
This has been fixed. (1201)

2. Generic table - Query tab: In the previous version, the vertical scrollbar was not shown. This has
been fixed. (1201)

Build 1164, July 1st, 2005

New features

1. Form project - Generic table: A new form field has been introduced. This form field allows you to
display data from Active Directory and user information stored in other information systems and
to use these data as input for an UMRA project script. For more detailed information, see
Viewing data from Active Directory, LDAP, databases on page 9. (1164)

2. New action - For-Each function: The For-Each function evaluates the rows of a table and
executes a script for each row which is defined in another project form. This script action is
created in <Project form1> whereas the action which needs to be executed as a result of the For-
Each action is created in <Project form2>. This way, you can reuse complex For-Each
constructions in other projects. For more information, see Script Action: For-Each on page 572.
(1164)

UMRA Help

Copyright © Tools4ever 1998 - 2012 42

3. New action - Generate generic table: The generic table has also been made available as a script
action. Unlike the generic table which is used in a form, the data are not shown in a form table,
but used directly as input for an UMRA project script. See also Viewing data from Active Directory,

LDAP, databases on page 9. (1164)

4. New action - Get primary group: This script action retrieves the primary group of the user. For
more information, see Script action: Get primary group on page 154. (1164)

5. New action - If-Then-Else function: This script action has been introduced to be used in a
project script to evaluate a condition. This new script action makes it possible for instance, to
verify the last logon time of a user and to execute a certain action if the last logon time was
more than an X number of months ago. For more information, see Script Action: If-Then-Else on
page 570. (1164)

6. New action - Manage table data: Allows you to manipulate data in an existing table or to create
a new table. For more details, see Script Action: Manage table data on page 528. (1164)

7. New action - Merge multi-text variable values: Merges Variable1 and Variable2 . For more
details, see Script Action: Merge multi-text variable values on page 559. (1164)

8. New action - Rename file or directory: With this action you can rename files and directories and
move files to another volume. In previous versions this was only feasible by using the Copy
directory, Delete directory and Execute command line script actions. For more information see
Script Action: Rename file or directory on page 352. (1164)

9. New action - Remove group member: This action has been added to remove the group member
from a specific group. For more details, see Script Action: Remove group member on page 94. (1164)

10. New action - Remove specific group memberships (AD): This script action allows you to remove
specific group memberships. So far it was only possible to remove all group memberships using
the action Remove user group memberships (AD). For more information, see Script Action: Remove

specific group memberships (AD) on page 137. (1164)

11. New action - Send mail message: This script action allows you to send an e-mail message as a
result of a previous script action. For more information, see Script Action: Send mail message on
page 575. (1164)

12. New action - Set primary group (AD): This script action is only of interest for those customers
who need to change the primary group. This is the case when there are any users who log on to
the network from a Macintosh client or who run POSIX-compliant applications. For more details,
see Script Action: Set primary group (AD) on page 155. (1164)

13. New action - Update numeric variable: With this new function you can increment the value of a
variable. For more details, see Script Action: Update numeric variable on page 550. (1164)

14. Action - Delete directory: A property has been added to ignore errors which are generated when
the action is executed. (1164)

UMRA Help

Copyright © Tools4ever 1998 - 2012 43

Critical fixes

1. Name generation algorithm: When a name generation algorithm contains an endless loop or
when no unique names are generated by the algorithm, the UMRA software will now end the
execution of the algorithm after a number of iterations. (1164)

Major fixes

1. Create directory script action: When the directory name is changed to make it unique, the new
unique name is now exported. In previous versions, the incorrect already existing directory name
was exported. (1164)

2. UMRA Forms: When the Control key is pressed while working with a table, the vertical scroll
position of the table is no longer changed. In previous versions, the table was scrolled to the first
entry of the list. (1164)

3. Get attribute (AD) script action: If the property is specified to get a multi-value attribute, the
output Attribute value will always contain a multi text list, even if there are no values or just a
single attribute value found. (1164)

Minor fixes

1. Search object script action: In the properties pane of a project window the properties values
shown for properties Error if nothing found and Error if multiple found are now correct. (1164)

2. UMRA Service: When the UMRA Console or UMRA Automation software build number do not
correspond with the build number of the UMRA Service, you are now forced to up- or
downgrade the UMRA Service. In previous versions, you could continue to open a project. (1164)

Cosmetic fixes

1. Manage Exchange recipient mail addresses (2000/2003) script action: The default variable
input name is changed from %AdObject% to %ActiveDirectoryObject%. (1164)

Build 1141, April 29, 2005

New features

1. UMRA Automation: A new module is introduced. The module supports the integration of the
functions of User Management Resource Administrator with other products that are used to
manage employee and user accounts. See $$$ for more information. (1141)

2. Delegation: With UMRA, you can delegate control to helpdesk employees. See $$$ for more
information. (1117)

3. Command line startup: Run a project automatically with UMRA console when the application is
started. See UMRA Console - Command Line Options on page 763 for more information. (1141)

UMRA Help

Copyright © Tools4ever 1998 - 2012 44

4. Network tree: For all Active Directory objects, all properties can be shown and managed from
the UMRA console application. (1117)

5. Action - Set attribute (AD): A property is added to prevent the action from updating the user
attribute if the new attribute value is empty. See Script Action: Set attribute (AD) on page 124 for
more information. (1117)

6. Action - Get attribute (AD): The action now supports multi-values and all Active Directory
objects, not only users. See Script Action: Get attribute (AD) for more information. (1141)

7. Action - Modify Exchange mailbox permissions (2000/2003): With this action you can add and
remove permission for Exchange mailboxes. See Script Action: Modify Exchange mailbox permissions

(2000/2003) on page 162 for more information. (1117)

8. Action - Set Variable: An option is added to specify when (other) variable names specified as
part of the variable value must be resolved. See Script Action: Set Variable on page 544 for more
information. (1141)

9. New action - Create contact (AD): Create contact accounts in Active Directory. See Script Action:

Create contact (AD) on page 21 for more information. (1117)

10. New action - Edit user logon: Reset passwords and manage logon properties of user accounts.
See Script Action: Edit user logon (AD) on page 47 for more information. (1117)

11. New action - Modify Exchange mailbox permissions: Setup the permissions for new or existing
Exchange 2003/2000 mailboxes. See Script Action: Modify Exchange mailbox permissions (2000/2003)
on page 162 for more information. (1117)

12. New action - Manage Exchange recipient mail addresses: Setup mail addresses for Exchange
2003/2000 mail recipients. See Script Action: Manage Exchange recipient mail addresses (2003/2000) on
page 169 for more information. (1117)

13. New action - Dial-in user settings: Specify dial-in and VPN settings for user accounts. See Script
Action: Dial-in user settings on page 114 for more information. (1117)

14. New action - Set group membership (AD): Set the Active Directory group memberships for user
accounts and other Active Directory objects. See Script Action: Set group membership (AD) on page
135 for more information. (1117)

15. New action - Create group (AD): Create a group in Active Directory. See Script Action: Create group

(AD) on page 138 for more information. (1117)

16. New action - Get object (AD): Access any Active Directory object to set and read properties. See
Script Action: Get object (AD) on page 145 for more information. (1117)

17. New action - Create share: Create a share on a directory and setup the share properties
including security settings. See Script Action: Create share on page 361 for more information.
(1117)

18. New action - Delete share: Deletes a share from a directory. See Script Action: Delete share on page
366 for more information. (1141)

UMRA Help

Copyright © Tools4ever 1998 - 2012 45

19. New action - Convert to multi-value variable: Manage values of variables to be converted to
multi-value values. See Script Action: Convert to multi-value variable on page 556 for more
information. (1117)

20. New action - Manage multi-text value variable: Manage values of multi-value variables. See
Script Action: Manage multi-text value variable on page 558 for more information. (1117)

21. New action - Generate random number: Generate a random number and assign the value to a
variable. See Script Action: Generate random number on page 564 for more information. (1141)

22. New action - Generate name(s): The name generation algorithms can now be used as a separate
action. See Script Action: Generate name(s) on page 542 for more information. (1141)

23. New action - Convert text to date/time: Convert a text value to a date/time value. Both values
are stored in a variable. The method used to convert the text to a date/time value can be
specified. See Script Action: Convert text to date/time on page 555 for more information. (1141)

24. New form action - Return other form: When a submit button is pressed in a form, another form
can be returned. See Form action - Return other form on page 638 for more information. (1141)

25. New form action - Iteratively execute project script: Execute the project script for each item
selected in a table. See Form action - Iteratively execute project script on page 636 for more
information. (1141)

26. Name generation algorithm: The configuration of the name generation algorithm is now always
stored in the action that uses the algorithm, e.g. the actions Script Action: Create User (AD) and
Script Action: Create User (no AD). In previous versions, the algorithm could be reloaded from
configuration files each time a project was executed. See Name Generation: Embedded
algorithms for more information. (1117)

27. Export Variables script action: The name of the export file can contains date related variables.
See Script Action: Export Variables on page 559 for more information. (1117)

28. Export Variables script action: For multi-value variables, a value separator character can be
specified. See Script Action: Export Variables on page 559 for more information. (1141)

29. Create directory script action: When creating a share for the new directory, the maximum
number of connections for the share can now be specified. (1117)

30. Name generation algorithm: Methods can now be copied to make it more easy to create similar
name generation methods. (1141)

31. Form project: The type of popup messages that must be shown when a form is submitted can
now be configured. See UMRA Project Properties - Form options on page 767 for more information.
(1141)

32. Logon hours: The action to create and edit user accounts, both in Active Directory and NT, now
supports user account logon hours. See Script Action: Create User (AD) on page 3, Script Action: Edit

user (AD) on page 37, Script Action: Create User (no AD) on page 68 and Script Action: Edit user (no AD)
on page 79 for more information. (1141)

UMRA Help

Copyright © Tools4ever 1998 - 2012 46

33. Formatting functions: A function has been added to replace a substring in a text string with
ASCII codes. With this function, a user defined control sequence (for example \n) can be
converted to a carriage return - line feed sequence (13,10). (1141)

34. UMRA Console: The drag- and drop and cut-copy-paste functions have been extended. (1141)

35. UMRA Service: A new variable is automatically generated and updated when a form is
submitted: %UmraFormSubmitAccount%. The variable contains the name of the user account
that submitted a form. See Built-in variables on page 618 for more information. (1141)

Critical fixes

1. Demo version: The demo version now supports all script actions. (1117)

Major fixes

1. Edit user (AD) script action: The attribute of a user account can now be cleared. In previous
versions, an error occurred when the attribute was set to an empty value. (1117)

2. Move - rename user (AD) script action: When renaming a user account, the new name can
contain comma's (,). (1117)

3. Create directory - Copy directory script actions: When setting the permissions of the target
directories and files, in previous the versions, the specification of the Read permission
incorrectly granted the Delete access right as well. The problem is fixed. (1117)

4. Create directory script action: When specifying the permissions for a share, an account can now
be removed for the share from the list with permissions. (1141)

5. Delete directory script action: The script action now also delete files and directory that start with
a dot (.). (1117)

6. Format variable value script action: A specification problem regarding the format functions and
format function arguments has been resolved. (1141)

7. Export Variables script action: The variables can now be exported in UNICODE format. See Script

Action: Export Variables on page 559 for more information. (1141)

8. Variables: The special variables %NowMonth%, %NowDay% and %NowYear% can now be used
in all modules (not only in mass projects). See Built-in variables on page 618 for more information.
(1141)

9. Mass projects - input data: The maximum number of columns read from a CSV file has been
increased from 26 to 75 columns. (1117)

Minor fixes

1. Edit user (AD) script action: When a property is specified is an text with no length, the property
value is shown as <empty text>. In previous versions, nothing was shown for the empty value.
(1117)

UMRA Help

Copyright © Tools4ever 1998 - 2012 47

2. Menu option - Add action to script: The menu option can be used for mass and form projects.
(1141)

3. Menu option - File, Save: The shortcut key combination Ctrl+S can be used to save projects.
(1141)

4. Get User (AD) script action: When a user account is specified using a domain name, OU-name
and common name (full name), a warning is now displayed if the user account cannot be found
and no (empty) OU-name is specified. (1141)

5. Format variable value script action: The names of the formatting functions are updated. (1141)

6. Mass projects - column variable: When a variable is associated with a column, the name of the
variable can now be selected from the list with variable names when specifying script action
properties. In previous versions, these variables could be specified but were not shown on the
list with variable names. (1141)

7. Form projects - script message: When submitting a local form from the UMRA Console
application, the script message was shown twice. The problem has been resolved. (1141)

8. Form projects: When the form project properties (format, fonts, options and security) are
updated, the project is now marked as changed. (1141)

9. Form project: The calculation of the length of a form is now more accurate. This results in better
vertical scroll bar settings in a form. (1141)

10. Form project: The mouse scroll-wheel is now supported in a form. (1141)

11. Form project: When changing the table type of a form network table, the columns are now
updated.(1141)

12. UMRA Console: When the application is closed and a project has not been saved, you can now
cancel the application close operation. (1141)

13. UMRA Console: When the error settings or label of a script action is specified, the project is now
marked as changed. (1141)

14. UMRA Console: When dragging and dropping a script action on the same position now nothing
happens (as expected). In previous versions, the actions was incorrectly moved to the last
position in the script. (1141)

Cosmetic fixes

1. Form projects: When form projects are opened to be designed, the column width is
automatically updated. (1141)

2. Form projects: When editing form fields and the Cancel button is pressed, the window no longer
indicates that something is changed. (1141)

3. Tooltips: The What's This tooltips for form projects are now correct. (1141)

4. Tooltips: The tooltips shown in various tree windows are hidden when the mouse is moved in
the tooltip area. (1141)

UMRA Help

Copyright © Tools4ever 1998 - 2012 48

5. Create directory script action: The action now logs test only when the script action is executed in
test mode. In previous versions, the test only phrase was not shown for this action. (1141)

6. Create user (AD) script action: The action now logs test only more explicitly when the script
action is executed in test mode. (1141)

7. All actions - Properties: When selecting a variable as the new value for a property, the name of
the variable is now immediately inserted as the property value if the property value is empty. In
previous versions, you always needed to press the Insert button. (1141)

8. Menu: In rare occasions, the menu text shown could be updated incorrectly in previous versions.
The problem has been fixed. (1141)

9. Icons: The icons for the script actions to delete a share and execute a command line are
updated. (1141)

Build 1065, September 17, 2004

New features

1. Terminal Services Support: The new version supports the configuration and specification of
Terminal Services settings for new and existing user accounts. (1033)

2. Name generation: A new function has been added to add characters at the end of a name to
lengthen the name. (1065)

3. Add account to local group script action: A new action has been added to add user and global
group account to local groups of domains, member servers and workstations. See Script Action:

Add account to local group on page 90 for more information. (1065)

4. Create user (AD) script action: The property Computer account has been added to allow the
creation of workstation - computer accounts. See Script Action: Create User (AD) on page 3 and
Script Action: Create User (no AD) on page 68 for more information. (1065)

5. Create directory script action: The option to setup permissions of shares and the maximum
number of connections for shares has been added. See Script Action: Create Directory on page 341
for more information. (1065)

6. Create directory script action: The option to set the owner of a directory has been added. The
owner is specified by using the Security property of Script Action: Create Directory on page 341.
(1065)

7. Set User Group Memberships (AD) script action: Property Group names (Pre-W2K name) has
been added to allow the specification of multiple groups using variables. See Script Action: Set User

Group Memberships (AD) on page 56 for more information. (1065)

8. Setup user global group memberships script action: By using the new option Error if already
member you can configure the application not to generate an error when adding a user to a
global group and the account is already a member. (1065)

UMRA Help

Copyright © Tools4ever 1998 - 2012 49

9. General: To facilitate the specification of groups and other properties, you can now assign
multiple values to a single variable. (1065)

10. General: The input data of all projects can now be exported and printed. (1065)

Critical fixes

No critical fixes were found or reported

Major fixes

1. Active Directory: The comma (,) character can now be used in the name of user accounts. (1033)

2. Name generation: When no name generation algorithm is specified, the application no longer
uses the last 'configured' algorithm. This feature is particularly used when the user name is
directly specified in the import file when creating user accounts. (1033)

3. Name generation: The names generated by the name generation algorithms can now be used in
subsequent actions of the same script. Example: If you create a user account using a name
generation algorithm you might want the algorithm to generate a separate name for an
Exchange mailbox for the same user account. This name can now be stored in another variable
that can be used in the action that creates the Exchange mailbox. (1033)

4. Name generation: The function Add if empty now correctly does not add the specified character
if the name is not empty. (1065)

5. Script execution: The Security Identifier (SID) can now be exported in text format. (1065)

Minor fixes

1. When a read-only project is started from the User Management Resource Administrator wizard,
the project is now correctly shown in the projects bar (1033).

2. The on-line help is shown always when F1 is pressed. In previous versions, the on-line help was
not activated when F1 was pressed and some windows were active (1033).

3. The help text of some of the sample projects has been updated (1033).

4. The information shown for the action Execute command line is no longer shown with the error
icon. (1065)

Build 1030, July 1, 2004

This is the first build of User Management Resource Administrator version 6.0.

UMRA Help

Copyright © Tools4ever 1998 - 2012 50

2.2. Upgrading MASS projects from older versions
(Mass) Projects that have been created or used in the official release 7.5, build 1263 or newer can be
used directly in the current version. Mass projects that have been created in older builds than 1263 and
not been used since, will need to be converted. Below text therefore only applies if you are upgrading
from releases prior to build 1263.

Upgrading mass projects from releases prior to version 7.5, build 1263

The following text is taken directly from the help of version 1263.
MASS projects created in previous versions of UMRA will not automatically work in the new version
because the project type has changed in the new version. In the new version, there is only one UMRA
project type. This project always includes a script which can take its input from various different sources,
including a (CSV) file. This is also known as a MASS project.

What has changed for MASS projects?

1. Project type - Because of the introduction of the new project type, the old MASS project files
with the extension .upj are no longer used. Instead, all projects are stored in a workspace with
the extension .uwp. The functionality of existing MASS projects will remain intact once these
projects have been properly converted to the new format. See Converting MASS projects

created in previous UMRA versions to find out how your existing MASS projects can be updated
to the new format.

2. Interface - all functionality of the previous UMRA version has remained intact, but the location
of certain functions and features has changed. An overview is given below.

UMRA Help

Copyright © Tools4ever 1998 - 2012 51

Main Interface changes

In PREVIOUS versions of UMRA, you could create a MASS project by selecting File-->New from the main
menu and choosing the Mass project option:

In the next screen, file data could be imported in the top window, script actions could be added in the
lower left window and the script action properties were specified in the lower right window (see
screenshot below).

UMRA Help

Copyright © Tools4ever 1998 - 2012 52

In the NEW UMRA version, there is only one project type. A new MASS project is created by selecting
File-->New-->Mass project from the main menu.

UMRA Help

Copyright © Tools4ever 1998 - 2012 53

UMRA will automatically create a workspace for the new project. This workspace can be regarded as a
collection of one or more projects. The new workspace contains the new project and some project
components which you will need to specify. This includes a project script component and a file data

component.

In the Script component, a project script can be created by adding script actions and specifying script
action properties.

UMRA Help

Copyright © Tools4ever 1998 - 2012 54

In the File data component, the file data to be used as input for the project script are defined.

Converting MASS projects created in previous UMRA versions

Please follow this procedure to update your MASS project:

1. Choose File-->Open project in the main menu.

2. Select your existing MASS project (with the extension .upj) in the list of projects under Local

UMRA project and click OK.

3. The following message will appear: "The project file needs to be converted to the new UMRA
format. Would you like to convert the project file now?". Click Yes to confirm, No to cancel the
conversion. When you click Yes, a message will appear to confirm that the old file has been
converted to a file with the extension .UWP (Umra Workspace Project).

4. The old file can no longer be used in the new version, so you are asked if you want to delete this
old project file. Click Yes to confirm and click No to cancel.

5. IMPORTANT - If your MASS project contains references to other project files, these project files
will have to be converted as well.

UMRA Help

Copyright © Tools4ever 1998 - 2012 55

Update references to project files in the script

If your project script contains references to old project files (.UPJ), these names will have to be updated
so that they correspond to the new project file name (the one which has been converted).

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3. UMRA User Guide

3.1. UMRA Basics
UMRA is a full blown enterprise solution for managing user accounts and
all associated network resources. To benefit fully from UMRA’s features,
you need a basic understanding of the application’s key concepts. These
are briefly explained in this section.

The first section, UMRA scripting, explains the architecture of an UMRA
script and how it is used to define a specific user or network
management task. Such a task can be the creation of a user account for
instance, together with a home directory, home share, group
memberships, Exchange mailbox, etc.

In UMRA projects, it is explained how one and the same UMRA project
can be configured to use input data from various different sources.

UMRA Components provides an overview of the various software
components that together make up the UMRA solution.

Finally, UMRA project management provides a brief definition of UMRA
projects and workspaces.

 Read the full PDF version of UMRA Basics
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/umra-basics.pdf

3.1.1. Introduction

UMRA is a full blown enterprise solution for managing user accounts and
all associated network resources. To benefit fully from UMRA’s features,
you need a basic understanding of the application’s key concepts. These
are briefly explained in this section.

The first section, UMRA scripting, explains the architecture of an UMRA
script and how it is used to define a specific user or network
management task. Such a task can be the creation of a user account for
instance, together with a home directory, home share, group
memberships, Exchange mailbox, etc.

In UMRA projects, it is explained how one and the same UMRA project
can be configured to use input data from various different sources.

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-basics.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-basics.pdf

UMRA Help

UMRA Components provides an overview of the various software
components that together make up the UMRA solution.

Finally, UMRA project management provides a brief definition of UMRA
projects and workspaces.

 Read the full PDF version of UMRA Basics
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/umra-basics.pdf

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-basics.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-basics.pdf

UMRA Help

3.1.2. UMRA scripting

Scripts, actions and properties

UMRA Script

An UMRA script is used to perform a specific user account or network
management task. This can be the creation of a user account for
instance, together with a home directory, home share, group
memberships, etc. for a new user.

Script actions

An UMRA script is made up of one or more script actions. An UMRA
script for the creation of new users for instance,may include a script
action to create a user account in Active Directory and a second script
action to create a home directory for the new user. All the script actions
together define the project script.

Figure 1: An UMRA script contains one or more script actions

The available script actions are fixed, which means that you cannot
create your own script actions. Most script actions are however highly
configurable, and some are very general, so this hardly imposes a limit.
UMRA comes with a wide range of script actions, covering virtually every
aspect of user account and directory management.

UMRA Help

Figure 2: Sample of available script actions in UMRA

Apart from these standard script actions, there are also script actions
available to perform some basic programming tasks, like evaluating a
certain condition.

Script actions are added to the script by dragging a script action object
from the list of actions and dropping it in the script pane of the project.

Script action properties

The script action properties of a script action provide information which
specify in detail how a script action should be executed. In case of a

UMRA Help

Create User script action for instance, the following properties are
included:

 Name of the domain where the user account should be
created

 Name of the Organizational Unit to which the user belongs

 Common name, which is the full name of the user account.

This concept is shown in the figure below. The user’s common name has
been specified here as “John Williams” in the CN script action property.
This user should be created in the domain “Tools4ever.com”, which is
specified by the domain script action property, in the organizational unit
“Sales\USA” as specified by the OU script action property.

For each script action, the script action properties that need to be
specified are different. If we take a look at another script action, Create

directory, the properties include the following information:

 Share name

 Name of the user’s home directory

Figure 3: Specifying how a script action should be executed

Variables

Let’s return to the example shown in the previous Figure. You will note
that the script action properties for these two script actions are all
specified as fixed values. This script action will only be able to create the
user “John Williams” in the OU “sales\USA” of the “tools4ever.com”

UMRA Help

domain. But what if you want to create another user or if you want to
specify another OU or domain?

To make a script generic, UMRA makes use of variables instead of hard
set values such as “John Williams” or “sales\USA”. These variables
represent a real value. This is shown in figure 4.

Figure 4: Specifying script action property values using variables

The name of the user ‘John Williams’ is now replaced with the variable
%Name%. The name of the variable is not really relevant since it is only
used as a placeholder to store the real value. When the script is
executed, the variables will be replaced with their actual values and the
network will be updated accordingly. In UMRA, the name of a variable is
always placed between percentage signs:

 %Name%

 %Domain%

 %HomeServer%

 Etc.

The actual value of a variable is obtained from the input data to which
the variable is linked. These input data may come from a (CSV) file,
information provided by the end user, a database, etc. This is explained
in more detail in UMRA Projects on page 9.

UMRA Help

3.1.3. UMRA Projects

Each and every UMRA project contains at least a project script, which is
the project’s core component.

There are two key areas that determine the nature and possibilities of
an umra project:

1. Input Specification: Where and how does a script get the
information required for its operation?

2. Execution control: Where and when should the project and script
be run to perform its operations?

Input Specification.

A script consist of a sequence of script actions. What exactly a particular
script action does, depends completely on the contents of the particular
script action's properties at run time. These in their turn are completely
determined by the value of the variables that the script uses. There are
many ways to specify the contents of these variables. The major
methods are listed here.

Information is directly specified in the script

Some of the required information may be explicitly provided in the script
itself when the script is run. For instance a script may use the script
actions "set variable" to explicitly set a value for a certain variable.

Information is the result of an other script action

Many script actions query the network for certain information. The
resulting information is often stored in variables that are used by other
script actions further in the script.

Information is gathered from external sources before the script is
executed

The required information may also (additionally) be gathered by the
project from external sources before the script is executed. These
options are:

UMRA Help

File input data – the information the script needs to work with comes
from a (CSV) file. The project will repeatedly execute its script, once with
the information found in each (selected) line of the file.

Network input data - the information the script needs to work with
comes from a network call, the script is executed once for each
(selected) object found in a network query.

Form input data – the information the script needs to work with is
entered or selected in a simple form. The form is created by the
administrator using UMRA and delegated to a non-admin (e.g. Helpdesk
employees). This category is therefore also known as Forms &
Delegation..

Application input data – the information for the project script is
provided by another information system or program. An example of this
is the command line interface of UMRA, where the values entered on
the command line specify the value of the variables used by the script.

In the following sections these categories will be described in more
detail.

Execution Control

There are several options as to where and when a project and script can
perform its operations, the major methods are listed here.

Directly by the console

The console application can be used as a stand-alone application that
executes the projects in the security context of the administrative user
that is currently logged on. In this case the projects are stored locally on
the on the machine running the console. This is often used by a network
administrator to perform mass modifications to the network, for
instance in order to create new user accounts and associated data from
information available in a .csv file. This option can be used with either
file input or network input data.

The software module that runs projects in this fashion is for historical
reasons often referred to as the "mass module", although the term
"console" module probably is a better description since much of the

UMRA Help

mass features have since been ported to other parts of the software.
Whenever the term "mass module" is used, it refers to projects
directly run by the console, and NOT to mass-like features in other
parts of the software.

By the scheduler of the UMRA service

Projects can be executed at scheduled times by the Umra service. The
console application is used to configure the service, and to create the
umra projects, that are stored and maintained by the UMRA service. All
script actions run in the security context of the UMRA service.

This option can optionally be used with either File Input Data or Network
Input Data.

By the UMRA service, initiated from the UMRA Forms client

An end user can use the UMRA Forms client to access forms located on
the UMRA service to execute their associated scripts and actions. All
scripts and actions are run with the security context of the Umra service.
Access control to the different forms is provided by security settings
(ACL) in UMRA on the individual forms.

The scripts and the security settings are created and configured by an
administrator by means of the UMRA console application.

By the UMRA service, initiated from the "umracmd.exe" command line
application

From the windows command line, "umracmd.exe" can be run to execute
the script of an project that is maintained on the server. Variables that
are required by the script are read from the command line. The script
runs in the security context of the Umra Service account. Access control
to the different scripts is provided by the Umra service by security
settings in UMRA on the individual scripts.

The scripts and the security settings are created and configured by an
administrator by means of the UMRA console application.

UMRA Help

By the UMRA service, initiated from UMRA Com

Umra projects can also be executed programmatically by using the
UMRA COM (Component Object Model) objects, that are distributed
with UMRA. For instance the "umracmd.exe" application uses these
objects to communicate with the Umra Service. These objects can be
used in VB, VBSCRIPT, C++, ASP, and many other languages and
environments to initiate the execution of UMRA Scripts. Often this is
used to access UMRA functionality from within a web application.

File input data

The input data may come from a (CSV) file which can be imported into
UMRA. In the following figure , a CSV file is shown containing the users’
first name, middle name, last name and phone number. The first line of
the CSV file contains the column headers “FirstName”, “MiddleName”,
“Lastname” and “Phone”. For each row, these columns hold different
data.

Figure 5: File input data contained in a CSV file

When this file is imported into UMRA, these data are transformed into a
table with the columns FirstName, MiddleName, LastName and Phone.

Script execution

In an UMRA project that takes its input from a file, the script will be
executed for each line.

UMRA Help

It is easy to see that the script action property values should be different
for each processed row. When your project script includes a Create User
action for instance, the Surname script action property should have for
example the value “Addams” for row 2, “Anderson” for row 3, etc. Hard
entering the name “Addams” in the Surname script action property,
would result in 14 users with the name “Addams”. The solution is
therefore to link the relevant column (in this case the Lastname column)
to a variable (e.g. %Surname%) which can then be used to specify the
value of the script action property.

This concept is illustrated in the figure below. The Surname property
value has been linked to the %LastName% column. UMRA will now
obtain the Surname property values from the %LastName% column.

Figure 6: Linking inpiut data columns to property values

When the project script is executed, the variables will be replaced with
their actual value as found in the linked column. This is illustrated in the
figures. The %LastName% variable has been linked to the second column

UMRA Help

of the input data. When the first row is processed, the %LastName%
variable is set to “Williams”, for the second row it is set to “Smith”, and
so on.

Figure 7: The project script is executed for each row of the input data

Form input data

In this case, the UMRA project contains a script which takes its input
from a form. Such projects can be used to delegate a specific user
account management task, such as resetting a user’s password or
creating user accounts. An example of a simple form is shown in figure 8.

UMRA Help

Figure 8: Example of a form to create new user accounts

By specifying some simple information (in this case the user’s first,
middle and last name) and clicking the action button Create Account, a
user account is created using the specified name.

Form layout

To design the form layout, the administrator can use various different
form fields. A form field is an object which is included in the form to
describe the purpose of the form, to collect user information or to
change the form’s appeal:

 Descriptive form fields– the form field Static text field is used
to explain the purpose of the form and the individual form
fields to the end user. Examples: form title, input box
description (“Please enter the domain name”), etc.

 Interactive form fields – the form fields Input text box,
Checkbox, Radio button and Table are used to cater for
interaction with the end user. Examples: Allowing the end user
to enter the domain name in an input box, presenting a list of
users in Active Directory which can be selected, etc.

 Cosmetic form fields - Pictures and vertical spaces can be used
to make your form more appealing.

UMRA Help

 Action button – When the end user clicks the action button,
the entered or selected data are submitted.

Figure 9: Using form fields to design a form

1 Picture

2 Static text field (title)

3 and 5 Vertical spaces

4, 6, 7, 8, 9 Static text fields (description)

10, 11, 12 Input boxes

13 Action button

UMRA Help

Script execution

The interactive form fields (input box, radio buttons, checkbox, table
column) of a form can be associated with a variable. These variables can
be used by the project script. When the user clicks the action button, the
project script will be executed, replacing the variables with the values
entered or selected in the form.

Figure 10 – Execution of a project script taking its input from a form

UMRA Help

In case of the Create User example shown in figure 10, the information
which the end user has entered in the form for for the user’s first name,
middle name and last name is associated with the variables
%FirstName%, %MiddeName% and %LastName%:

 %FirstName% = John

 %MiddleName% = F.

 %LastName% = Johnson

The project script includes the script action Create User (AD). This script
action holds, amongst others, the script action properties Given-name,
Initials and Surname. The values for these script action properties have
been specified using the variables %FirstName%, %MiddleName% and
%LastName%.

As soon as the end user hits the action button Create Account, the
specified data “John”, “F” and “Johnson” are submitted and the project
script is executed, substituting the variables %FirstName%,
“MiddleName% and %LastName% with “John”, ‘F.” and “Kennedy”
respectively. As a result, the network resource is updated.

Application input data

An UMRA project may also contain a script only which takes its input
from other applications. This kind of integration, where other
applications can use UMRA functionality, is achieved by using the
Component Object Model (COM). This technology was developed by
Microsoft to allow applications to interact with eachother. The most
important Microsoft applications that support COM are:

 Internet Information Services

 Office applications

All applications supporting COM use some kind of programming or script
language to implement COM (ASP, VB(S), etc.). The procedure used is
always the same:

1. The COM object is created;

2. The interface functions of the COM object are accessed;

3. Returned variables can be processed in the application.

An application can use multiple COM objects and COM objects can use
other COM objects.

UMRA Help

UMRA COM

User Management Resource Administrator contains several COM
objects. With the UMRA COM objects registered, UMRA functions can
be used within the ASP(X)/VB(A) script to execute an UMRA project and
to read and process the project variables.

Script execution

The UMRA project script is executed by the UMRA server as instructed
by the COM object. All variable names and values that are required to
execute the UMRA project script, must be specified by Using the COM
object. Usually, the values are taken from the application that uses the
UMRA COM objects.

For more information about this project configuration, see the UMRA

COM User Guide.

UMRA Help

3.1.4. UMRA components

The UMRA solution contains several different software components.

These individual software components will be briefly described in this
section.

UMRA Console

The UMRA Console is the main application for the administrator. The
UMRA Console is used to build the actual user account or network
management solution :

 develop and test UMRA project scripts. The UMRA Console
comes with a wide range of script actions to build a project
script and many testing facilities to test the script before it
goes live in an operational environment;

 specify input data to be used in combination with the project
script;

 set the security settings which specify who is allowed to
execute the project script and form;

 structure UMRA projects;

 setup the UMRA Service (explained in the next section);

Projects can be developed to be run by the UMRA service, or local
projects can be developed to be directly run by the console.

Projects that require forms, scheduling or are initiated by means of the
UMRA COM, can only be executed by the UMRA service, but are
developed using the UMRA Console application.

UMRA Service

Except for local UMRA projects that are executed directly by the UMRA
console, all UMRA projects are stored on the UMRA Service.

UMRA Help

Figure 10: UMRA projects maintained by the UMRA service

The UMRA Service performs the following tasks:

 Maintains the UMRA projects

 Verifying access privileges of the currently logged-in user to
check if the user is allowed to execute the project script;

 Executing the project script.

 contains a scheduler for the scheduled execution of project
scripts

 Interfaces with the UMRA COM component so that external
applications can initiate the execution of project scripts

UMRA Forms client

The UMRA Forms client is a windows application that is used to access
and fill in forms maintained by the UMRA service.

This client is used by non-admins to connect to the UMRA Service. It
presents the user with a list of names of those UMRA projects he is
entitled to use. When a project is selected, the form of the project is
presented to the user. The user can fill in the form and send it to the

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

UMRA Help

service, which executes the project script, using the specified
information in the form. If the project requires more information, it can
present additional forms. It can also present additional forms to report
information to the user.

UMRA COM

UMRA COM is a software component which is used to integrate UMRA
functionality with other applications such as IIS (SharePoint). UMRA
COM holds a variety of functions that can be used within a script (e.g.
ASP(X)/VB(A)) to execute an UMRA project and to manage the UMRA
project variables.

UMRA command line

This software component is a command line interface that uses the
UMRA COM object to execute an UMRA project maintained by the
UMRA service.

This makes it possible to start a specific umra project from the Windows
command line

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.1.5. UMRA project management

A user or network account management solution in UMRA can become very complex. To help you to
structure your solution, UMRA offers a very flexible project management environment.

UMRA projects

In its simplest form, an UMRA project contains a project script only. Depending on the kind of solution
you require, additional information can be added which should be used by the project script:

 file input data – user information contained in a (CSV) file can be imported into UMRA. During
the import, these data are transformed into a table. The columns can be linked to a variable
and used in the project script. This is covered in detail in the section File input data on page 12
of chapter UMRA Projects on page 9.

 network input data – instead of providing user information in a file, you can also make a
network selection.

 form - The form is the template which the administrator creates for the non-admin to perform
a specific user account management task. The data specified by the end user can be linked to
variables and used in the project script. This is discussed in detail in the section Form input data
on page 14 of chapterUMRA Projects on page 9.

 security settings - for all projects which are maintained by the UMRA Service, you need to
specify who is allowed to execute the project form and / or project script.

For UMRA, there can be three different kinds of user accounts:

User account with Description

Full control These user have access to push forms to the UMRA service,
setup, delete, manage all forms, project scripts and security
settings. The number of user accounts with this type of access
should obviously be very limited.

Form access only These users can see and submit a form. When such a user
connects to the UMRA service using the UMRA Forms client,
the form is presented to them. The user can then specify the
various fields of the form and let the UMRA service execute the
script of the form project. The accounts can be configured for
each individual form.

No access These users can connect to the UMRA service but no projects
will be shown.

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

UMRA workspaces

Projects are contained in a workspace, which is a collection of one or more UMRA projects. By using a
workspace it is easier to open all relevant projects at the same time.

UMRA XML project and script files

UMRA can store UMRA projects and scripts in XML format. The XML files are human-readable and can
for instance be used to copy (parts) of projects from one UMRA installation to another. The UMRA XML
format is available with the following functions:

1. Main menu, File, Import project (xml): The function allows you to import an UMRA XML project
files. This project file can contain either a UMRA Service (Forms and Automation) of UMRA Console
(Mass) project;

2. Main menu, File, Export project (xml): Exports the current active project to an UMRA XML project
file.

3. Project workspace, Script window, context sensitive menu: Import script (xml and .usc): Import
the UMRA script from the specified XML file. The script is imported at the current location of the
UMRA script. The XML project file can contain either an UMRA XML project or UMRA XML script.

4. Project workspace, Script window, context sensitive menu: Export script actions (xml): Export the
current selection of UMRA script actions to an UMRA XML script file. The result file can be used to
import the script actions in another UMRA script.

5. UMRA Service, Manage service projects, Import: Imports one ore more UMRA XML project files.

6. UMRA Service, Manage service projects, Export: Exports the selected UMRA service projects to
XML files.

7. UMRA Service, Manage service projects, Backup: Creates a directory with a name containing the
date-time and UMRA build number, and stores all UMRA Service projects as UMRA xml project files
in the directory

3.2. Getting Started
UMRA has been developed as a broad solution for managing Active
Directory and other directory services. It covers the following user
management areas:

 Mass updating network resources - UMRA offers administrators a
fast and reliable solution for implementing bulk changes in network
and associated resources. UMRA should be used for small to large
migration projects and is an alternative for manual actions or
complex scripting. The user data UMRA needs to work with can be
obtained in many different ways (e.g. as a result of a database
query or a CSV file containing, for instance, the user's First Name,
Last name and Middle Name). Using built-in script actions, you can
mass create new user accounts in Active Directory, together with
Exchange e-mail accounts, home directories, (random) passwords,
dial-in permissions, Windows Terminal Server settings, global group
memberships, and profile directories.

 Delegation of user management tasks to non-admins - UMRA
offers administrators the option to delegate user account
management tasks to non-administrative users within the
organization (e.g. helpdesk employees). Administrators can define
a delegation project consisting of of secure forms to handle a
specific user management task such as resetting passwords,
creating and deleting user accounts, disabling accounts, moving
accounts (cross-domain), etc. These forms can be delegated to non-
administrative users. Using forms, it is also possible to delegate
management of other resources such as Windows computer
services and printer queues.

 Linking network resources to other information systems - UMRA
offers the possibility of linking network resources to other
information systems, such as a link between an HR system and
Active Directory. In a scenario where an employee leaves the
company for instance, the corresponding user account in Active
Directory can be automatically disabled. This automation option
provides unrivalled flexibility and eliminates the need for scripting
solutions entirely.

 Integration of network resources with (self service) web portals -
companies using a web portal can integrate the UMRA features
with their intranet by simply adding web pages for specific user
management tasks. Different options can be made available,
depending on the user's role within the organization. When HR

UMRA Help

employees log into the intranet for example, they can be offered a
page to create new users in Active Directory. Similarly, an IT
manager can be offered a list of disabled users and authorize the
deletion of disabled user accounts.

This document will guide you through the various UMRA software
modules covering these user management areas.

When you have finished this guide, you will be able to install UMRA and
create a user management solution yourself.

 Read the full PDF version of UMRA Getting Started
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/umra-getting-started.pdf

3.2.1. Introduction

UMRA has been developed as a broad solution for managing Active
Directory and other directory services. It covers the following user
management areas:

 Mass updating network resources - UMRA offers administrators a
fast and reliable solution for implementing bulk changes in network
and associated resources. UMRA should be used for small to large
migration projects and is an alternative for manual actions or
complex scripting. The user data UMRA needs to work with can be
obtained in many different ways (e.g. as a result of a database
query or a CSV file containing, for instance, the user's First Name,
Last name and Middle Name). Using built-in script actions, you can
mass create new user accounts in Active Directory, together with
Exchange e-mail accounts, home directories, (random) passwords,
dial-in permissions, Windows Terminal Server settings, global group
memberships, and profile directories.

 Delegation of user management tasks to non-admins - UMRA
offers administrators the option to delegate user account
management tasks to non-administrative users within the
organization (e.g. helpdesk employees). Administrators can define
a delegation project consisting of of secure forms to handle a
specific user management task such as resetting passwords,
creating and deleting user accounts, disabling accounts, moving
accounts (cross-domain), etc. These forms can be delegated to non-

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-getting-started.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-getting-started.pdf

UMRA Help

administrative users. Using forms, it is also possible to delegate
management of other resources such as Windows computer
services and printer queues.

 Linking network resources to other information systems - UMRA
offers the possibility of linking network resources to other
information systems, such as a link between an HR system and
Active Directory. In a scenario where an employee leaves the
company for instance, the corresponding user account in Active
Directory can be automatically disabled. This automation option
provides unrivalled flexibility and eliminates the need for scripting
solutions entirely.

 Integration of network resources with (self service) web portals -
companies using a web portal can integrate the UMRA features
with their intranet by simply adding web pages for specific user
management tasks. Different options can be made available,
depending on the user's role within the organization. When HR
employees log into the intranet for example, they can be offered a
page to create new users in Active Directory. Similarly, an IT
manager can be offered a list of disabled users and authorize the
deletion of disabled user accounts.

This document will guide you through the various UMRA software
modules covering these user management areas.

When you have finished this guide, you will be able to install UMRA and
create a user management solution yourself.

 Read the full PDF version of UMRA Getting Started
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/umra-getting-started.pdf

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-getting-started.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-getting-started.pdf

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.2.2. Mass updating network resources - Mass module

Summary

UMRA offers a solution for implementing mass changes in a network resource (e.g. Active Directory).
Based on a selection of input data, the administrator can assemble a project script using built-in script
actions (e.g. Create User) which are executed for each line of the selected data and update Active
Directory accordingly. There are dozens of script actions available, covering the whole spectrum of user
management tasks. For a full list of script actions, see appendix A.

Working procedure

The administrator creates a project in UMRA which involves a few simple steps, as illustrated in Figure 1:

1. Providing input data

2. Building the project script by adding built-in script actions to execute specific user management
tasks

3. Running the project script in test mode and check the results

4. Execute the project script to update Active Directory and all associated resources.

Figure 11: Implementing bulk changes in network resources

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

Step 1 - Providing input data

The first step is to define the data UMRA needs to work with. In case of a mass create user solution, the
input data are used to specify the user accounts that must be created. Each line of the input data will
correspond with a single user account. An UMRA project takes its input data from either:

 a plain CSV file

 a network selection

 a database query

Step 2 - Building the project script

In the next step, the administrator specifies the built-in script actions (e.g. Create User, Move User, Set

Group Membership, etc.) which need to be executed for each line of the selected input data. No
scripting knowledge is required. By simply dragging and dropping the built-in script actions in UMRA and
setting the properties for these actions, the administrator can create a (complex) user management
solution for mass updates:

Some examples:

 Bulk creation of user accounts (SAM, AD 2000 / AD 2003 and network resources)

 Mass update of a single attribute (e.g. telephone number)

 Migrating accounts from one domain to another

 Moving users across OUs and child domains

 Moving Exchange mailboxes to a new server

 Managing primary group memberships

 Creating and moving home directories and shares

 Etc.

Step 3 - Testing the project script

You can execute your project script in test mode to check if it works correctly. In test mode, Active
Directory and other network resources will not be updated. If errors occur when you execute the script,
these will be displayed in the log window. After testing, you can switch to execution mode to update the
network resource.

Step 4 - Executing the project script

When the log window does not show any errors, you are ready to leave the test mode and execute the
project script.

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

To become more familiar with the creation of such projects, you are invited to proceed to chapter
Creating a MASS example project - Mass create users on page 12 which describes in detail how to create an
UMRA solution for mass creating users.

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

3.2.3. Delegating user account management tasks - Forms module

Summary

UMRA also offers a solution which allows administrators to delegate (complex) user management tasks
to non-admins using forms. Using UMRA to delegate user management tasks has some major
advantages:

 Admin passwords do not have to be handed out to non-admins

 Administrators can be relieved from the burden of performing standard user management
tasks (resetting passwords, moving users to another OU, setting group memberships, etc.). All
these time consuming and repetitive tasks can be delegated to non-admins such as a Helpdesk
employee.

 Very short learning curve for non-admin - The non-admins to whom the user account
management task is delegated, is offered a very simple interface with which only the specified
task (such as resetting a password) can be executed.

 For the administrator, the delegation procedure is simple and straightforward.

3.2.4.

Working procedure

The administrator creates a forms project in UMRA which involves a few simple steps:

1. Creating the form layout

2. Building the form script

3. Specifying security

4. Testing the script

UMRA Help

Copyright © Tools4ever 1998 - 2012 5

Step 1 - Creating the form layout

The first step is to create the form interface for the end user(s) to whom the user management task will
be delegated (see figure 2).

Figure 12: Example of a delegation form. Using this form, created by the sysadmin, a non-admin is allowed to reset passwords.

Figure - Example of a delegation form. Using this form, created by the sysadmin, a non-admin is allowed to reset passwords.
To design a form, a wide variety of form fields is available. These form fields have various different
functions:

 explain the purpose of the form to the user (static text, picture)

 let the user specify input data for the form project (e.g. input text for a password, table field
to list users from Active Directory, etc.)

 initiate the execution of form actions - when the user clicks a button, the project script should
be executed for the specified data (e.g. to reset the password of a selected user).

 make the form look more appealing (by adding a picture, vertical spaces, descriptive text, etc.)

Step 2 - Building the form script

The script is at the heart of any UMRA project. In case of a delegation project, a project script needs to
be executed when the user clicks a button in the form (e.g. a “Reset Password” button). The project
script, which may consist of many different script actions, will then be executed using the input data

UMRA Help

Copyright © Tools4ever 1998 - 2012 6

from the end user. In case of a Reset Password project for instance, the project script will obtain the
user account of the selected user and set the password as specified by the end user. UMRA comes with
a wealth of built-in script actions. For a full list of available script actions, see Appendix A - Script actions on
page 64.

Step 3 - Specifying security

The final step is to specify who will be allowed to access and run the form. Delegated users can the
access these forms through the UMRA delegation client (UMRA Forms).

Step 4 - Testing the script

The same testing procedure applies as for creating a MASS project.

To become more familiar with the creation of Forms & Delegation projects, you are invited to proceed
to chapter Creating a Forms example project - Reset password on page 32 which describes in detail how to
create an UMRA delegation solution for resetting a user's password.

UMRA Help

Copyright © Tools4ever 1998 - 2012 7

3.2.5. User account provisioning - Automation module

This section provides some information regarding the two major application areas for the Automation
module:

 Linking Active Directory (or any other LDAP directory service) to other information systems

 Integrating Active Directory in existing web portals

Linking Active Directory to other information systems

Summary

UMRA Automation is a solution which allows administrators to link Active Directory as well as other
LDAP directory services with any other information system (SAP, PeopleSoft, Beaufort, etc.). Changes in
the IS (an HR system for example) can be automatically propagated to Active Directory or other LDAP
directory services.

Figure 13: Linking Active Directory (or any other LDAP directory service) with other information systems

Working procedure

1. Identify the relationships between the changes in a(n) (HR) system and Active Directory (or
other LDAP directory services) - if a user is removed from an HR system for example, the
corresponding changes to implement in Active Directory will have to be defined (e.g. removing
the user object).

2. Obtaining data from the information system - this can be done in numerous ways. A file can be
periodically read, a database query can be periodically executed or an (HR) system may perform
some kind of active signaling.

UMRA Help

Copyright © Tools4ever 1998 - 2012 8

3. Executing UMRA project script to update Active Directory with data from the specified system.
If, for instance, an HR system processes the mutation of an employee leaving the company, this
change could be automatically registered in a file and (periodically) read by UMRA. An UMRA
project script can then be executed to update Active Directory accordingly by deleting the user
account (or any other action).

Integrating Active Directory in existing (Sharepoint) web portals

Summary

Using UMRA Automation it is also possible to create a solution which integrates Active Directory with a
company's intranet. Simple forms are made available to non-administrators (helpdesk or HR employees,
for instance) using ASP/ASPX pages on an IIS website. The ASP(X) code of the Sharepoint / IIS website(s)
integrates with UMRA using UMRA COM objects.

Working procedure

1. Identifying the tasks to be supported in the Sharepoint / IIS portal.

2. Building the UMRA project scripts to execute the required tasks

3. Creating the Sharepoint / IIS website pages. This can be done with either ASP or ASPX pages. It is
recommended to create these pages using the Visual Studio.Net development environment.

UMRA Help

Copyright © Tools4ever 1998 - 2012 9

3.2.6. Installing UMRA

This section provides information about installing the UMRA application.

Important: the UMRA evaluation version can be installed on a local XP machine which is part of a
domain. For evaluation purposes, there is no need to install UMRA or any DLLs on a domain controller of
your network.

Which module should I choose?

When you install UMRA for the first time, you will be offered the following options:

UMRA Console - the UMRA Console is the Administrator's application for creating project scripts and
forms.

UMRA Forms - UMRA Forms is the client application for the non-admins to access the form projects
developed by the administrator in the UMRA Console.

UMRA Automation - This installs and registers several UMRA Com objects. This is needed for 3rd party
programs to be able to issue commands to the UMRA software. This is for instance used in some
scenarios of solutions that to link Active Directory with other information systems and to integrate
Active Directory in existing company web portals.

Generally, when installing the console for the administrator, it is recommended to also install the other
two modules.

When installing for an end user (e.g helpdesk employee) who is only going to perform pre-created form
projects created by the administrator , only install the UMRA forms module.

When installing on a web server, in order to let the web server call Umra projects by COM, only install
the Automation module.

System requirements

The following table shows all of the requirements to run the User Management Resource Administrator
application.

UMRA Help

Copyright © Tools4ever 1998 - 2012 10

Description Required Recommended

Operating system Windows XP, Windows 2008 (all
versions) Windows 2003 (all versions) ,
Windows 2000 (all versions)

Supported network operating
system

Windows 2008 (all versions), Windows
2003 (all modes), Windows 2000 (all
modes), Windows NT4 (SP6)

Required privileges of logged
on user

Administrative access to Active
Directory and/or all computers and
domains with managed user accounts

Available hard disk space 25 MB 40 MB or more

Processor Pentium III, 600 MHz, AMD 900 MHz Pentium IV, > 1 GHz or AMD > 1.6 GHz

System memory 512 MB or more

Installing the UMRA program files
All of the User Management Resource Administrator software is contained in a single executable file:
SETUPUSERMANAGEMENT.EXE.

To install the UMRA application, please download the most recent UMRA build from
www.tools4ever.com and follow the installation instructions. Once the files have been installed, the
UMRA wizard is launched to guide you through the remaining UMRA installation.

In case your solution requires the installation of Exchange (e.g. for a project which includes the mass
creation of mailboxes), please follow the procedure as described in Installing the Exchange system
management tools for Exchange 2003.

Exchange 2000/2003 requirements

In order to use the Exchange 2003/2000 features within User Management Resource Administrator, you
must have a functional Exchange server in your network. Additionally, it is required to have the
Exchange System Management tools installed on the local machine that runs the User Management

Resource Administrator application.

UMRA Help

Copyright © Tools4ever 1998 - 2012 11

Installing the Exchange system management tools for Exchange 2003

1. Insert the CD containing the Microsoft Exchange 2003 Software (standard or enterprise edition),
and run setup.exe.

2. Under Deployment, select Exchange deployment tools.

3. Choose the option Install Exchange System Management Tools Only.

4. Follow the instructions for your specific operating system.

For Exchange 2000, the procedure is similar.

UMRA Help

Copyright © Tools4ever 1998 - 2012 12

3.2.7. Creating a MASS example project - Mass create users

Project definition

In this section, we will create a solution to mass create new user accounts in Active Directory. The same
steps will be followed as described in chapter Mass updating network resources on page 1:

 Step 1 - Providing input data

 Step 2 - Building the project script

 Step 3 - Testing the project script

 Step 4 - Executing the project script

This example can be extended with many additional script actions - your imagination is the only limit. A
full list of available script actions in UMRA can be found in Appendix A - Script actions on page 64.

Step 1 - Importing your input data

For this example project, we will use input data from a CSV file. Each row of this file contains several
fields with user information:

 first name

 middle name

 last name

 phone number

The fields in each row are separated by a comma delimiter. The first line of the CSV file (highlighted in
the example shown below) contains the column headers. Here is an example of how such a file may look
like:

UMRA Help

Copyright © Tools4ever 1998 - 2012 13

Figure 14: CSV file as input data source

Figure 1 - CSV file as input data source
When the file is imported in UMRA, these data will be converted to a table where each row represents a
user. Each column represents a field.

Importing a CSV file.

1. Create a .csv or .txt file like the one shown.

2. Start the UMRA Console and select the menu command File,New,Mass Project.
The Program will ask for a new project name. This will open a new project with the specified name.
The projects contains two tabs: A tab called "Script", and a tab called File.

3. Select the File data tab. At the moment the File data tab will still be empty

UMRA Help

Copyright © Tools4ever 1998 - 2012 14

Equation 1: A new mass project

4.
Figure 2 - A new mass project

5. Right click in the file data pane and select Import file data, or select FileImport, and select the
file you have just created. The following dialog will show:

UMRA Help

Copyright © Tools4ever 1998 - 2012 15

Figure 3 - Specifying the File import data

UMRA Help

Copyright © Tools4ever 1998 - 2012 16

6. Here you can specify how the CSV file should be read. In our case, the CSV column delimiter is a
Comma, so you can select Comma under Delimiters. Under Additional settings, select the option

First line contains headers. Click Finish to finalize the data import.

7. The imported data will be displayed in the File data window of your project as shown in figure 5:

Figure 15: The data from the CSV file are converted to a table with a row for each line in the file and columns for each field

Figure 5 - The data from the CSV file are converted to a table with a row for each line in the file and columns for each field

Step 2 - Building the project script

The next step is to create a project script which will be executed for each row of the input data table. A
project script consists of one or more built-in script actions where each script action executes a specific
task.

Adding the Create User (AD) script action

1. Click the Actions tab in the Actions-Network-Form fields window. Open the UserActive Directory
folder and drag the Create User (AD) action to the project script window. When fully configured,
this script action will create a user account in Active Directory for each user listed in the input data.

UMRA Help

Copyright © Tools4ever 1998 - 2012 17

Figure 16: The Create user (AD) script action with its properties and property values

Figure 1- The Create user (AD) script action with its properties and property values

Setting script action property values

Each script action in UMRA holds a different set of properties specifying in detail how the script action
should be executed. In case of a Create User script action for example, it includes (amongst others) the
following information:

 name of the domain where the user account should be created.

 name of the container where the user account should be created.

 User's logon name (SAM-Account-Name), which can be conmposed from the user's first and
last name.

Some of these property values need to remain the same for each row of input data being processed.
These property values, such as the domain name and the value for the container where the user
account should be created, can be entered directly in the script action properties.

UMRA Help

Copyright © Tools4ever 1998 - 2012 18

Setting the Domain property value

1. Double click the Domain property of the Create User (AD) script action which you have just added
to the project script. This will bring up the Properties window.

2. Enter the name of your domain in the Use the following value field. The domain name can either
be entered using its DNS name (e.g. tools4ever.com) or its NETBIOS name (e.g. TOOLS4EVER).

3. Click OK.

Setting the Organizational Unit-Container property value

1. Double click the Organizational Unit-Container property of the Create User (AD) script action. This
will bring up the Properties window.

Figure 17: Specifying the OU in which the user accounts should be created

Figure 2 - Specifying the OU in which the user accounts should be created

2. Enter the name of the organizational unit container in which you want to create the new user
accounts. By default, new user accounts are created in the container Users, but you can change this
to any OU-container. To create new users in an existing OU container called “Marketing” for
example, just enter Marketing.

UMRA Help

Copyright © Tools4ever 1998 - 2012 19

Setting the name generation algorithm property value

This algorithm can generate all user names found in Active Directory (Common Name,
sAMAccountName, internet-style login name, etc.). These names can be generated in many different
ways and completely in compliance with company naming conventions. For this example, the default
algorithm will be used. Based on the user's first name, middle name and last name it will generate the
various user names for Active Directory.

1. Double click the Name generation algorithm property of the Create User (AD) script action. This
will bring up the Properties window.

Figure 18: Setting the default name generation algorithm

Figure 3- Setting the default name generation algorithm
2. Choose the Value option. From the list of name generation options, choose the Default option.

3. Click OK.

UMRA Help

Copyright © Tools4ever 1998 - 2012 20

Setting the User-Principal-Name property value

This is an Internet style login name for the user. It is the preferred logon name for Active Directory
users. Users should be using their UPNs to log on to the domain (using the syntax
account_name@domain.com). In UMRA, the account name is one of the user names generated by the
name generation algorithm. For this example, only the domain name needs to be added.

1. Double click the User-Principal-Name property of the Create User (AD) script action. This will
bring up the Properties window.

2. In the Use the following value field you will see the predefined syntax
“%UserName%@%Domain%”. The variable %UserName% is automatically created by the
name generation algorithm and does not have to be changed. Replace the %Domain% variable
with the name of your domain (e.g. %Username%@tools4ever.com).

3. Click OK.

Setting the Password generator property value

In UMRA, passwords can be generated automatically by the password generator. The generated
password is stored in the %Password% variable and used to set the user's password in the Password
property of the Create User (AD) action. If you want to create the same password for all users, you can
specify the password directly in the Password property. For our example project, we will be using a
predefined password generator setting.

1. Double click the Password generator property of the Create User (AD) script action. This will bring
up the Properties window.

2. Select the option Use the following value and click the Edit button. This will bring up the Password

generator window.

UMRA Help

Copyright © Tools4ever 1998 - 2012 21

Figure 19: Password generator property

Figure 5- Password generator property
3. In the Password generator window, accept the default predefined setting (“Strong, 7 chars with 1

numeric, 1 special”) by clicking OK.

UMRA Help

Copyright © Tools4ever 1998 - 2012 22

Figure 20: Specifying password generation options

Figure 5- Specifying password generation options

UMRA Help

Copyright © Tools4ever 1998 - 2012 23

4. The selected predefined setting will now be displayed in the Use the following value field:

Figure 21: The specified password generation option as shown in the Properties window

Figure 6- The specified password generation option as shown in the Properties window
5. Click OK.

Alternatively, you can also specify in detail the rules used to generate a password. See the topic Password

generation in the Online Help of User Management Resource Administrator for a detailed description.

Setting the Telephone number-home property value

In this property, the home phone number of the user is set.

1. Doubleclick the Telephone number-home property of the Create User (AD) script action. This will
bring up the Properties window.

2. Select the option Use the following value and enter %Phone%.

3. Click OK.

Note that this time, instead of entering a value directly, the name of a variable is entered. Why this is
done and how this works, is explained in detail in the next section.

UMRA Help

Copyright © Tools4ever 1998 - 2012 24

Linking input data columns to variables

Unlike the property value for the domain name, most property values will be different for each row of
input data. The Surname property for instance, may be “Williams” for the user in row 1, “Smith” for the
user in row 2, etc.

For these properties, you cannot enter the actual value in the script action property. If you would do this
for the Surname property for instance, each row of the input data would be processed using the same
surname.

For this reason, a link can be established between the input data columns and the property values. This
is done by assigning the input data columns to a placeholder, also called a variable (e.g. %LastName%
for the LastName column). These variables can then be used in the script action properties to represent
the property values.

In figure 14, the Surname property value has been linked to the %LastName% column. UMRA will now
obtain the Surname property values from the %LastName% column.

Figure 22: Linking inpiut data columns to property values

UMRA Help

Copyright © Tools4ever 1998 - 2012 25

When the project script is executed, the variables will be replaced with their actual value as found in the
linked column. This is illustrated in figure 15 where the Surname property value has been linked to the
%LastName% column. When the first row is processed, the %LastName% variable is set to “Williams”,
for the second row it is set to “Smith”, and so on.

Figure 23: Specifying variables for property values

Many script actions have predefined variables for the property values. By default for instance, the
Create User (AD) script action uses the %FirstName% variable to represent the property value for
Given-name.

When you right-click an input data column, these predefined variables are automatically displayed.
When you select a variable, it is automatically linked to the selected column.

All other variables have to be manually defined.

In the final steps, we will put this theory into practice.

1. Right-click the FirstName column and select the %FirstName%” variable. The column header will
change to “%FirstName%”.

UMRA Help

Copyright © Tools4ever 1998 - 2012 26

Figure 24: Linking input data columns to variables

Figure 9- Linking input data columns to variables
2. Follow the same procedure for the next three columns. Assign the variable %MiddleName% to the

“MiddleName” column, assign the variable %LastName% to the “LastName” and finally assign the
%Phone% variable to the “Phone” column.

The final result for the four columns is shown in the next figure:

UMRA Help

Copyright © Tools4ever 1998 - 2012 27

Figure 25: Linking input data columns to variables

Figure 10- Linking input data columns to variables

Step 3 - Testing the project script

In the UMRA Console, there are various options to test and debug your MASS project script. In the
toolbar the following icons are related to testing:

Icon Description

 (Test only)

 (Execution mode)

This icon has either the state “Test only” or
“Execution mode”. Clicking the icon will change
its state. In Test only mode, the script will be
executed, but without updating Active Directory or
other network resources

 (Step mode)
The step mode can be used to execute the project script
line by line.

 (Run selection) The project script will be executed for the selected
input data.

 (Run)
The project script will be executed for all input data.

UMRA Help

Copyright © Tools4ever 1998 - 2012 28

Running the project script in test mode

In UMRA, a detailed log is generated with the results of each and every executed script action, date and
time of script execution, properties set, encountered errors, etc.

1. First of all, make sure that you are running UMRA in Test only mode (you should see the icon .

If you see the icon instead, switch to test mode by clicking the icon).

2. Select the first user in the input data window (John F. Addams) and click the Run selection icon (

)
- OR -
Right-click the first user in the input data window and choose the Run selection command.

The full log for the first row being processed is displayed below. The comments in bold have been added
to explain the individual sections of the log messages.

Log start showing the build version and the date and time when the job was executed:
Starting User Management Resource Administrator session, build 1233 at 16:25:14 03/07/2006
Message showing that the script is run in test mode:
16:25:14 03/07/2006 ***** TEST ONLY *** STARTING JOB SIMULATION *** TEST ONLY

Message indicating the row being processed. It starts with “2” since the first row of the input data contained
headers only!:
16:25:14 03/07/2006 ***** Processing entry 2...
All the variables which are set for the first row containing a user are listed here. The last variables starting with
“%Now(..)% provide more details on when the individual script actions were executed:
16:25:14 03/07/2006 Variable 1: %FirstName%=John
16:25:14 03/07/2006 Variable 2: %MiddleName%=F.
16:25:14 03/07/2006 Variable 3: %LastName%=Addams
16:25:14 03/07/2006 Variable 4: %Phone%=001-5324824187
16:25:14 03/07/2006 Variable 5: %NowDay%=07
16:25:14 03/07/2006 Variable 6: %NowMonth%=03
16:25:14 03/07/2006 Variable 7: %NowYear%=2006
16:25:14 03/07/2006 Variable 8: %NowHour%=16
16:25:14 03/07/2006 Variable 9: %NowMinute%=25
16:25:14 03/07/2006 Variable 10: %NowSecond%=14
A listing of all the Create User (AD) script action property values for the first row being processed:
16:25:14 03/07/2006 Creating AD account in specified domain: 't4edoc'.
16:25:15 03/07/2006 Creating AD account in container 'Users'.
16:25:15 03/07/2006 Creating AD account in Organizational Unit-Container:
'LDAP://CN=Users,DC=t4edoc,DC=local'.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only): Using name
generation algorithm 'Default', 100 iterations maximum for duplicate names.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Common
name of user set to 'John F. Addams'.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). SAM account
name (username) of user set to 'addamsjf'.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). LDAP attribute
'userPrincipalName' of object 'John F. Addams' set to 'addamsjf@%t4edoc'.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). LDAP attribute
'displayName' of object 'John F. Addams' set to 'John F. Addams'.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). LDAP attribute
'givenName' of object 'John F. Addams' set to 'John'.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). LDAP attribute
'sn' of object 'John F. Addams' set to 'Addams'.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Boolean
parameter 'Account disabled'=FALSE (101034). Result not changed.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Boolean

UMRA Help

Copyright © Tools4ever 1998 - 2012 29

parameter 'Password never expires'=FALSE (101032). Result not changed.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Boolean
parameter 'Store password using reversible encryption'=FALSE (101033). Result not changed.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Boolean
parameter 'Smart card is required for interactive logon'=FALSE (101035). Result not changed.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Boolean
parameter 'Account is trusted for delegation'=FALSE (101036). Result not changed.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Boolean
parameter 'Account is sensitive and cannot be delegated'=FALSE (101037). Result not changed.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Boolean
parameter 'Use DES encryption types for this account'=FALSE (101038). Result not changed.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Boolean
parameter 'Don't require Kerberos preauthentication'=FALSE (101039). Result not changed.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Account
expiration date not specified for new user 'John F. Addams' object.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). LDAP attribute
'homePhone' of object 'John F. Addams' set to '001-5324824187'.
16:25:15 03/07/2006 Creating AD user account in container/OU
In Test mode you will see this line in the log window with the text “Not creating user”, indicating that the user is
not created for real in Active Directory:
'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Not creating user 'John F. Addams' (test only).
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Password set
for new user object 'John F. Addams'.
16:25:15 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local' (test only). Flag 'User
Cannot Change Password' not changed from default value (FALSE).
Line indicating that the first user row has been fully processed.
16:25:15 03/07/2006 ***** Ready processing entry 2...
Line showing the total numbers of script execution errors. If any errors occur, the log window will provide more
details on the type of error that was encountered.
16:25:15 03/07/2006 Total number of script action execution errors: 0.
The text “END TEST ONLY ***ENDING JOB SIMULATION” will appear at the end of the log file, indicating that the
job was executed in test mode:
16:25:15 03/07/2006 ***** END TEST ONLY ***** ENDING JOB SIMULATION ***** END TEST ONLY *****
16:25:15 03/07/2006 ***** (Select Actions, Test only, to toggle TEST ONLY on and off) *****
End of session
When no errors are reported in the log messages window, you are ready to run the project script in
execution mode to update Active Directory.

Step 4 - Executing the project script

1. Switch to execution mode (you should see the icon). If you are still running the UMRA Console

in Test mode (icon displayed as), just click the icon to change its state.

2. Click the Run icon () to execute the script for all input data. The user accounts will now be
created for real.

All the script execution details can again be traced in the log messages window. Note that the text “text
“END TEST ONLY ***ENDING JOB SIMULATION” has disappeared in execution mode. The complete log
for the first row being processed now looks as follows. Once again, the comments in bold have been
added to explain the individual sections of the log messages.

Log start showing the build version and the date and time when the script was executed:
Starting User Management Resource Administrator session, build 1233 at
16:37:02 03/07/2006
Message indicating the row being processed. It starts with “2” since the first row of the input data contained
headers only!:
16:37:02 03/07/2006 ***** Processing entry 2...

UMRA Help

Copyright © Tools4ever 1998 - 2012 30

All the variables which are set for the first row containing a user are listed here. The last variables starting with
“%Now(..)% provide more details on when the individual script actions were executed:
16:37:02 03/07/2006 Variable 1: %FirstName%=John
16:37:02 03/07/2006 Variable 2: %MiddleName%=F.
16:37:02 03/07/2006 Variable 3: %LastName%=Addams
16:37:02 03/07/2006 Variable 4: %Phone%=001-5324824187
16:37:02 03/07/2006 Variable 5: %NowDay%=07
16:37:02 03/07/2006 Variable 6: %NowMonth%=03
16:37:02 03/07/2006 Variable 7: %NowYear%=2006
16:37:02 03/07/2006 Variable 8: %NowHour%=16
16:37:02 03/07/2006 Variable 9: %NowMinute%=37
16:37:02 03/07/2006 Variable 10: %NowSecond%=02
A listing of all the Create User (AD) script action property values for the first row being processed:
16:37:02 03/07/2006 Creating AD account in specified domain: 't4edoc'.
16:37:02 03/07/2006 Creating AD account in container 'Users'.
16:37:02 03/07/2006 Creating AD account in Organizational Unit-Container: 'LDAP://CN=Users,DC=t4edoc,DC=local'.
16:37:02 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local': Using name generation
algorithm 'Default', 100 iterations maximum for duplicate names.
16:37:02 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Common name of user
set to 'John F. Addams'.
16:37:02 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. SAM account name
(username) of user set to 'addamsjf'.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. LDAP attribute
'userPrincipalName' of object 'John F. Addams' set to 'addamsjf@%t4edoc'.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. LDAP attribute
'displayName' of object 'John F. Addams' set to 'John F. Addams'.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. LDAP attribute
'givenName' of object 'John F. Addams' set to 'John'.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. LDAP attribute 'sn' of
object 'John F. Addams' set to 'Addams'.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Boolean parameter
'Account disabled'=FALSE (101034). Result not changed.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Boolean parameter
'Password never expires'=FALSE (101032). Result not changed.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Boolean parameter 'Store
password using reversible encryption'=FALSE (101033). Result not changed.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Boolean parameter
'Smart card is required for interactive logon'=FALSE (101035). Result not changed.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Boolean parameter
'Account is trusted for delegation'=FALSE (101036). Result not changed.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Boolean parameter
'Account is sensitive and cannot be delegated'=FALSE (101037). Result not changed.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Boolean parameter 'Use
DES encryption types for this account'=FALSE (101038). Result not changed.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Boolean parameter 'Don't
require Kerberos preauthentication'=FALSE (101039). Result not changed.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Account expiration date
not specified for new user 'John F. Addams' object.
16:37:03 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. LDAP attribute
'homePhone' of object 'John F. Addams' set to '001-5324824187'.
Line showing that the user account was created for real in Active Directory:
16:37:04 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. User 'John F. Addams'
successfully created.
16:37:04 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Password set for new
user object 'John F. Addams'.
16:37:04 03/07/2006 Creating AD user account in container/OU 'LDAP://CN=Users,DC=t4edoc,DC=local'. Flag 'User Cannot Change
Password' not changed from default value (FALSE).
16:37:04 03/07/2006 ***** Ready processing entry 2...

As mentioned at the beginning of this section, only a small section of the log has been displayed here. In
the full log as shown in the Log Messages window, you can trace the processing results of the remaining

UMRA Help

Copyright © Tools4ever 1998 - 2012 31

rows of the input data. At the very end of the log a message is displayed indicating how many rows in
total have been processed (in this case 15):

UMRA Help

Copyright © Tools4ever 1998 - 2012 32

3.2.8. Creating a Forms example project - Reset password

To demonstrate the various steps involved in creating a delegation solution, we will create a sample
project to delegate the task of resetting a user's password to a non-admin.

To create the project, the same steps will be followed as described in chapter Delegating user account

management tasks on page 4:

1. Creating the form layout

2. Building the form script

3. Specifying security

In the first step, the interface for the end user will be designed. In this particular form, a user can be
selected from a list. When the delegated user hits the Reset Password button, a project script is
executed which resets the password for the selected user. This script is explained in detail in step 2. In
the last step we will show you how the security for the project is defined. In other words: how to control
access to the project form.

UMRA Help

Copyright © Tools4ever 1998 - 2012 33

Please note that this project only serves as an example. It can be extended with many more script
actions and the form can be fully customized to your own specific needs. For a full list of script actions,
see Appendix A - Script actions on page 64.

Introduction

Using UMRA, administrators can create a project to delegate specific user account management tasks
(e.g. resetting a password) to non-admins. The non-admin is only presented with a simple interface (a
form) to perform this specific task and is not given an admin password.

For any delegation project, a design phase and an operational phase can be distinguished.

UMRA Help

Copyright © Tools4ever 1998 - 2012 34

Figure 26: The design and operational phase of a delegation project

In the design phase, the administrator creates an UMRA project in the UMRA Console to delegate a
specific user management task to a non-admin. This delegation project consists of a project form to
present to the delegated user and a project script specifying the actions to be executed.

The complete project is stored in a project database which is maintained by the UMRA service. This
principle is shown in Figure 18.

In the operational phase, the delegated user connects to the UMRA service using the delegation client
(UMRA Forms). The UMRA service will check the access rights of the user and returns a list of project

UMRA Help

Copyright © Tools4ever 1998 - 2012 35

forms for which the delegated user has been given privileges. These will be displayed in the UMRA

Forms client.

It is important to understand that the form project as presented in the UMRA Forms client does not
contain any scripting. The project script, developed by the administrator, has been separated from the
form and is part of the project maintained by the UMRA service.

As soon as a delegated user hits an action button (e.g. Reset Password) in the project form on the client
side, a request is sent to the UMRA service to execute the project script for this project using the data
specified in the UMRA Forms client (e.g. resetting the password for the selected user in the form). The
network resource will then be updated accordingly.

Figure 27: Example of an UMRA form to delegate a user account management task

UMRA Help

Copyright © Tools4ever 1998 - 2012 36

Step 1 - Designing the form layout

The form you need to create will be the main interface for the end user to execute a specific user
managagement task. You can safely assume that this end user does not have any knowledge of Active
Directory. The form layout should therefore be created in such a way that the purpose of the form is
crystal clear. In the UMRA Console, various form field categories are available to customize the interface
for your own specific needs:

 Descriptive form fields - Use the static text field to explain the purpose of the form and the
individual form elements to the end user. Examples: form title, input box description (“Please
enter the domain name”), etc.

 Interactive form fields - Use input text boxes, checkboxes, radio buttons and tables to allow
for interaction with the end user. Examples: Allowing the end user to enter the domain name
in an input box, presenting a list of users in Active Directory which can be selected, etc.

 Cosmetic form fields - Use the picture (e.g. to add a company logo) and vertical space form
fields to make your form more appealing.

UMRA Help

Copyright © Tools4ever 1998 - 2012 37

To include these field elements in a form, all you need to do is drag the required form element from the
Field elements window into the project's Form window and configure its display properties.

Figure 28: Adding a title with the Static text field form element

Figure 1 - Adding a title with the Static text field form element

UMRA Help

Copyright © Tools4ever 1998 - 2012 38

The various field elements for the Reset Password form are listed in figure 22.

Figure 29: Form field elements for the Reset Password project

Figure 2 - Form field elements for the Reset Password project

1 - Picture

2 - Static text field for form title

3 - Generic table containing data from an LDAP query

4 - Static text field

5 - Input text field

6 - Static text field

7 - Input text field

8 - (Execute) button

1. This and the next section(s) explain how you can build a form project, by describing in steps how
to create an example "Reset password" project. A finished reset password project that should be
comparable to the results you will get from following the instructions is available. Select the
menu UMRA service, Manage Server Projects. This gives a list of the currently available projects
on the service. If the project is not listed here, you can import it by selecting the import button
and browsing to the program directory of the console and look here in either the "Projects" or
"sample projects" directory.

UMRA Help

Copyright © Tools4ever 1998 - 2012 39

Starting a new form project

1. Start the UMRA Console. If you have previously installed the UMRA Service, UMRA will
automatically establish the connection. If this is not the case, then please install the UMRA

Service first (see also Appendix B - Installing the UMRA Service on page 69).

2. Select FileNew and choose the option Form project to start a new form project.

Adding the form field elements

a Picture (1)

1. Click the Form fields tab in the Actions-Network-Form fields window and drag the Picture form
field to the project's Form window. The Configure form field window will appear in which you
can configure the display properties for this form field.

2. In the File field under Image file name, specify the name of the picture you wish to use for the
form.

b Vertical space

1. Click the Form fields tab in the Actions-Network-Form fields window and drag the Vertical space
form field to the project's Form window. The Configure form field window will appear in which
you can configure the display properties for this form field. In the Amount of pixels moved down
field, enter “15”.

c Static text field (2)

UMRA Help

Copyright © Tools4ever 1998 - 2012 40

1. Click the Form fields tab in the Actions-Network-Form fields window and drag the Static text

field form field to the project's Form window. The Configure form field window will appear.

2. Enter the title “Reset Password” in the Text section. This is the title of your form.

Figure 30: Entering text for the form title (static text form field element)

Figure 3 - Entering text for the form title (static text form field element)

UMRA Help

Copyright © Tools4ever 1998 - 2012 41

3. Click the Display tab in the Configure form field window and set the display configuration of the
title text as shown in figure 24.

4.
Figure 31: Specifying the display configuration for a static text field

Figure 4 - Specifying the display configuration for a static text field

d Vertical space

Create a vertical space of 15 pixels.

e Table (3)

For this project, a table will be inserted to display a list of users from Active Directory. Since it
requires some additional steps to configure a table, it is discussed separately.

1. Follow the instructions as described in the following section, “Tables - Specifying an LDAP table
to create a list of users”. For more information about tables in UMRA, see the UMRA Tables User
Guide.

f Vertical space

Create a vertical space of 10 pixels

g Static text field (4)

Create a static text field with title "Password" and a left margin of 0%.

UMRA Help

Copyright © Tools4ever 1998 - 2012 42

h Input text field (5)

Create an Input text field and specified as variable name %PassWord%.

When the at run time the form is submitted to the service, the value entered in this input field will
be stored in the mentioned variable. The variables will be used in the script as input for the actual
actions.

Figure 5 - Configure Input form field

UMRA Help

Copyright © Tools4ever 1998 - 2012 43

i Vertical space

Create a vertical space of 5 pixels

j Static text field (6)

Create a static text field with title "Confirm password" and a left margin of 0%.

k Input text lfield (7)

Create an input text field .

l Vertical space

Create a vertical space of 5 pixels

m Button (8)

This is the execute button for the form. When it is pressed, the form is submitted to the UMRA

service and an action will be executed (e.g. “execute the project script”). To configure a button,
you will therefore need to specify both its display options and the actions to be executed upon
clicking.

1. Click the Form fields tab in the Actions-Network-Form fields window and drag the Button form
field to the project's Form window. The Configure form field window will appear.

2. In the Button text field under Appearance, enter the button display text “Reset Password”
figure.

This image cannot currently be displayed.

UMRA Help

Copyright © Tools4ever 1998 - 2012 44

Figure 32: Defining the button text

Figure 5 - Defining the button text

3. Click the Display tab of the Configure form field window and set the button display properties as
shown in figure 26. Note that the Horizontal alignment option determines the alignment of the
text within the form field and not the form field itself.

UMRA Help

Copyright © Tools4ever 1998 - 2012 45

Figure 33: Configuring the display of the button and the button text.

Figure 6 - Configuring the display of the button and the button text.

The above mentioned steps for specifying a button only cover the display characteristics of the
button itself. Next, we need to specify which actions should be executed when the user hits the
Reset Password button.

4. Click the Manage actions button and select the following actions:

5. Execute the script of the project that contains the form - this specifies that the project script of
the current form will be executed as soon as the delegated user hits the Reset Password button

6. Return the form of the current project - this specifies that the current form needs to be
displayed again once the project script execution has been completed.

UMRA Help

Copyright © Tools4ever 1998 - 2012 46

Tables - Specifying an LDAP table to create a list of users

In a form, the administrator can also add form tables. Form tables are used to display user resource data
from Active Directory and other information systems. In figure 27 for instance, an LDAP table is shown
displaying users in Active Directory.

Figure 34: The marked area shows an LDAP table displaying users in Active Directory.

Figure 7 - The marked area shows an LDAP table displaying users in Active Directory.
1. When the delegated user selects a table entry and hits the Reset Password button, the project

script needs to be executed for the selected user. Figure 28 illustrates how this principle works.
The LDAP table shows columns for the user's first name, last name and sAMAccountname. The
SAM Account Name column has been linked to the %SAM% variable. When the user selects a
row (e.g. “Thomas Franklin”) and hits the Reset Password button, the project script is executed
using the selected data. The project script includes the Get User script action to find the user
account for the selected user. In this example (there are multiple ways to obtain a user account),
this script action uses the sAMAccountName of the selected user to obtain the LDAP name of the
user account (e.g. LDAP://CN=Thomas Franklin,CN=Users,DC=t4edoc,DC=local).

2. The sAMAccountName is specified in the script action's Username property value with the
variable %SAM%. When the script is executed, this variable is replaced with the
sAMAccountName of the selected user (franklint).

3. Note that in the final form layout, you would probably want to hide the SAM Account Name
column, since it provides no useful information for the delegated user.

UMRA Help

Copyright © Tools4ever 1998 - 2012 47

To create an LDAP table in a form project, the following steps should be followed:

1. Specifying the table type - select the required table type

UMRA Help

Copyright © Tools4ever 1998 - 2012 48

2. Specifying the LDAP binding - the scope of the LDAP search;

3. Specifying an LDAP filter - the objects you wish to filter on;

4. Specifying the attributes - the attributes you wish to retrieve for these objects.

5. Testing the LDAP query
Note: For a full introduction to using tables in UMRA, see the UMRA Tables User Guide.

Specifying the table type

1. Doubleclick the table form field and select the Generic table option.

2. Click the Configure button

Figure 35: Specifying a table type

Figure 9 - Specifying a table type

UMRA Help

Copyright © Tools4ever 1998 - 2012 49

3. Click the Configure button again. A dialog box is shown where you can select the table type.

Figure 36: Selecting the LDAP generic table

Figure 10 - Selecting the LDAP generic table

UMRA Help

Copyright © Tools4ever 1998 - 2012 50

4. In the Table type list box, select the table type LDAP query. Several tabs will now appear for
setting up the LDAP table.

Figure 37: Configuration window for an LDAP table

Figure 11 - Configuration window for an LDAP table

Specifying the LDAP binding

Starting with Windows 2000, the LDAP provider is used to access Active Directory. This binding method
requires a binding string. You can either specify this string manually or select an automatic binding
method.

1. Click the LDAP binding tab and accept the default binding method (Global Catalog).

UMRA Help

Copyright © Tools4ever 1998 - 2012 51

2. Click OK.

Figure 38: Specifying the binding method

Figure 12 - Specifying the binding method

Specifying an LDAP filter

An LDAP search filter can be defined as a clause specifying the conditions that must be met by Active
Directory objects. Only those objects meeting the requirements will be returned. For our sample
project, we want to filter on all users (objectClass=user). Computer accounts and built-in accounts
however, which also belong to the user objects class, should not appear in the list. We will therefore
include a condition stating that the user object should have a surname (sn=*).

1. Click the LDAP Filter tab.

2. Enter the following clause in the LDAP search filter window:

(&(objectClass=user)(sn=*))

UMRA Help

Copyright © Tools4ever 1998 - 2012 52

This LDAP query will retrieve all objects of the user class with a surname.

Figure 39: Specifying an LDAP filter

Specifying attributes

Each object in Active Directory has a set of attributes, defined by and depending on its type and class.
The LDAP filter defined in the previous step will filter on user objects. In the Attributes tab you can
define the LDAP display name for the attributes you wish to return for these filtered objects.

1. Click the Attributes tab.

UMRA Help

Copyright © Tools4ever 1998 - 2012 53

2. From the Default attribute settings list, select the option Users - names. A list of attributes will
appear in the Attributes list.

Figure 40: Specifying the LDAP attributes for the LDAP query

3. For this example project, we only need some of the listed attributes. Only the following
attributes should be kept:

givenName, sn and sAMAccountname.

The first two attributes represent the first and last name of the user. The sAMAccountName is
the user's logon name. In the second part of this example, it will be used to obtain the user
account of the selected user.

UMRA Help

Copyright © Tools4ever 1998 - 2012 54

4. Delete the other attributes by selecting them and clicking the Delete button.

Figure 41: Final list of attributes for the LDAP query

UMRA Help

Copyright © Tools4ever 1998 - 2012 55

Testing the LDAP query

1. Click the Run test tab and click the Test button. The resulting data should be listed in the Table

data window. If not, revisit the previous steps and make sure you have configured the LDAP
table correctly.

Figure 42: Testing the LDAP query

2. Click OK when the test was successful.

Linking a table column to a variable

The defined LDAP table will retrieve the users' first name, last name and sAMAccountName. The next
step is to make it possible to feed the selected user to the project script which we will define in part 2.
To do this, we need to link the LDAP table column containing the user's logon name (sAMAccountName)
to a variable. This variable can then be used in the project script to obtain the user account of the
selected user.

1. Click the Columns tab.

UMRA Help

Copyright © Tools4ever 1998 - 2012 56

2. Select the columns to be displayed in the table: First name, Last name and SAM Account Name.
Click the right-arrow to move these columns to the Current column configuration window.

3. Select sAMAccountName under Current column configuration.

4. Enter the variable name %SAM% in the Variable list box to assign this column to the variable
%SAM%.

5. Since the sAMAccountName is not relevant for the delegated user, this column will be hidden.
Set the Column width to “0”.

6. In the same way, link the First name column to the %FirstName% variable and the Last name
column to the %LastName% variable, but do not change the column width. The final result is
shown in the figure below.

Figure 43: Testing the LDAP query

7. Finally, click OK.

UMRA Help

Copyright © Tools4ever 1998 - 2012 57

Step 2 - Building the form script

The project script for the Reset Password project should perform the following tasks:

 Obtain the user account of the selected user - this will be done using the Get User (AD) script
action. With the domain name and the sAMAccountname of the selected user as input, this
script action can automatically obtain the user's logon account in Active Directory. This result
is stored in the variable %UserObject%.

 Set the password of the selected user - Using the script action Edit user logon, the user
account stored in %UserObject% can be edited. The script action generates a new password
and updates the user logon accordingly.

 Reporting status information to the delegated user - in the UMRA Forms client, the project
execution results are not displayed in a log window as in the UMRA Console. For a live project,
you could consider extending the project with a form showing the end user a summary status
report.

Figure 38 - Extending the form with a summary status report
For the purpose of this example project, we will simply display a small text message window
showing the new password of the selected user.

Figure 39 - Text message showing the new password for the selected user

Obtaining the user account of the selected user

To specify a user account, there are three different methods:

 Specify the full LDAP name

 Specify Domain name + OU-Container + Fullname

UMRA Help

Copyright © Tools4ever 1998 - 2012 58

 Specify Domain + UserName. In this last case, UMRA will automatically try to find the full LDAP
name.

For our project, we will be using the third method. The UserName is identical to the sAMAccountname
(%SAM%).

1. Click the Actions tab in the Actions-Network-Form fields window. Open the UserActive

Directory folder and drag the Get User (AD) script action to the project script window.

2. Set the properties for this script action as shown in the following table.

Property value Set to Description

Domain MY-DOMAIN Replace MY-DOMAIN with the
name of your domain.

Organizational Unit-Container Do not specify

Full name Do not specify

Username %SAM% This variable is linked to the LDAP
table column containing the
sAMAccountname.

LDAP name Do not specify

Domain controller Do not specify (Active Directory will
choose one automatically through
serverless binding)

User Object Output variable only
(%UserObject%)

Resetting the password of the selected user

To edit the user account obtained with the Get User (AD) script action, the script action Edit user logon
is used.

1. Click the Actions tab in the Actions-Network-Form fields window. Open the UserActive

Directory folder and drag the Edit user logon script action to the project script window.

2. Specify the script action property values as shown in the table below.

Property value Set to

User Object %UserObject% - this is the output variable obtained from the Get User
(AD) script action.

Username Do not specify

Domain %Domain%

Password generator Choose the default password generation option.

UMRA Help

Copyright © Tools4ever 1998 - 2012 59

Password %Password% - This variable will contain the output value from the Password
generator property.

Displaying the project results in a text message window for the delegated user

1. Click the Actions tab in the Actions-Network-Form fields window. Open the Variable

actionsVariable operations folder and drag the Set variable script action to the project script
window. Make sure it is positioned as the last script action in your project script.

2. Doubleclick in the lower section of the project script window to open the Properties window.

3. In the Variable name list, enter the variable %ScriptMessage%. This variable will hold the status
information for the selected user.

Figure 40 - Specifying the variable to hold status information

4. Click the Edit button in the Value of variable section. This will bring up the Specify data window.

UMRA Help

Copyright © Tools4ever 1998 - 2012 60

5. In the Value field, enter the text “The new password for %FirstName% %LastName% is

%Password%”. You will remember that you have linked the First name and Last name columns
of the LDAP table to these variables in section Linking a table column to a variable. When the
script action is executed for the selected user, these variables will therefore be replaced with
their actual values.

Step 3 - Specifying security

Finally, you need to specify who will be allowed to access and run the form in the delegation client
(UMRA Forms).

1. Right-click the form and choose Form properties.

2. Click the Security tab in the Configure form properties window.

In this window, you can add the users and groups who are allowed to access and run the form.
Since we want to delegate the form to non-admins, we will add the Helpdesk group. Please
select a user or group here which exists in your own organization.

3. Click the Add button to specify an existing account name.

Figure 41 - Specifying the users allowed to access and run the form

UMRA Help

Copyright © Tools4ever 1998 - 2012 61

4. Click OK.

Figure 42 - The Helpdesk group has been granted privileges to execute the form

Testing the project script

In the UMRA Console, a detailed log is generated with the results of each and every executed script
action, date and time of script execution, properties set, encountered errors, etc.

1. First of all, make sure that you are running UMRA in Test only mode (you should see the icon

 . If you see the icon instead, switch to test mode by clicking the icon).

UMRA Help

Copyright © Tools4ever 1998 - 2012 62

Select the Preview tab of your project and select a user from the table.

Figure 43 - Testing the delegation project

2. Click the Reset Password button. The project script is now executed using the selected data. A
text window is displayed with the project execution result.

Figure 44 - Text message showing reset password result

If you now look at the Log messages window, you will notice that all the project script execution details
are listed. The text in bold has been added to explain the individual sections.

Log start showing the build version and the date and time when the script was executed:
Starting User Management Resource Administrator session, build 1233 at 15:51:50 03/15/2006
Message showing that the script is run in test mode:
15:51:50 03/15/2006 ***** TEST ONLY *** STARTING JOB SIMULATION *** TEST ONLY *****
15:51:50 03/15/2006 Submit form to UMRA service on computer 'tools4ev-opa0zi' (test only).
This section provides an overview of the variables which have been set for the project:
15:51:50 03/15/2006 Variable 1: %FirstName%=Thomas

UMRA Help

Copyright © Tools4ever 1998 - 2012 63

15:51:50 03/15/2006 Variable 2: %LastName%=Franklin
15:51:50 03/15/2006 Variable 3: %SAM%=franklint
15:51:50 03/15/2006 Variable 4: %UmraFormSubmitAccount%=T4EDOC\E. van Wezel
15:51:50 03/15/2006 Variable 5: %NowDay%=15
15:51:50 03/15/2006 Variable 6: %NowMonth%=03
15:51:50 03/15/2006 Variable 7: %NowYear%=2006
15:51:50 03/15/2006 Variable 8: %NowHour%=15
15:51:50 03/15/2006 Variable 9: %NowMinute%=51
15:51:50 03/15/2006 Variable 10: %NowSecond%=50
Script action Get User (AD) is executed to find the user account for the selected user:
15:51:51 03/15/2006 Finding AD user 't4edoc\franklint' (Domain\Username). LDAP name 'CN=Thomas
Franklin,CN=Users,DC=t4edoc,DC=local'.
The user account is found:
15:51:51 03/15/2006 User account 'LDAP://CN=Thomas Franklin,CN=Users,DC=t4edoc,DC=local' successfully found in Active
Directory.
Script action Edit user logon is executed:
15:51:51 03/15/2006 Editing logon properties of user account 'LDAP://CN=Thomas Franklin,CN=Users,DC=t4edoc,DC=local'. User
account specified by 'User Object'.
The obtained user account is updated with a newly generated password:
15:51:51 03/15/2006 Editing logon properties of user account 'LDAP://CN=Thomas Franklin,CN=Users,DC=t4edoc,DC=local'.
Password generated ('Strong, 7 chars with 1 numeric, 1 special (variable: %Password%)') and set in variable '%Password%'.
Line indicating who executed the project form and when:
15:51:51 03/15/2006 Form message: '03/15/2006,15:51:50,"T4EDOC\E. van Wezel","Form submit",OK,"Sample Form Project -
Reset Password2"'
End of session

UMRA Help

Copyright © Tools4ever 1998 - 2012 64

3.2.9. Appendix A - Script actions

The table below shows an overview of several script actions available in UMRA. Together, these script
actions cover virtually every aspect of user account management. See the UMRA Reference Guide in the
online Help for a complete list and detailed information about the script actions.

 Active Directory User Actions

 Script Action: Create User (AD) on page 3

 Script Action: Create contact (AD) on page 21

 Script Action: Get user (AD) on page 31

 Script Action: Edit user (AD) on page 37

 Script Action: Edit user logon (AD) on page 47

 Script Action: Get user table (AD) on page 51

 Script Action: Delete user (AD) on page 55

 Script Action: Set User Group Memberships (AD) on page 56

 Script Action: Remove user group memberships (AD) on page 60

 Script Action: Move - rename user (AD) on page 63

 Script Action: Move cross-domain (AD) on page 67

 Script Action: Create Exchange Mailbox (2000/2003) on page 156

 Script Action: Edit Exchange mailbox (2000/2003) on page 159

 Script Action: Modify Exchange mailbox permissions (2000/2003) on page 162

 Script Action: Move Exchange mailbox on page 167

 Script Action: Delete Exchange mailbox (2000/2003) on page 168

 Script Action: Manage Exchange recipient mail addresses (2003/2000) on page 169

 Non Active Directory

 Script Action: Create User (no AD) on page 68

UMRA Help

Copyright © Tools4ever 1998 - 2012 65

 Script Action: Edit user (no AD) on page 79

 Script Action: Delete user (no AD) on page 86

 Script Action: Set User Global Group Memberships on page 88

 Script Action: Add account to local group on page 90

 Script Action: Remove group member on page 94

 Script Action: Set primary group (non AD) on page 155

 General user actions

 Script Action: Edit user logon (AD) on page 47

 Script Action: Get user info on page 101

 Script action: Terminal Services user settings on page 104

 Script action: Get terminal services user settings on page 111

 Script Action: Dial-in user settings on page 114

 Active Directory

 Script action: Create object (AD) on page 117

 Script Action: Delete Object (AD) on page 119

 Script Action: Get attribute (AD) on page 120

 Script Action: Set attribute (AD) on page 124

 Script Action: Delete attribute value (AD) on page 129

 Script Action: Set group membership (AD) on page 135

 Script Action: Remove specific group memberships (AD) on page 137

 Script Action: Create group (AD) on page 138

 Script Action: Get object (AD) on page 145

 Script Action: Search object (AD) on page 146

 Script Action: Move cross-domain on page 67

UMRA Help

Copyright © Tools4ever 1998 - 2012 66

 Script action: Get primary group on page 154

 Script Action: Set primary group (AD) on page 155

 File system

 Script Action: Create Directory on page 341

 Script Action: Get file/directory info on page 345

 Script Action: Copy directory on page 347

 Script Action: Rename file or directory on page 352

 Script Action: Setup Security on page 354

 Script Action: Delete directory on page 357

 Script Action: Create share on page 361

 Script Action: Edit share on page 364

 Script Action: Delete share on page 366

 Other actions

 Script Action: Execute Command Line on page 369

 Services

 Script action: List services status on page 373

 Script Action: Execute service command on page 377

 Script Action: Configure service on page 379

 Printer

 Script Action: List printer documents on page 380

 Script Action: Execute print job command on page 382

 LDAP

 Script Action: Setup LDAP session on page 383

 Script Action: Load LDAP modification data on page 386

UMRA Help

Copyright © Tools4ever 1998 - 2012 67

 Script Action: Add directory service object (LDAP) on page 387

 Script Action: Modify directory service object (LDAP) on page 388

 Script Action: Delete directory service object (LDAP) on page 389

 Script Action: Search LDAP on page 391

 Table

 Script Action: Generate generic table on page 527

 Script Action: Manage table data on page 528

 Database

 Script Action: Update database - introduction on page 539

 Script Action: Update database - Database (on page 538)

 Script Action: Update database - SQL Statements on page 539

 Script Action: Update database - Variable list (see "Variable list" on page 778)

 Script Action: Update database - Test (on page 541)

 Name generation

 Script Action: Generate name(s) on page 542

 Variable operations

 Script Action: Set Variable on page 544

 Script Action: Set encrypted variable on page 546

 Script Action: Split Variable on page 546

 Script Action: Format Variable Value on page 549

 Script Action: Update numeric variable on page 550

 Script Action: Update date-time variable on page 552

 Script Action: Convert value of variable on page 554

 Script Action: Convert text to date/time on page 555

UMRA Help

Copyright © Tools4ever 1998 - 2012 68

 Script Action: Convert to multi-valuevariable on page 556

 Script Action: Manage multi-text value variable on page 558

 Script Action: Merge multi-text variable values on page 559

 Script Action: Export Variables on page 559

 Script Action: Delete variable on page 562

 Script Action: Encrypt text on page 563

 Script Action: Generate random number on page 564

 Script Action: Generate password on page 565

 Script Action: Log Variables on page 565

 Programming

 Script Action: Map Variable on page 567

 Script Action: Go to Label on page 569

 Script Action: If-Then-Else on page 570

 Script Action: Execute script on page 571

 Script Action: For-Each on page 572

 Script Action: Delay on page 574

 Script Action: No operation on page 575

 Mail

 Script Action: Send mail message on page 575

UMRA Help

Copyright © Tools4ever 1998 - 2012 69

3.2.10. Appendix B - Installing the UMRA Service

The service can be installed on any server running Windows 2000/2003. It is advised however, to install
the UMRA service on a computer that is a member of the domain containing the user accounts and
computer services you wish to manage. For testing purposes, you can also install the UMRA service on
the same computer that runs the UMRA Console application.

The UMRA Service is completely controlled by the UMRA Console and can be set up by completing the
following steps:

1. Start the UMRA Console application.

2. Select UMRA serviceInstall or upgrade service. This will launch the UMRA service wizard.

3. Select the option Install or upgrade the UMRA service and click Next.

Figure 45 - Introduction screen of the UMRA service installation wizard

UMRA Help

Copyright © Tools4ever 1998 - 2012 70

4. Enter the name of the server where you want to install the UMRA service. This can also be a
local computer.

Figure 46 - Specifying the computer where the UMRA service should be installed

UMRA Help

Copyright © Tools4ever 1998 - 2012 71

5. Specify the TCP/IP Port and click Next. The UMRA service communicates with the UMRA Console
and UMRA Forms client using the TCP/IP protocol. For this communication a port must be
specified. By default, port number 56814 is used, but you can specify any other available port.

Figure 47 - Specifying the TCP/IP port number for the UMRA service

UMRA Help

Copyright © Tools4ever 1998 - 2012 72

6. Before the UMRA service is installed on the specified computer, the UMRA service executable
files are copied to the specified computer. Please specify the directory where these files need to
be copied.

Figure 48 - Specifying the directory where the installation files should be copied to

7. Specify the user account for the UMRA service and click Next.

UMRA Help

Copyright © Tools4ever 1998 - 2012 73

The UMRA service uses a Windows 2003/2000 account to run. Since all project scripts are
executed by the UMRA service, you have to ensure that this account has sufficient administrative
privileges. By default, the UMRA service installation wizard specifies the name
DOMAIN\UmraSvcAccount for the service account. Also, a random strong password is
generated. This password is not known to anyone. If the account does not exist, the account is
created with the generated password.

Figure 49 - Specifying an account for the UMRA service

8. Specify the access rights for the UMRA service account and click Next.

UMRA Help

Copyright © Tools4ever 1998 - 2012 74

The UMRA service must have sufficient administrative privileges to execute its tasks. These
privileges are determined by the service account used by the UMRA service. By adding the
service account to one or more administrative groups, the account can be granted sufficient
access rights.

Figure 50 - Setting privileges for the UMRA service account

9. Click Finish to complete the UMRA service installation.

In case you have already installed the UMRA Service during the installation of the program files, please
follow the steps below:

1. Start the UMRA Console application.

2. Connect to the UMRA service by selecting UMRA ServiceConnect and connect to the
computer on which the UMRA service is installed.

3.3. Integrate UMRA with other applications using
COM

Component Object Model (COM)

This document describes how Microsoft’s Component Object Model
(COM) is used in combination with User Management Resource
Administrator (UMRA). Using COM with UMRA is referred to as UMRA

COM.

ASP and IIS

One of the many applications which can utilize UMRA COM can be used
is Microsoft’s Internet Information Services (IIS). In web applications
running on IIS, Active Server Pages (ASP) may contain UMRA COM
objects to interface with the UMRA Service. A substantial part of this
document focuses on UMRA COM objects used in ASP pages.

There is a lot of documentation available on both COM and ASP. This
document only briefly describes the backgrounds of COM and ASP. A
number of references to these subjects are listed in at the end of this
document.

UMRA COM is part of the User Management Resource Administrator
Automation module (UMRA Automation). To use UMRA COM, an UMRA

Automation license is required.

 Read the full PDF version of UMRA COM
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/Using-UMRA-with-COM-objects.pdf

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Using-UMRA-with-COM-objects.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Using-UMRA-with-COM-objects.pdf

UMRA Help

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or
transmitted in any form or by any means without the written permission
of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or
consequences resulting from your actions or usage of the informational
material contained in this user guide. Responsibility for the use of any
and all information contained in this user guide is strictly and solely the
responsibility of that of the user.

All trademarks used are properties of their respective owners.

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.3.1. UMRA COM

This section explains what UMRA COM is and what its main functions are .

Component Object Model (COM)

The Component Object Model (COM) is a technology that is used by applications to interact with other
applications. The COM technology is designed by Microsoft. The most important Microsoft applications
that use COM are:

 Internet Information Services

 Office applications

 Visual Basic Scripting (VB) and Visual Basic

COM objects and interfaces

In principle, a COM object is a piece of software that implements one or more functions. Different COM
objects support different functions. The functions of a COM object are accessible by means of the
interface of the COM object. The COM object itself is regarded as a black box that implements one or
more functions accessible through its interfaces.

Applications that support COM can create COM objects. By accessing the interface functions of the COM
object, the functions of the COM object are executed by the calling application. The syntax to create
COM objects and access the interface functions of a COM object is extremely general: this is the main
reason why COM objects can be used by so many different applications: The same COM object can be
created and used in ASP-pages, Word documents and Visual Basic scripts.

All applications that support COM use some kind of programming or script language to implement COM.
The procedure used is always the same:

1. The COM object is created;

2. The interface functions of the COM object are accessed;

3. Returned variables can be processed in the application.

An application can use multiple COM objects and COM objects can use other COM objects.

COM registration

In order for an application to use a COM object and the interface functions of the object, the COM
object must be registered. Once a COM object is registered, all applications that support COM can use
the COM object. In most cases, COM object are registered automatically.

Type library

In most cases, the COM object code is contained in a file with the .DLL extension. Such a file contains all
code needed to use the COM objects it implements. Besides the COM objects, the file can also contain a

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

so called type library that describes the COM objects and the interfaces that are used to access the COM
objects.

UMRA COM - Main functions

User Management Resource Administrator contains several COM objects as part of the UMRA

Automation module. The main functions of UMRA COM are:

 Connect to an UMRA Service and execute an UMRA project on the UMRA Service;

 Read and process the information returned by the project variables.

UMRACOM.DLL

All UMRA COM objects are contained in a single file: UMRACOM.DLL. The COM objects are automatically
registered on the computer when the UMRA Console or UMRA Service application is installed.

Figure 1: UMRA COM objects used in a script accessing the UMRA Service.

Any (form) project that is maintained by the UMRA Service can be accessed using UMRA COM.

3.3.2. UMRA COM objects

This section provides an introduction to using UMRA COM objects.

Introduction

UMRA COM objects

UMRA COM supports four types of COM objects. The main functions of
the UMRA COM objects are to:

 access the UMRA Service,

 execute UMRA projects on the UMRA Service

 manage the data retrieved from the UMRA Service.

UMRA COM object Description

Umra The main UMRA COM object. Used to connect to the
UMRA Service, execute an UMRA Form project on
the UMRA Service and manage variables, values and
form project tables.

UmraFormProject Intermediate COM object used to access the data of
a form table.

UmraFormTable COM object used to access the data of a form
project table.

UmraDataTable COM object used to access the data of table variable.

Table 1: The UMRA COM objects.

UMRA COM software

The COM objects are contained in a single DLL: UMRACOM.DLL. This DLL
is part of the UMRA Automation module and installed with the UMRA

Console application. The COM objects are registered automatically. Part
of the UMRA COM software is the type library that describes the COM
objects and interfaces of UMRA COM.

Using UMRA COM

The UMRA COM objects can be used in many environments. The most
important functions implemented with UMRA COM objects are the
following three scenarios:

1. Executing a UMRA project on the UMRA Service and processing
the results.

UMRA Help

2. Accessing the data of a form table contained in the form of an
UMRA Form project.

3. Accessing the data of a table variable generated by a UMRA
project script.

Executing an UMRA project on the UMRA Service

The procedure to execute a UMRA project on the UMRA Service is
always the same. The project must be setup using the UMRA Console
application. The project type must be a form project. The project only
needs to contain a script, not a form. A form project with a form can also
be used. The security settings of the project must be set so that the
project can be accessed from the security context of the UMRA COM
objects accessing the UMRA Service. In general, the UMRA COM objects
are executed with the security context of the user account that is logged
on to the computer that runs the application that uses the UMRA COM
objects.

Executing a project on the UMRA Service

Procedure to execute the script of the UMRA project on the UMRA
Service using UMRA COM:

1. An instance of the Umra COM object is created.

2. The Umra.Connect method is used to connect to the UMRA
Service.

3. The list with variables maintained by the Umra COM object is
created. All variables that are required to execute the script of
the UMRA project must be initialized. For each variable, the
name of the variable and the value must be specified. Normally,
the values are taken from the application that uses the UMRA

COM objects. Several methods of the Umra COM object are
available to setup the list with variables.

4. The method Umra.ExecuteProjectScript is called to request the
UMRA Service to execute the script of the specified project. On
return, the variables updated by the script are stored in the list
with variables.

5. The list with variables can be accessed to process the returned
information.

UMRA Help

Accessing the data of a form table

UMRA Form projects can contain a form. The form can contain a table
presented with UMRA Forms. The table data can be access using UMRA
COM using the following procedure:

1. An instance of the following UMRA COM objects must be
created: Umra, UmraFormProject, UmraFormTable.

2. The Umra.Connect method is used to connect to the UMRA
Service.

3. The method Umra.LoadFormProject is used to load a form
project in the UMRA COM object. As one of the arguments, the
UmraFormProject object is passed. On success, the passed COM
object UmraFormProject contains the form of the project,
including the form tables that are part of the form.

4. The method UmraFormProject.GetFormTable is called to load
the UmraFormTable object. The object UmraFormTable is one of
the arguments of the method.

5. On success, the COM object UmraFormTable contains the table
data. The method UmraFormTable.GetCellText can be used to
access the table data.

Accessing the data of a table variable

UMRA supports many script actions that generate table data. Such a
table is normally stored in a single variable and the action is part of a
UMRA project script. When the project is executed using UMRA COM,
the variable is returned. The following procedure describes how to
access the data of the table variable:

1. Instances of the UMRA COM objects Umra and UmraDataTable
are created.

2. The UMRA COM object Umra is connected to the UMRA Service
and a project is executed. See Execute an UMRA project on the

UMRA Service for more information. The list with variables
maintained by the Umra COM object now contains a variable
with table data.

3. The member Umra.GetVariableDataTable is called to load the
table data. The method requires two arguments: The name of
the variable and the UmraDataTable object. On success, the
UmraDataTable contains the table data of the variable.

UMRA Help

4. The method UmraDataTable.GetCellText is used to access the
data of the individual table cells.

UMRA COM object reference

The UMRA COM object exposes the following interfaces:

Umra : General interface to setup the connection with the UMRA
Service, execute project, manage variable lists.

UmraFormProject : Simple interface to obtain access to form project
tables.

UmraFormTable : Simple interface to read data from a form project
table.

UmraDataTable : General interface to manage tables

Umra

UMRA COM object: Umra

This is the main UMRA COM object. The object is used to connect to an
UMRA Service, execute a project on the UMRA Service and retrieve data
from the UMRA Service.

ClearVariables

Umra.ClearVariables

void ClearVariables()

Argument Type Description

no arguments..

The interface method deletes all variable-value pairs from the list with
variables maintained by the UMRA COM object. When completed, the
list is empty.

UMRA Help

Connect

Umra.Connect

long Connect([in] BSTR Host, [in] long PortNumber)

Argument Type Description

Host in The name of the host that runs the UMRA
Service to which the COM object must
connect. The name can be specified as DNS or
NETBIOS name.

PortNumber in The port of host running the UMRA Service.
The default port is 56814.

The interface method connects to an UMRA Service. The name of the
computer running the UMRA Service and the port number must be
specified. Normally, this is the first method called when the UMRA COM

object is created.

When the connection is established, the connection parameters are
stored within the object. The COM object can be connected to only one
UMRA Service at a time. The return value should be zero on success. If
the return value is not zero, the COM object is not connected to the
UMRA Service.

ExecuteProjectScript

Umra.ExecuteProjectScript

long ExecuteProjectScript([in] BSTR ProjectName)

Argument Type Description

ProjectName In The name of the project of which the script
must be executed by the UMRA Service.

The interface method requests the UMRA Service to execute the script

UMRA Help

of the specified project immediately. The COM object must be
connected to the UMRA Service (see Umra.Connect) and the project
must be maintained by the UMRA Service. The current list with variable-
value pairs is used to execute the script of the project.

When the project is executed successfully, the return value is zero. In
this case, the list with variables is updated as defined in the UMRA
project script. The returned variables can be used for further processing.
The log information in the COM object is updated. The method
Umra.GetLogMsg can be used to retrieve the log information.

GetConnectionInfo

Umra.GetConnectionInfo

long GetConnectionInfo(

[out] VARIANT * ServerName,
[out] unsigned long * RpcPortNumber,
[out] unsigned long * RpcHandle)

Argument Type Description

ServerName out The name of computer (host) to which the
COM object is connected.

RpcPortNumber out The port number used on the connected host.

RpcHandle out An internal identifier used by the COM object
to communicate with the UMRA Service.

The interface method retrieves connection information from the UMRA

COM object. The name of the host, port number and an internal
identifier is retrieved. On success, the return value is zero. If the COM
object is not connected to an UMRA Service, the method returns a non-
zero value.

UMRA Help

GetConnectionString

Umra.GetConnectionString

long GetConnectionString(

[out] VARIANT * ConnectionString)

Argument Type Description

ConnectionString out An encrypted text string that represents
the current connection between the UMRA
COM object and the UMRA Service. The
text can be used later to reconnect to the
same UMRA Service, using the same UMRA
Session on page 81.

The interface method retrieves connection information from the UMRA

COM object. The information contains the name of the host, port
number and the UMRA session identification. The connection string can
be used later, for instance in another ASP or ASPX page, to reconnect to
the same UMRA Service, using the same UMRA session on page 81.

GetHostName

Umra.GetHostName

long GetHostName([out] VARIANT * HostName)

Argument Type Description

HostName Out The name of the host to which the UMRA
Service is connected.

The interface method retrieves the name of the host to which the UMRA

COM object is connected. The name corresponds with specified host of
method Connect.

UMRA Help

The return value should is zero on success. If the return value is not zero,
the COM object is not connected to the UMRA Service and no name is
returned.

GetLogMsg

Umra.GetLogMsg

long GetLogMsg([out] VARIANT * Msg)

Argument Type Description

Msg Out The log information stored by the COM object.

The interface method retrieves the log information stored by the
interface. The log information is refreshed when the interface
communicates with the UMRA Service. The log information describes
the success or failure of the request that was last executed. When a new
method is called that involves communication with the UMRA Service,
the contents are always reset first.

GetLogMsgCount

Umra.GetLogMsgCount

long GetLogMsgCount([out] VARIANT * Count)

Argument Type Description

Count Out The number of messages in the Log of the Com
Object.

New in Version 10.7 of UMRA

The interface method retrieves the current number of log messages in
the log information stored by the interface. The log information is

UMRA Help

refreshed when the interface communicates with the UMRA Service. The
log information describes the success or failure of the request that was
last executed. When a new method is called that involves
communication with the UMRA Service, the contents are always reset
first.

This number can be used as an indication of the valid range for the
GetLogMsgEx method.

GetLogMsgEx

Umra.GetLogMsgEx

C++

long GetLogMsgEx([in] ULONG Index,[out] VARIANT*
MessageTime,[out] VARIANT* MessageMask, [out] VARIANT*
MessageLogCode, [out] VARIANT * MessageString, [out,retval] LONG*
RetVal)

VB

Retval = GetLogMsgEx([in] ULONG Index,[out] VARIANT*
MessageTime,[out] VARIANT* MessageMask, [out] VARIANT*
MessageLogCode, [out] VARIANT * MessageString)

Argument Type Description

Index In The index of the Message record from
the log to be retreived. range
[0,Count-1]

MessageTime out [VT_I4] The raw time as stored in the log (32
bit time_t), (LONG)

UMRA Help

MessageMask, out [VT_UI4] The LogMask (ULONG). Indication of
severity

MessageLogCode, out [VT_I4] The Errorcode associated with the
message

MessageString out [VT_BSTR] The log information stored by the
COM
 object.

RetVal out,retval Returnvalue of the function. 0 on
success

New in version 10.7 of UMRA

C++

Returns COM error code when COM error occurs, 0 otherwise.

Retval contains the result reported by the called function. Retval is 0 in
case of success.

VB and VBSCRIPT

Retval contains the result reported by the called function. Retval is 0 in
case of success.

The interface method retrieves a single log record from the log
information stored by the interface. The log information is refreshed
when the interface communicates with the UMRA Service. The log
information describes the success or failure of the request that was last
executed. When a new method is called that involves communication
with the UMRA Service, the contents are always reset first.

To determine the possible range of the records to retrieve, use the
GetLogMsgCount method immediately prior to a call to this method.

UMRA Help

GetPortNumber

Umra.GetPortNumber

long GetHostPortNumber([out] long * PortNumber)

Argument Type Description

PortNumber Out The number of the port to which the COM
object is connected.

The interface method retrieves the port number of the host to which the
UMRA COM object is connected. The number corresponds with specified
port number of method Connect.

The return value should is zero on success. If the return value is not zero,
the COM object is not connected to the UMRA Service and no port
number is returned.

GetScriptExecutionInfo

Umra.GetScriptExecutionInfo

long GetScriptExecutionInfo(

[out] long * ScriptErrorCount,
[out] VARIANT * ScriptMessage)

Argument Type Description

ScriptErrorCount Out The number of errors occurred executing the
script of the project on the UMRA Service..

ScriptMessage Out The log information generated by the UMRA
Service when the last project was executed.

The interface method retrieves the logging and error count information
from the last project executed through the COM object on the UMRA

Service. The number of errors that occurred when the script was

UMRA Help

executed is returned and the log information generated by the UMRA

Service.

On success, the method returns zero. If the information cannot be
obtained from the COM object, a non-zero value is returned.

GetVariableInfo

Umra.GetVariableInfo

long GetVariableInfo([in] BSTR VariableName, [out] VARIANT*
VariableInfo)

Argument Type Description

VariableName in The name of the variable of which the
Information must be retrieved.

VariableInfo out[VT_I4] The Datatype of the Variable. The number has
the following meaning

0 unknown or unspecified type.

1 Text

12 Table

Any other value corresponds to an UMRA-
Specific internaldatatype.

Purpose

Use this function to determine wgich of the GetVariable methods should
be used to retreive the value

If VariableInfo equals 12, use GetVariableDataTable to retrieve the
data.

if VariableInfo equals 1, use GetVariableText to retrieve the data.

For any other type, use GetVariableText to get a textual representation
of the value.

UMRA Help

GetVariableDataTable

Umra.GetVariableDataTable

long GetVariableDataTable([in] BSTR * VariableName, [in] IUnknown *
pDataTable)

Argument Type Description

VariableName In The name of the variable that holds the table
data to be retrieved.

pDataTable In/out The retrieved table data. The argument must
be specified as one of the other UMRA COM
object types: UmraDataTable. This COM object
can then be used to access the data of the
table.

The interface method retrieves the data of a table variable. When an
UMRA Form project generates a variable with table data, the variable
and table data is returned in the list with variables maintained by the
UMRA COM object. To access the table data, a special UMRA COM object
is used: UmraDataTable. An instance of such an COM object must be
passed as one of the arguments of this method. On success, the table
data is copied from the variable into the passed COM object. The
interface methods of the UmraDataTable object can then be used to
access the table data.

On success, the method returns zero. If the variable is not found in the
list with variables, or when the variable does not contains table data, a
non-zero value is returned.

GetVariableText

Umra.GetVariableText

long GetVariableText([in] BSTR VariableName, [out] VARIANT*
ValueText)

UMRA Help

Argument Type Description

VariableName in The name of the variable of which the textual
value must be retrieved.

ValueText out The text value of the specified variable.

The interface method retrieves the text value of a specified variable. The
variable must be contained by the list of variables maintained by the
COM object. The method is normally used when a project is executed on
the UMRA Service and variable values are generated by the UMRA
project script.

On success, the return value is zero. If the variable is not found in the list
with variables, or if the variable contains no text value, a non-zero value
is returned.

GetVersion

Umra.GetVersion

long GetVersion(

[out] long * VersionMajor,
[out] long * VersionMinor,
[out] long * BuildNumber)

Argument Type Description

VersionMajor Out The major version number of the UMRA COM
object

VersionMinor Out The minor version number of the UMRA COM
object.

BuildNumber Out The build number of the UMRA COM object.

The interface method retrieves version information of the UMRA COM
object. The information must correspond with an eventually connected

UMRA Help

UMRA Service. Otherwise, the COM object cannot connect to the UMRA

Service.

HideVariable

Umra.HideVariable

long HideVariable(BSTR VariableName);

Argument Type Description

VariableName In The name of the variable for which the data
must be hidden. Example: %Password%.

The interface method hides the data of the specified variable from being
logged in log files.

On success, the return value is zero. If the specified variable does not
exist or contains no data, a non zero value is returned.

LoadFormProject

Umra.LoadFormProject

long LoadFormProject([in] BSTR FormProjectName, [in] IUnknown *
pFormProject)

Argument Type Description

FormProjectName In The name of the project for which the form
must be obtained.

UMRA Help

pFormProject in/out The returned form project. The argument
must be specified as another UMRA COM
object: UmraFormProject. This COM object
can then be used to obtain form table
objects.

The interface method retrieves the form of an UMRA Form project. The
method is used to obtain table information from a table of an UMRA

Form project.

On success, the return value is zero. If the specified form does not exist,
or if the user has no access rights for the form, a nonzero value is
returned.

ReleaseConnection

Umra.ReleaseConnection

long ReleaseConnection()

The interface method release the connection with the UMRA Service
and terminates the UMRA session on page 81 that is maintained at the
UMRA Service for this instance of the COM object.

RestoreConnection

Umra.RestoreConnection

long RestoreConnection([in] BSTR ConnectionString)

Argument Type Description

ConnectionString Out The text value retrieved with COM
object method
Umra.GetConnectionString

The interface method reconnects to the UMRA Service and restores the

UMRA Help

UMRA session on page 81 that was initialized earlier. The input value
should equal the value retrieved with COM method
Umra.GetConnectionString.

SetVariableBool

Umra.SetVariableBool

void SetVariableBool([in] BSTR VariableName, [in] VARIANT_BOOL
ValueBool)

Argument Type Description

VariableName in The name of the variable set by this method.
Example: %SomeFlag%.

ValueBool in The boolean value of the variable to set.
Example: 0. A value of 0 corresponds with
false. All other values correspond with true.

The interface method adds a boolean variable-value pair to the list of
variables maintained by the COM object. The list is used to execute
UMRA projects on the UMRA Service. To reset the list with variables, call
method ClearVariables. The value of the variable must be either true or
false. Other methods are available for different variable value data
types.

When a variable with the same name already exists in the list with
variables, it is overwritten by this method.

SetVariableLong

Umra.SetVariableLong

void SetVariableLong([in] BSTR VariableName, [in] long ValueLong)

UMRA Help

Argument Type Description

VariableName in The name of the variable set by this method.
Example: %SomeValue%.

ValueLong in The numeric value of the variable to set.
Example: 5.

The interface method adds a numeric variable-value pair to the list of
variables maintained by the COM object. The list is used to execute
UMRA projects on the UMRA Service. To reset the list with variables, call
method ClearVariables. The value of the variable must be numeric.
Other methods are available for different variable value data types.

When a variable with the same name already exists in the list with
variables, it is overwritten by this method.

SetVariableTable

Umra.SetVariableTable

void SetVariableTable(BSTR VariableName, IUnknown* ValueTable)

Argument Type Description

VariableName In The name of the variable set by this method.
Example: %UserTable%.

ValueTable In The data table to be stored in the variable list.
The argument must be specified as one of the
other UMRA COM object types:
UmraDataTable. This COM object is used to
copy the table data into the variable list.

The interface method adds a table variable-value pair to the list of
variables maintained by the COM object. The list is used to execute
UMRA projects on the UMRA Service. To reset the list with variables, call
method ClearVariables. The value of the variable must be of the UMRA
COM object type UmraDataTable. When a variable with the same name
already exists in the list with variables, it is overwritten by this method.
The following Visual Basic fragment shows how to use this method.

UMRA Help

 Dim Umra
 ...
 Umra = CreateObject("UmraCom.Umra")
 ...
 Dim UmraTable As UMRAcomLib.UmraDataTable
 UmraTable =
CreateObject("UmraCom.UmraDataTable")
 ...
 [table manipulation statements]
 ...
 Umra.SetVariableTable("%NewComTable%",
UmraTable)

SetVariableText

Umra.SetVariableText

void SetVariableText([in] BSTR VariableName, [in] BSTR ValueText)

Argument Type Description

VariableName In The name of the variable set by this method.
Example: %FirstName%.

ValueText In The textual value of the variable to set.
Example: John.

The interface method adds a textual variable-value pair to the list of
variables maintained by the COM object. The list is used to execute
UMRA projects on the UMRA Service. To reset the list with variables, call
method ClearVariables. The value of the variable must be text. Other
methods are available for different variable value data types.

When a variable with the same name already exists in the list with
variables, it is overwritten by this method.

UMRA Help

UmraCheckLicense

Umra.UmraCheckLicense

C++: public virtual HRESULT UmraCheckLicense(BSTR DomainOu, LONG
DomainOuType, VARIANT_BOOL * LicenseValidFlag, LONG * RetVal)

VB: Function UmraCheckLicense(ByVal DomainOu As String, ByVal
DomainOuType As Integer, ByRef LicenseValidFlag As Boolean) As
Integer

Argument Type Description

DomainOu in The name of the domain and organizational unit for
which the license code is tested. The syntax
depends on argument DomainOuType. For
DomainOuType=0, the NETBIOS name must be
specified, e.g. DOMAIN. For DomainOuType=1, the
DNS/OU notation is used: domain.com,
domain.com/ou/OtherOu

DomainOuType in Specification of the format of argumenbt
DomainOU. Possible values:

0: NETBIOS (DOMAIN, TOOLS4EVER)

1: DNS or DNS/OU (domain.com, domain.com/ou)

LicenseValidFlag out TRUE: A valid license is configured for the specified
DomainOU argument.

FALSE: No valid license is configured for the
speciified DominOU argument.

The interface method is used to check if a valid UMRA license is
configured for the specified domain/ou. Note that the UMRA COM
object must be connected to a UMRA Service to successfully execute this
method.

UMRA Help

UmraFormProject

UMRA COM object: UmraFormProject

This UMRA COM object is used to access a table that is part of a form of
an UMRA Form project. The COM object should not be used to access
the data of a variable that holds table data. The UMRA COM object
UmraDataTable must be used for table data variables instead.

GetFormTable

UmraFormProject.GetFormTable
long GetFormTable([in] BSTR * FormTableName, [in] IUnknown *
pFormTable)

Argument Type Description

FormTableName In The name of the form table as defined in the
UMRA form.

pFormTable In/out The retrieved form table. The argument must be
specified as one of the other UMRA COM object
types: UmraFormTable. This COM object can
then be used to access the data of the table.

The interface method retrieves the table of a form. When the form of an
UMRA Form project contains a table, this method is used to access the
table of the form. To access the form table, a special UMRA COM object
is used: UmraFormTable. An instance of such a COM object must be
passed as one of the arguments of this method. Before this method is
called, the method Umra.LoadFormProject must be executed first. On
success, the form table data is copied into the passed COM object. The
interface methods of the UmraFormTable object can then be used to
access the table data.

On success, the method returns zero. If the form table is not found in
the UMRA project maintained by the UMRA COM object, a non-zero
value is returned.

UMRA Help

UmraFormTable

UMRA COM object: UmraFormTable

This UMRA COM object is used to access the data of a form project
table. See also UmraFormProject.GetFormTable.

The COM object should not be used to access the data of a variable
holding table data. Instead, the UMRA COM object UmraDataTable
should be used for table data variables.

GetCellText

UmraFormTable.GetCellText

long GetCellText([in] long RowIndex, [in] long ColumnIndex, [out]
VARIANT* CellText)

Argument Type Description

RowIndex
In The index of the row (0,1,2,…,N-1) that

contains the requested cell.

ColumnIndex In The index of the column (0,1,2,…,M-1) that
contains the requested cell.

CellText Out The result text value of the requested cell.

The interface method retrieves the text value from one specific cell of
the form table. The method returns zero on success. If the cell does not
exist or when the cell value cannot be converted into text, a nonzero
value is returned.

UmraDataTable

UMRA COM object: UmraDataTable

This UMRA COM object is used to access the table data of a variable. If
the script of an UMRA Form is executed by UMRA COM
(Umra.ExecuteProjectScript), a variable with table data can be

UMRA Help

generated. This variable and table data value is returned to the UMRA
COM project. To access the variable table data value, first the method
Umra.GetVariableDataTable must be called. With this step, an instance
of COM object UmraDataTable is initialized. Next, the single interface
function of this COM object is used to access the table data.

AppendColumn

UmraDataTable.AppendColumn

public virtual HRESULT AppendColumn(LONG * RetVal)

Function AppendColumn() As Integer

The interface method appends a column to the existing table. The
method returns zero on success.

AddRow

UmraDataTable.AddRow

public virtual HRESULT AddRow(LONG * RetVal)

Function AddRow() As Integer

The interface method adds an empty row at the end of the table. The
method returns zero on success.

CreateTable

UmraDataTable.CreateTable

public virtual HRESULT CreateTable(LONG Rows, LONG Columns,
LONG * RetVal)

Function CreateTable(ByVal Rows As Integer, ByVal Columns As
Integer) As Integer

UMRA Help

Argument Type Description

Rows In The number of rows of the table to create.

Columns In The number of columns of the table to create.

The interface method creates a table with the specified number of
columns and rows. Initially, all cells of the table are filled with empty
string values. The method returns zero on success.

CreateTable2

UmraDataTable.CreateTable2

public virtual HRESULT CreateTable2(VARIANT ColumnNames, LONG *
RetVal)

Function CreateTable2(ByVal ColumnNames As Object) As Integer

Argument Type Description

ColumnNames In The names of the columns of the new table.
The number of entries determines in the array
equals the number of columns of the new
table.

The interface method creates a table. The ColumnNames input
argument specifies the names of the columns. Initially, the table
contains no rows. The method returns zero on success. The following
fragment shows how to use this method in Visual Basic:

 Dim ColumnNames(4) As String
 ColumnNames(0) = "SAM"
 ColumnNames(1) = "Phone"
 ColumnNames(2) = "Address"
 ColumnNames(3) = "City"

UMRA Help

 UmraTable.CreateTable2(ColumnNames)

The method Umra.SetVariableTable can be used to store the table in the
variable list.

CreateTable3

UmraDataTable.CreateTable3

public virtual HRESULT CreateTable3(LONG ColumnCount, LONG *
RetVal)

Function CreateTable3(ByVal ColumnCount As Integer) As Integer

Argument Type Description

ColumnCount In The number of columns of the table to create..

The interface method creates a table with the specified number of
columns. Initially, the table contains no rows. The method returns zero
on success.

GetCellText

UmraDataTable.GetCellText

C++: public virtual HRESULT GetCellText(LONG RowIndex, LONG
ColumnIndex, VARIANT * CellText, LONG * RetVal)

VB: Function GetCellText(ByVal RowIndex As Integer, ByVal
ColumnIndex As Integer, ByRef CellText As Object) As Integer

Argument Type Description

RowIndex In The index of the row (0,1,2,…,N-1) that
contains the requested cell.

UMRA Help

ColumnIndex In The index of the column (0,1,2,…,M-1) that
contains the requested cell.

CellText Out The result text value of the requested cell.

The interface method retrieves the text value from one specific cell of
the table data. The method returns zero on success. If the cell does not
exist or when the cell value cannot be converted into text, a nonzero
value is returned.

GetCellTextEx

UmraDataTable.GetCellTextEx

C++: public virtual HRESULT GetCellTextEx(LONG RowIndex, BSTR
ColumnName, VARIANT * CellText, LONG * RetVal)

VB: Function GetCellTextEx(ByVal RowIndex As Integer, ByVal
ColumnName As String, ByRef CellText As Object) As Integer

Argument Type Description

RowIndex In The index of the row (0,1,2,…,N-1) that
contains the requested cell.

ColumnName In The name of the column that contains the
requested cell.

CellText Out The result text value of the requested cell.

The interface method retrieves the text value from one specific cell of
the table data. The cell is specified by the row index and column name.
The method returns zero on success. If the cell does not exist or when
the cell value cannot be converted into text, a nonzero value is returned.

UMRA Help

GetColumnCount

UmraDataTable.GetColumnCount

public virtual HRESULT GetColumnCount(LONG * ColumnCountl)

Function GetColumnCount() As Integer

Argument Type Description

ColumnCount Out The number of columns of the table.

The interface method retrieves the number of columns of the table. If an
error occurs, -1 is returned.

GetColumnName

UmraDataTable.GetColumnName

public virtual HRESULT GetColumnName(LONG ColumnIndex,
VARIANT * ColumnName, LONG * RetVal)

Function GetColumnName(ByVal ColumnIndex As Integer, ByRef
ColumnName As Object) As Integer

Argument Type Description

ColumnIndex In The index of the column (0,1,2,…,M-1) of which
the name must be retrieved.

The interface method retrieves the name of the specified column. The
column is specified by its index. The method returns zero on success.

UMRA Help

GetRowCount

UmraDataTable.GetRowCount

public virtual HRESULT GetRowCount(LONG * RowCount)

Function GetRowCount() As Integer

Argument Type Description

RowCount Out The number of rows of the table.

The interface method retrieves the number of rows of the table. If an
error occurs, -1 is returned.

SetCellText

UmraDataTable.SetCellText

public virtual HRESULT SetCellText(LONG RowIndex, LONG
ColumnIndex, BSTR CellText, LONG * RetVal)

Function SetCellText(ByVal RowIndex As Integer, ByVal ColumnIndex
As Integer, ByVal CellText As String) As Integer

Argument Type Description

RowIndex In The index of the row (0,1,2,…,N-1) that
contains the requested cell.

ColumnIndex In The index of the column (0,1,2,…,M-1) that
contains the requested cell.

CellText Out The result text value of the requested cell.

The interface method retrieves the text value from one specific cell of
the table data. The method returns zero on success. If the cell does not
exist or when the cell value cannot be converted into text, a nonzero
value is returned.

UMRA Help

SetColumnName

UmraDataTable.SetColumnName

public virtual HRESULT SetColumnName(LONG ColumnIndex, BSTR
ColumnName, LONG * RetVal)

Function SetColumnName(ByVal ColumnIndex As Integer, ByVal
ColumnName As String) As Integer

Argument Type Description

ColumnIndex In The index of the column (0,1,2,…,M-1) for
which the name is set.

ColumnName In The name of the column

The interface method sets the name of an existing column. The method
returns zero on success.

SetColumnNameEx

UmraDataTable.SetColumnNameEx

public virtual HRESULT SetColumnNameEx(BSTR CurrentName, BSTR
NewName, LONG * RetVal)

Function SetColumnNameEx(ByVal CurrentName As String, ByVal
NewName As String) As Integer

Argument Type Description

CurrentName In The index of the row (0,1,2,…,N-1) that
contains the requested cell.

NewName In The index of the column (0,1,2,…,M-1) that
contains the requested cell.

UMRA Help

The interface method replaces the name of an existing column with a
new name. The method returns zero on success.

3.3.3. UMRA COM in VB scripts

This section explains how to use UMRA COM in Visual Basic scripts.

Introduction

A very common usage of UMRA COM is in Visual Basic scripts. Visual
Basic is a very general development environment to create Windows
applications and scripts. Managing Active Directory directly from Visual
Basic programs and scripts is possible but rather complex and not
secure.

The integration of Visual Basic and User Management Resource
Administrators using UMRA COM offers a very flexible and powerful
solution to manage the complex Active Directory with simple and robust
program. The complex Active Directory tasks are implemented with
UMRA projects and executed by the UMRA Service. The projects are
initiated using UMRA COM from within Visual Basic scripts/programs.

Since the UMRA projects are executed by the UMRA Service in such an
environment, the Visual Basic scripts and programs can be delegated to
less experienced users. The UMRA Service will check the access rights of
the connecting user account before the UMRA project script is executed.

The technique to use UMRA COM objects in Visual Basic scripts is best
described with an example.

Example project - Goal

Goal of the example application is to create a number of user accounts
in Active Directory for which the first and last name are available from a
table in an MS-Access database.

In this example, a simple UMRA project is configured on the UMRA

Service. The project creates a user account in Active Directory. The input
of the project is the first and last name of the new user account. The
input values are passed using the variables %FirstName% and
%LastName%.

The MS-Access database contains a table with first and last names. Goal
is to create the user accounts for all table entries. A Visual Basic script
with UMRA COM objects is used to read the data from the MS-Access
database and create a user account for each row.

UMRA Help

Configuring the UMRA project

In the example, an UMRA project is used to create a user account. The
project takes two input variables: %FirstName% and %LastName%. From
these names, the project generates a unique user account name
(%UserName%) and creates the user account. Also, a random password
(%Password%) is generated.

The UMRA project is a form project that contains only a script, not a
form. The UMRA form project is contained in file

.\Example Projects\Automation\VBScript\MsAccess\ CreateAccount.ufp

relative to the UMRA Console program directory.

Figure 2: The script of the UMRA Form project used to create the account.

The script contains 3 lines only. In the first 2 lines the following variables
are set: %MiddleName% and %Domain%. The %MiddleName% variable
is set to an empty string. The %MiddleName% is used in the name
generation algorithm and always specified as an empty string. The
%Domain% is set equal to the DNS name of the domain in which the
user accounts are created: tools4ever.local2. You need to adjust this
value to make the project work in your own environment.

UMRA Help

Create user action

The Create user (AD) script action is the main action of the form project.
The action creates the user account in the specified domain. The inputs
of the script (action) are the values of the variables %FirstName% and
%LastName%. These variables are used by the name generation
algorithm. The Default name generation algorithm is specified for this
property.

The algorithm uses 3 input variables: %FirstName%, %MiddleName%
and %LastName%. The %MiddleName% is always empty, the
%FirstName% and %LastName% variables are specified in the Visual
Basic Script. The outputs of the name generation algorithm are the
values of the variables %UserName% and %FullName%. These values
are used to create the user account. The %UserName% variable is
exported to the list of variables. The password of the new user account
is generated as part of the action and exported to variable
%Password%.

In UMRA, variables play an important role. Some variables are used as
input and others as output variables. Other variables are generated by
the script and only used in the script actions. The interface functions of
the UMRA COM objects support input and output variables.

Input and output variables

The following table lists the input and output variables that are used by
this example project and communicated with UMRA COM.

Variable Type Description

%FirstName% Input First name of the user account that
must be created. Specified in the
database read by the Visual Basic
script.

%LastName% Input Last name of the user account that
must be created. Specified in the
database read by the Visual Basic
script.

UMRA Help

%UserName% Output The resulting name (SAM account
name) of the created user account.
Presented to the end-user in the
browser.

%Password% Output The password generated and set for
the created user account. Presented
to the end-user in the browser.

Table 2: In- and output variables of the example project.

Note that for the form project, security access rights must be
configured: The end-users that are allowed to run the script of this
project must be configured. The end-users are the user accounts logged
on to the computer that run the internet explorer and access the UMRA
application.

Figure 3: The security access rights specified for the UMRA project that creates
the account.

In this example project, the Administrators are configured as the users
that are allowed to run this project.

UMRA Help

MS Access database

Jet engine

The database is a simple MS-Access (Jet-engine) database with a single
table only. The database can be found in the following location:

.\Example Projects\Automation\VBScript\MsAccess\FirstLastNames.mdb

relative to the UMRA Console program directory. The database holds
table FirstLastNamesTable with the columns Id, FirstName, and
LastName.

Microsoft Office Access

Note that in order to use the database with UMRA in Visual Basic Script,
you do not need to have Microsoft Office Access installed. The Jet-
engine to access the database is installed by default.

Visual Basic script

The Visual Basic script is a standard script that uses a database
connection to read the MS-Access database. UMRA COM objects are
used to execute the project that creates a user account on the UMRA

Service.

UMRA Help

The Visual Basic script can be found at the location

.\Example Projects\Automation\VBScript\MsAccess\
CreateAccountAccess.vbs

relative to the UMRA Console program directory.

The following listing shows the complete script. Note that the script is
kept as simple as possible to make it easier to understand. More error
handling should be added to the script in operational environments.

Dim adoConn, adoRS

Set adoConn = CreateObject("ADODB.Connection")

Set adoRS = CreateObject("ADODB.Recordset")

adoConn.Provider = "Microsoft.Jet.OLEDB.4.0"

adoConn.Open "FirstLastNames.mdb"

Set adoRS.ActiveConnection = adoConn

adoRS.Open "SELECT * FROM FirstLastNamesTable"

Dim Umra, Username, UserPassword

Set Umra = CreateObject("UmraCom.Umra")

RetVal = Umra.Connect("AMAZONE", 56814)

While adoRS.EOF = False

 Umra.SetVariableText "%Firstname%", adoRS("FirstName")

 Umra.SetVariableText "%LastName%", adoRS("LastName")

 RetVal=Umra.ExecuteProjectScript("CreateAccount")

 RetVal=Umra.GetVariableText("%Username%", Username)

 RetVal=Umra.GetVariableText("%Password%", UserPassword)

 wscript.echo "User created: " & Username & " - " & UserPassword

 adoRS.MoveNext

UMRA Help

Wend

If RetVal = 0 Then

 WScript.Echo "Project executed successfully, code: " & RetVal

Else

 WScript.Echo "Project execution failed, code: " & RetVal

End If

In the next section, parts of the scripts are shown with some comments
for each section.

Script section: Setting up the database connection

ADO database connection – OLE DB provider

The first section of the script is used to setup a connection with the
database. In this script, the Microsoft ADO (ActiveX Data Objects)
standard is used to access the database. This is a very common
technique used in VBScript to access a database. With ADO, the data is
accessed using the OLE DB provider. Almost all database types can be
accessed using OLE DB (including ODBC connections) so this method can
be used for almost all databases.

Dim adoConn, adoRS

Set adoConn = CreateObject("ADODB.Connection")

Set adoRS = CreateObject("ADODB.Recordset")

adoConn.Provider = "Microsoft.Jet.OLEDB.4.0"

adoConn.Open "FirstLastNames.mdb"

Set adoRS.ActiveConnection = adoConn

adoRS.Open "SELECT * FROM FirstLastNamesTable"

Two script variables are initialized: the connection (adoConn) and the
record set (adoRS). With the CreateObject function, the ADODB COM
objects ADODB.Connection and ADODB.RecordSet are created. The

UMRA Help

CreateObject function creates an instance of the specified COM object.
So this is also COM, not UMRA COM but ADO COM.

Next, the Provider of the connection object is set to
Microsoft.Jet.OLEDB.4.0. The provider member specifies the type of the
database connection. For a different database, this provider
specification differs. The database is opened with the Open method of
the ADODB.Connection object. The name of the database file,
FirstLastNames.mdb is specified as the argument of the call.

With the statement Set adoRS.ActiveConnection = adoConn the
recordset object is initialized. The Open method of the
ADODB.Recordset is then used to perform a query in the database:
SELECT * FROM FirstLastNamesTable: All records from the table are
returned and can be accessed through the recordset object.

Script section: Connecting to the UMRA Service

The database connection is not initialized. For each record returned
from the database, a user account must be created. Before the loop to
create the accounts is implemented, a connection must be setup with
the UMRA Service. This is done by creating the Umra COM object of
UMRA COM and calling the Connect method of the object.

Dim Umra, Username, UserPassword

Set Umra = CreateObject("UmraCom.Umra")

RetVal = Umra.Connect("AMAZONE", 56814)

First, the variables are declared. The Umra variable will hold the COM
object. The variables Username and UserPassword will hold the text
values of the user name and password for the created user account. The
values will be shown to the end user

The UMRA COM object Umra is then created with the CreateObject call.
The argument UmraCom.Umra specifies the UMRA COM library and the
type of object (Umra) of which an instance must be created. If the UMRA
COM library is not installed and/or registered, the CreateObject call will
fail.

The UMRA COM object now connects to the UMRA Service with the
statement RetVal=Umra.Connect(“AMAZONE”,56814). The Connect
method takes two arguments: the name of the computer that runs the

UMRA Help

UMRA Service and the port number used by the UMRA Service. 56814 is
the default UMRA Service port number.

On success, the return value of the Connect method is zero. The UMRA
COM object is now connected to the UMRA Service.

Script section: Executing projects on UMRA Service

The database connection is initialized and the UMRA COM object is
connected to the UMRA Service. Now the loop is implemented. For each
returned database record, the variables list of the UMRA COM object is
initialized and the UMRA Service is requested to execute the UMRA
project that creates the user account.

While adoRS.EOF = False

 Umra.SetVariableText "%Firstname%", adoRS("FirstName")

 Umra.SetVariableText "%LastName%", adoRS("LastName")

 RetVal=Umra.ExecuteProjectScript("CreateAccount")

 RetVal=Umra.GetVariableText("%Username%", Username)

 RetVal=Umra.GetVariableText("%Password%", UserPassword)

 wscript.echo "User created: " & Username & " - " & UserPassword

 adoRS.MoveNext

Wend

The While … Wend construction is used for the loop. The loop is
terminated when no more records are found: when adoRS.EOF=False
no longer holds.

For each cycle of the loop, first the list with variables maintained by the
UMRA COM object is initialized. The method SetVariableText is used.
The method takes two arguments: the name of the variable
(%FirstName%) and the value. The value is copied from the record set:
adoRS(“FirstName”). Here, FirstName is the name of the column of the
database table from which the value must be obtained. Using this
method, the %FirstName% and %LastName% UMRA variables are
initialized.

With method Umra.ExecuteProjectScript the UMRA Service is requested
to execute the passed project. With some other information, the list

UMRA Help

with variables and values is sent to the UMRA Service. The UMRA Service
will check the access rights of the requesting user account, load the
project and execute the script of the project. The variables updated or
generated by the script of the project are returned to the UMRA COM
object. On success, the return value is zero.

The Umra.GetVariableText method of the UMRA COM object is now
used to retrieve the values of the variables %UserName% and
%Password%. The values are stored in the script variables Username
and UserPassword. With the standard wscript.echo method, the user
name and password of the created user account is presented to the end
user.

For each user account created, the message above is shown. In a more
practical script, this is probably not convenient and should be changed.

Finally, the record set moves to the next record: adoRS.MoveNext.

Testing and executing the script

To execute the script, log on to a computer of the domain with an
administrative Active Directory account. Update or enter the Visual Basic
script with your favorite editor. Make sure the UMRA Service maintains
the project referenced in the script and that the UMRA COM object
connects to the appropriate UMRA Service. To execute the script, open a
command prompt and enter the name of the script:
CreateAccountAccess.vbs.

This will automatically initialize Windows Scripting Host to execute the
script. For each account created, the UMRA Service is requested to
execute the UMRA project and create the account. A message box is
shown for every account that is created.

UMRA Help

The UMRA Service log file will contain the log information generated by
the service when the script is executed. A listing for a single user account
is shown below.

14:57:14 01/05/2006 Variable 1: %Firstname%=John

14:57:14 01/05/2006 Variable 2: %LastName%=Smith

14:57:14 01/05/2006 Variable 3:
%UmraFormSubmitAccount%=T4ELOC2\Administrator

14:57:14 01/05/2006 Creating AD account in specified domain:
'tools4ever.local2'.

14:57:15 01/05/2006 Creating AD account in container 'Users'.

14:57:15 01/05/2006 Creating AD account in Organizational Unit-Container:
'LDAP://CN=Users,DC=tools4ever,DC=local2'.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2': Using name generation algorithm
'Default', 100 iterations maximum for duplicate names.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Common name of user set to
'John Smith'.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. SAM account name (username) of
user set to 'smithj'.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. LDAP attribute
'userPrincipalName' of object 'John Smith' set to 'smithj@tools4ever.local2'.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. LDAP attribute 'displayName' of
object 'John Smith' set to 'John Smith'.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. LDAP attribute 'givenName' of
object 'John Smith' set to 'John'.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. LDAP attribute 'sn' of object 'John
Smith' set to 'Smith'.

UMRA Help

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Password generated ('Strong, 7
chars with 1 numeric, 1 special (variable: %Password%)') and set in variable
'%Password%'.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Account
disabled'=FALSE (101034). Result not changed.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Password
never expires'=FALSE (101032). Result not changed.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Store
password using reversible encryption'=FALSE (101033). Result not changed.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Smart card is
required for interactive logon'=FALSE (101035). Result not changed.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Account is
trusted for delegation'=FALSE (101036). Result not changed.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Account is
sensitive and cannot be delegated'=FALSE (101037). Result not changed.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Use DES
encryption types for this account'=FALSE (101038). Result not changed.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Don't require
Kerberos preauthentication'=FALSE (101039). Result not changed.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Account expiration date not
specified for new user 'John Smith' object.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. User 'John Smith' successfully
created.

UMRA Help

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Password set for new user object
'John Smith'.

14:57:15 01/05/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Flag 'User Cannot Change
Password' not changed from default value (FALSE).

14:57:15 01/05/2006 Form message:
'01/05/2006,14:57:14,T4ELOC2\Administrator,"Automation run
script",OK,CreateAccount'

3.3.4. UMRA COM in IIS

This section explains how to use UMRA COM together with the
Microsoft Internet Information Server (MIIS).

Introduction

The functions of User Management Resource Administrator can be
accessed through an internet browser by using an UMRA COM object in
IIS ASP pages.

In such an environment: 3 components are involved:

1. The internet browser that shows the web-pages and is used to
enter input fields;

2. The IIS web-server to which the browser connects;

3. The UMRA Service, contacted by the UMRA COM objects
contained on the ASP pages running on the IIS web-server.

As an example, consider a computer running Internet Information

Services (IIS). One of the websites maintained by IIS is used to create a
user account with UMRA. To implement such an application, the website
contains ASP pages with UMRA COM objects to access the UMRA Service.

Figure 4: Example project to create a user account with UMRA using a browser.

When the end user enters the first, middle and last name and clicks the
Create user button, the browser information is sent to Internet
Information Services. The ASP page that processes the input from the
browser creates an UMRA COM object. Through the interface functions

UMRA Help

of the COM object, the UMRA Service is contacted. The variables and
values are initialized and the project is executed by the UMRA Service.

Figure 5: Sequence of steps of an UMRA application with UMRA COM on IIS. The
ASP pages of the IIS website contain UMRA COM objects that communicate with
the UMRA Service.

In this chapter, the example shown is described in great detail for
Windows 2003/2000. All files of the example project can be found at the
following location:

.\Example Projects\Automation\ASP\CreateAccount

relative to the UMRA Console program directory.

Security and authentication

When running websites with ASP pages containing UMRA COM objects,
the preferred authentication method is integrated Windows

authentication. With such a configuration, the most simple and secure
configuration is established.

The internet browser used is the Microsoft Windows Internet Explorer.
On the computer that runs the Internet Explorer, a user is logged on to
Active Directory. When the browser connects to IIS, the scripts
contained by the ASP pages are executed on behalf of this user account.

UMRA Help

So when the UMRA COM object is used to access the UMRA Service, the
UMRA Service will check the access rights for this target user account.

IIS configuration Windows 2003

Note: UMRA COM is available for both 32- and 64-bit platforms. See
UMRA COM on 64-bit platforms on page 73 for more information.

This topic describes how to setup IIS on a computer running Window
Server 2003, Standard Edition. The procedure is similar for computer
running other versions of Windows, including all versions of Windows
2000.

1. When IIS is not already installed, log on as an administrator.
Select Start, Control Panel, Add or Remove Programs.

2. Click the button Add/Remove Windows Components. In the
Windows Components Wizard window, enable and select
Application Server from the list.

Figure 6: Setting up IIS by enabling Application Server.

UMRA Help

3. Click Next and Finish to install the selected options. To complete
the setup, you need the Windows installation CD. When done,
the list with services running on the computer will list the IIS
service: World Wide Web Publishing Service.

When ready, the IIS Service needs to be configured.

4. Select Start, Administrative Tools, Internet Information Services

(IIS) Manager. Browse to the current computer and select Web

Service Extensions.

Figure 7 Allow Active Server Pages to run on IIS.

5. From the list with Web Service Extensions, select Active Server

Pages and click the Allow button. This will allow ASP pages to run
as part of a website maintained by the IIS server.

Creating the website

1. Create a folder where the UMRA website files will be stored. In
this example this folder is: E:\UMRA\WebSite.

UMRA Help

2. Start the Internet Information Service Manager, browse to the
computer and right click option Websites. Select the menu
option New, Website…. Follow the wizard instructions to setup
a basic website.

Figure 8: Enter any description of the website.

UMRA Help

3. The description of the website is not that important. Just enter
some text and click Next to continue.

Figure 9: Specify the TCP port to be used by the website.
In the wizard window to enter the IP Address and Port Settings
you do not need to change the default options, except for the
TCP port the website should use. Each website running on the
computer must have a unique port. The default website that is
automatically installed uses default port 80. In order to use
default port 80, you must first stop the default website to
prevent port conflicts.

UMRA Help

4. In the example shown, port 81 is entered. Click Next to continue
with the website home directory specification.

Figure 10: Enter the home directory of the website. The directory must
exist but does not have to contain any files yet.

UMRA Help

5. Enter the name of the folder that is going to contain the website
ASP and HTML files. In the example shown, this folder is
E:\UMRA\WebSite. The folder needs to exist but does not need
to contain any files yet. Click Next to continue with the
configuration of the Website Access Permissions.

Figure 11: Specify the permissions of the new website.

UMRA Help

6. You need to specify the Read and Run scripts permissions. The
Run scripts permissions are required to allow ASP pages to run.
You can specify additional permissions but this is not required.
Click Next to complete the Website Creation Wizard. The
website is now created as shown in the Internet Information

Services (IIS) Manager.

Figure 12: The new website is created and shown in the Internet
Information Services Manager.

UMRA Help

7. Finally, you need to configure the authentication method for the
website. In order to be able to check the access rights, the ASP
pages must be executed in the security context of the end-user
of the browser. Right click the website and select Properties.
Select Directory security and click the Edit… button in section
Authentication and access control.

Figure 13: Specify the Authentication method: Disable anonymous access
and enable integrated Windows authentication.

8. Disable the option Enable anonymous access and enable option
Integrated Windows authentication. Click OK twice to exit the
configuration.

9. Later, you can always change one of the configured options of
the website: Right click the website and select Properties.

Configuring the UMRA project

The UMRA project is a form project that contains only a script, not a
form. The UMRA form project is contained in file

UMRA Help

.\Example
Projects\Automation\ASP\CreateAccount\CreateAccount.ufp

relative to the UMRA Console program directory. The UMRA project is
the same as the one used for the example project used for the Visual
Basic script example. See section Configuring the UMRA project on page 34
on page Error! Bookmark not defined. for more information.

Setting up the IIS website

The UMRA project is now ready and the (empty) website exists. You can
now set up the website contents to complete the configuration.

For demonstration purposes, the website is kept very simple and
contains only 2 pages:

CreateAccount.asp: The page that shows the input fields for first and last
name and a button to submit the form. This is the first page the end-
user connects to when accessing the website.

ShowResults.asp: The page that actually creates the account using
UMRA COM and shows the results (%UserName% and %Password%) to
the end-user in the browser. The page is generated as a response when
the end-user clicks the submit button of the previous page.

Since the website pages contain ASP code, the pages have the .ASP
extension. You can create the pages with your favourite editor or copy
and edit the pages from the location

.\Example Projects\Automation\ASP\CreateAccount

relative to the UMRA Console program directory. The resulting ASP
pages must be stored in the specified home directory of the new
website.

Note that an ASP pages generates HTML code that is presented in a
browser. Instead of the literal HTML text, the ASP page can contain
script sections that produce HTML. The UMRA COM objects are used in
the ASP script sections.

Website page: CreateAccount.asp

This the first page of the website. It does not contain UMRA COM
objects but it contains the form and input fields that are needed to
initialize the variables.

UMRA Help

<HTML>

<HEAD>

<Title>Create User Account</TITLE>

</HEAD>

<FORM NAME=CreateAccount ACTION="ShowResults.asp" METHOD="POST">

First name: <INPUT TYPE="TEXT" NAME="FirstName">

Last name: <INPUT TYPE="TEXT" NAME="LastName">

<INPUT TYPE="SUBMIT" VALUE="Create Account">

</FORM>

The page contains completely standard HTML. It contains a short header
section (<HEAD>) and a form. The name of the form is CreateAccount
and the action executed when the form is submitted is the generation
and presentation of page ShowResults.asp.

The form contains two text input fields with names FirstName and
LastName. The button is as submit type button with text Create
Account.

This website page does not contain any specified ASP code. It is all
straightforward HTML.

The page shows a title, some text, two input fields and a button. When
the button is pressed, the content of the input fields is send to the IIS
server and the page ShowResults.asp is generated and presented.

UMRA Help

Website page: ShowResults.asp

This page actually contains the UMRA COM objects and creates the user
account. The contents of the page are listed below:

<HTML>

<HEAD>

<Title>User Account Created</TITLE>

</HEAD>

The user account created:

<%

 Set Umra = Server.CreateObject("UMRAcom.Umra")

 RetVal=Umra.Connect("AMAZONE",56814)

 Umra.SetVariableText "%FirstName%",Request.Form("FirstName")

 Umra.SetVariableText "%LastName%",Request.Form("LastName")

 RetVal=Umra.ExecuteProjectScript("CreateAccount")

 RetVal=Umra.GetVariableText("%UserName%",UserName)

 Response.Write "
"

 Response.Write "User name: "

 Response.Write UserName

 RetVal=Umra.GetVariableText("%Password%",Password)

 Response.Write "
"

 Response.Write "Password: "

UMRA Help

 Response.Write Password

%>

<FORM NAME=NextUser ACTION="CreateAccount.asp" METHOD="POST">

<INPUT TYPE="SUBMIT" VALUE="Next user">

</FORM>

</HTML>

The page contains 3 sections:

1. the header section;
2. the ASP section
3. a form section.

Explanation of the ASP code

The header section is straightforward and contains the title of the page
only. The ASP section contains the interesting part of the page and
creates the user account and shows the results. The ASP section is
described in detail below. The form section navigates the browser to the
first page of the website, CreateAccount.asp when the user clicks the
Next user submit button.

Website page line Description

The user account created:

This is not part
yet of the ASP
section that starts
with the <%
characters. The
text shown is
simply copied to
the HTML output
and presented in
the browser.

UMRA Help

<%

Start of the ASP
section. The lines
that follow are
ASP specified and
terminated with
the characters
sequence %>.

UMRA Help

Set Umra =
Server.CreateObject("UMRAcom.Umra")

The UMRA COM
object is now
created. The
CreateObject
method is a
member of the
ASP built-in
Server object. The
Server object is
available in all
ASP pages and
offers a number of
useful methods
(function call).
The
Server.CreateObje
ct method is the
standard method
in ASP to initiate
an instance of a
registered COM
object. The
argument of the
method is the
name of the
library that holds
the COM object
(UMRAcom) and
the name of the
object (Umra).
The Set Umra = …
construction
creates an ASP
script variable
with name Umra
and sets the value
of the variable
equal to the result
of the
Server.CreateObje
ct method: the
COM object. In
the sequel of the
ASP script, the
COM object can
now be used and
must be
referenced as the
variable name:
Umra.

UMRA Help

RetVal=Umra.Connect("AMAZONE",56814)

The Connect
method is part of
the interface of
the Umra COM
object. It is used
to setup a
connection
between the COM
object itself and
an UMRA Server.
The method takes
2 arguments: the
name of the
computer and the
port number used
by the UMRA
Service. The
return value
RetVal should be
0 on success and
can be used for
error handling
purposes.

UMRA Help

Umra.SetVariableText
"%FirstName%",Request.Form("FirstName")

The method
SetVariableText of
the Umra COM
object is used to
initialize a
variable-value
pair. The COM
object can hold a
(single) list with
multiple variable-
value pairs. This
list is sent to the
UMRA Service
when a project is
executed. The
SetVariableText
method takes two
arguments: the
name of the
variable
(%FirstName%)
and the value of
the argument. In
this case, the
value is copied
from the specified
input field using
the ASP Request
object. The
Form(“FirstName”
) phrase refers to
the input field
with name
FirstName of the
original form of
page
CreateAccount.as
p: <INPUT
TYPE="TEXT"
NAME="FirstNam
e">. When this
line of the script is
executed, the list
with variables
stored in the
Umra COM object
holds the new
variable-value
pair.

UMRA Help

Umra.SetVariableText
"%LastName%",Request.Form("LastName")

Another variable-
value pair is
added to the list
maintained by the
UMRA COM
object: The last
name of the user
account specified
by the end-user in
the form of
website page
CreateAccount.as
p is stored as
variable
%LastName%
and copied from
the input text
field with name
LastName.

UMRA Help

RetVal=Umra.ExecuteProjectScript("CreateAccoun
t")

The interface
member
ExecuteProjectScr
ipt of the COM
object is now
used to execute
the project script
on the UMRA
Service. The only
argument of the
member function
is the name of the
project. The
current variable
list stored in the
COM object is
used as the input
of the form
project. Note that
the project script
is not executed by
the UMRA COM
object. Instead,
the UMRA COM
object instructs
the connected
UMRA Service to
execute the
project. The
RetVal numerical
variable returns
as zero on
success. The value
can be used for
error handling.
When the project
script is executed
successfully, the
variable list of the
COM object is
updated with the
values that are
generated by the
UMRA project
script.

UMRA Help

RetVal=Umra.GetVariableText("%UserName%",U
serName)

The
GetVariableText
interface member
function is used to
obtain the text
value of the
specified variable.
The variable
should be part of
the variable list of
the UMRA COM
object. On
success, the
RetVal value
should be zero
and the ASP script
variable
UserName is filled
with the actual
value of the
variable.

Response.Write "
"

A break is written
to the output
HTML sequence
that is generated
by this ASP page.

Response.Write "User name: "

The text User
name: is written
to the HTML
output.

Response.Write UserName

The value of the
ASP variable
UserName, as
collected from
UMRA variable
%UserName%,
written to the
HTML output.

UMRA Help

RetVal=Umra.GetVariableText("%Password%",Pa
ssword)

The value of
UMRA variable
%Password% is
searched for in
the list
maintained by the
UMRA COM
object. When
found, the value is
stored in ASP
variable
Password.

Response.Write "
"
A break is written
to the HTML
output.

Response.Write "Password: "

The text
Password: is
written to the
HTML output.

Response.Write Password

The value of the
password is
written to the
HTML output.

%>

Termination of the
ASP section.
Normal HTML
code follows after
this character
sequence or a
new ASP section
can start. In this
example project, a
small form is
shown to navigate
to the first page of
the website.

Table 3: Detailed description of the ASP page section using UMRA COM objects.

Testing the website

The UMRA application is now ready for testing. Start Windows Internet
Explorer and connect to the IIS website by entering the URL address of
the first web page:

http://amazone:81/CreateAccount.asp http://amazone:81/createaccount.asp

http://amazone:81/createaccount.asp

UMRA Help

Here, amazone is the name of the computer that runs IIS. The port for
the website is configured as 81. When automatic logon is enabled, the
user (you) is authenticated by IIS and the HTML code of the ASP page is
shown. If automatic logon is not enabled, you need to logon first.

Figure 14: First page of the UMRA website on IIS.

Enter the first and last name of a user account and click the Create

Account button The form is submitted to IIS and the ASP page
ShowResults.asp is executed.

UMRA Help

As part of the ASP page, the UMRA Service is contacted and requested
to execute the project script that creates the account. Results are
returned by the service and shown in the web page.

Figure 15: Result page of the UMRA website.

You can check the UMRA Service log file for progress and debugging
information. The log file UmraSvcLogX.txt can be found in the Log
directory of the UmraService program directory.

UMRA Service log file

The COM object connects to the UMRA Service and the variables are
listed in the log file. The %UmraFormSubmitAccount% variable shows
the end-user of rh browser.

The log file contains the following section upon completion of a
successful session:

11:16:53 01/03/2006 Variable 1: %FirstName%=John

11:16:53 01/03/2006 Variable 2: %LastName%=Williams

11:16:53 01/03/2006 Variable 3:
%UmraFormSubmitAccount%=T4ELOC2\Administrator

11:16:53 01/03/2006 Creating AD account in specified domain:
'tools4ever.local2'.

UMRA Help

11:16:53 01/03/2006 Creating AD account in container 'Users'.

11:16:53 01/03/2006 Creating AD account in Organizational Unit-Container:
'LDAP://CN=Users,DC=tools4ever,DC=local2'.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2': Using name generation algorithm
'Default', 100 iterations maximum for duplicate names.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Common name of user set to
'John Williams'.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. SAM account name (username) of
user set to 'williamsj'.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. LDAP attribute
'userPrincipalName' of object 'John Williams' set to
'williamsj@tools4ever.local2'.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. LDAP attribute 'displayName' of
object 'John Williams' set to 'John Williams'.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. LDAP attribute 'givenName' of
object 'John Williams' set to 'John'.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. LDAP attribute 'sn' of object 'John
Williams' set to 'Williams'.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Password generated ('Strong, 7
chars with 1 numeric, 1 special (variable: %Password%)') and set in variable
'%Password%'.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Account
disabled'=FALSE (101034). Result not changed.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Password
never expires'=FALSE (101032). Result not changed.

UMRA Help

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Store
password using reversible encryption'=FALSE (101033). Result not changed.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Smart card is
required for interactive logon'=FALSE (101035). Result not changed.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Account is
trusted for delegation'=FALSE (101036). Result not changed.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Account is
sensitive and cannot be delegated'=FALSE (101037). Result not changed.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Use DES
encryption types for this account'=FALSE (101038). Result not changed.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Boolean parameter 'Don't require
Kerberos preauthentication'=FALSE (101039). Result not changed.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Account expiration date not
specified for new user 'John Williams' object.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. User 'John Williams' successfully
created.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Password set for new user object
'John Williams'.

11:16:53 01/03/2006 Creating AD user account in container/OU
'LDAP://CN=Users,DC=tools4ever,DC=local2'. Flag 'User Cannot Change
Password' not changed from default value (FALSE).

11:16:53 01/03/2006 Form message:
'01/03/2006,11:16:53,T4ELOC2\Administrator,"Automation run
script",OK,CreateAccount'

UMRA Help

UMRA COM on 64-bit platforms
Current version of UMRA

The UMRA COM DLL can be used on both 32-bit and 64-bit platforms
running IIS. The UMRA COM software is available for both platforms and
installed automatically as part of the UMRA Automation module. For the
different platforms, UMRA uses the following files:

Platform: Intel 32-bit platforms (w32)
Default program directory: C:\Program Files (x86)\Tools4ever\User
Management Resource Administrator
UMRA COM files: UmraCom.dll JvrLog.dll

Platform: AMD based 64-bit platforms (x64)
Default program directory: C:\Program Files (x86)\Tools4ever\User
Management Resource Administrator
UMRA COM files: UmraCom64.dll JvrLog64.dll

On 64-bit platforms running IIS, a web page automatically uses either
the 32-bit or 64-bit version of the UMRA COM object. This depends on
the exact configuration of IIS. See knowledge base article KB894435 for
more information.

Older version of UMRA

In older versions of UMRA, the most recent version being 9.0 build 1425,
the UMRA COM DLL was available only as a 32-bit COM DLL. Microsoft
supports 32-bit COM DLL's to be used on 64-bit IIS platforms by
configuring IIS. In a 64-bit environment, IIS can be configured to run ASP
pages using 32-bit COM DLL's.

Procedure

1. Install UMRA, including UMRA automation on the 64-bit computer
that runs IIS. This will install and register the 32-bit COM object;

2. Open a command prompt and navigate to the
%systemdrive%\Inetpub\AdminScripts directory. By default,
%systemdrive% equals "C:".

3. Type the following command: cscript.exe adsutil.vbs set
W3SVC/AppPools/Enable32BitAppOnWin64 “true”

4. Press ENTER. Something similar to the following is shown:

UMRA Help

Microsoft (R) Windows Script Host Version 5.6

Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Enable32BitAppOnWin64 : (BOOLEAN) True

The setting is now complete. From now on, ASP pages can successfully
use the UMRA COM object.

In case the setting is not made, and an ASP page using the UMRA COM
object is executed, the following error may appear:

...
Server object error 'ASP 0196 : 80040154'
Cannot launch out of process component
/ShowResults.asp, line 8
Only InProc server components should be used. If you want to use LocalServer
components, you must set the AspAllowOutOfProcComponents metabase
setting. Please consult the help file for important considerations.
...

IIS configuration Windows Server 2008

By default, ASP is not enabled for IIS running on Windows Server 2008.
To enable ASP, use the following procedure on Windows Server 2008:

1. Select All Programs, Administrative Tools, Server Manager;

2. If this is not the case, add the Web Server (IIS) role to the server;

3. In the Server Manager, select Web Server (IIS) and navigate to the
section of Role Services.

4. Click Add Role Services and select Web Server, Application

Development, ASP.

5. Complete the procedure.

Now, a web-site can use the UMRA COM object in ASP pages.

3.3.5. References

Beginning ATL COM Programming, by Richard Grimes, Alex Stockton, George
Reilly and Julian Templeman. Wrox Press Ltd, 1998

UMRA Help

DCOM – Microsoft Distributed Component Object Model, by Frank E. Redmond
III. IDG Books, 1997

3.4. Managing printer queues
With User Management Resource Administrator (UMRA) you can let the
helpdesk manage printer queues and print jobs. In this document, a
sample project is described to manage a Windows printer queue.

 Read the full PDF version of UMRA Managing Printer queues
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/Print-Job-Management.pdf

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Print-Job-Management.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Print-Job-Management.pdf

UMRA Help

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or
transmitted in any form or by any means without the written permission
of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or
consequences resulting from your actions or usage of the informational
material contained in this user guide. Responsibility for the use of any
and all information contained in this user guide is strictly and solely the
responsibility of that of the user.

All trademarks used are properties of their respective owners.

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.4.1. Introduction

With User Management Resource Administrator (UMRA) you can let the helpdesk manage printer
queues and print jobs. Individual print jobs can be paused, restarted, resumed and deleted. The printer
spooler service itself can be restarted.

This example project shows you how to setup UMRA form projects to implement this type of
functionality.

In the example project, a form shows the printer documents of a particular printer. From the list, a
document can be selected. The user can then press a button to pause, restart, resume or delete the
print job.

Printer queue management - Form result

Figure - UMRA Forms application running the example project

This document describes the main implementation aspects of this example project. The example project
is also available from the Tools4ever web-site.

The reader of this document is supposed to be familiar with the UMRA Console, Forms and Service

applications and the basics of UMRA Form projects.

3.4.2. UMRA projects for managing printer queues

Project description

The example project consists of 2 UMRA forms project:

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

Main project - Print jobs – HP_1220C: The main project that contains the form and the script that is
executed when one of the buttons is pressed.

Figure 1 – Form of project Print jobs – HP_1220C

The form contains some introduction static text fields, the main table showing print documents and the
submit buttons.

Auxiliary project - Print job list – HP_1220C: A simple project used to collect the printer documents and
store the information in a table variable.

Project principle

The main project Print jobs – HP_1220C shows the table with printer documents. The table data is
obtained from a variable that is generated in the other project Print job list – HP_1220C. This project is
set as the initial project of the main project.

When the user selects a document from the table, the DocumentID of the document is stored in a
variable. Note that this DocumentID field is part of the table but shown in a column with a width of 0%.

Next, the user presses one of the buttons. A variable is set, referring to the button pressed and this
information, together with the DocumentID is sent to the UMRA Service.

The UMRA Service processes and executes the command, collects the new printer document
information and returns the same form.

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

Auxiliary project - Print job list - HP_1220C

The helper project only contains a script, no form. The script is executed as the initial project of main
project Print jobs – HP_1220C. The script only contains 2 lines.

The first script action sets the value of variable %Printer%. The value must equal the name of a
network printer (queue). Syntax of this value is: \\name_of_computer\nam_of_printer . Example:
\\COUNT\HP DeskJet 1220C.

Figure 2 – Setting the variable %Printer% to the required printer

In another network environment, this variable must be set to the name of the printer of interest. The
variable is used in the other script action and in the other main form project.

The second action collects the list with printer documents.

Figure 3 - Action - Get printer documents info and store in table variable

The action collects the list with printer documents from the specified %Printer%. The result is a table
that is stored in a variable specified for property Documents table.

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

Figure 4 – Storing a table with documents info in variable %DocumentsTable%

The property is an output only property: the property is not needed as an input value to execute the
action. Instead, the property is used to hold the output values of the action.

Print jobs project - Form

The form of the main project Print jobs – HP_1220C contains some introduction static text fields, the
main table showing print documents and the submit buttons.

UMRA Help

Copyright © Tools4ever 1998 - 2012 5

Figure 5 - Designing the main form

Except for the table and buttons, the fields are easy to implement and customize. The table and buttons
fields are explained in the next topics.

Print jobs project - Table with printer documents

The table with printer documents is configured as a generic table, specified by a variable.

UMRA Help

Copyright © Tools4ever 1998 - 2012 6

Figure 6 - Table form field configured as Generic table

Click Configure… . In the Configure table window, click Configure.

UMRA Help

Copyright © Tools4ever 1998 - 2012 7

Figure 7 – Configuring the table

UMRA Help

Copyright © Tools4ever 1998 - 2012 8

Select the table type as Variable and click the tab Variable generic table.

Figure 8 - Setup variable generic table

Table variable specification

The window is used to specify the name of the variable that holds the table data and to setup the
columns of the table. The variable name must be equal to the name of the variable generated by the
auxiliary project: %DocumentsTable%. Note that this project has no knowledge of the columns that
exist for the table. That’s why you need to specify the names of the columns.

Table columns specification

The table data is generated by the action List printer documents of helper project Print job list –

HP_1220C. Since we know that, we know what columns are contained by the resulting table data
variable.

1. Since the action always generates the same columns, you can select the template Printer
documents and press Set columns to setup the column configuration.

2. Press OK to continue.

UMRA Help

Copyright © Tools4ever 1998 - 2012 9

3. To set up the columns that are shown in the form, select tab Columns in the window Configure

table.

4. The list with Available columns shows the columns as configured in step 3. In the list Current

column configuration you need to setup the column that must be shown in the form.

Note that this column information is only used to give a meaning to the columns of table data variable
%DocumentsTable%. The columns do not necessarily correspond with the columns shown in the form.

Figure 9 – Setting up columns for the form table and variable %DocumentID%

Form table return variable

This window is also used to setup the variable that is used when the end-user selects a document from
the table. This variable is used to identify the printer document that must be sent a command. The
action to execute a printer command needs the id number of the document as an input property.
Therefore, the variable %DocumentID% is configured for column DocumentID. Since this information
is not valuable to the user, the width of the column DocumentID is set to 0%.

UMRA Help

Copyright © Tools4ever 1998 - 2012 10

Now when the end-user selects a document from the list, the DocumentID number is stored in variable
%DocumentID% and sent to the UMRA Service for further processing.

Use the Row icon image and Options tab to fine tune the table form field with printer documents.

Print jobs project - Form buttons

The form button fields have a similar configuration. The buttons show the command to be executed:

Figure 10 - Button form field configuration, setup Button text

For each button, 3 actions are configured:

UMRA Help

Copyright © Tools4ever 1998 - 2012 11

Figure 11 – Button actions

Set the value of variable %PrinterCommand%: The variable %PrinterCommand% is sent to the UMRA
Service when the button is pressed. The variable is used in the script of the project to execute the
appropriate actions.

1. Execute the script of the project that contains the form: The script is executed to send the
printer a printer document command.

2. Return the form of the current project: When the printer is sent a command, the same form is
returned, to reflect the status of the command sent and to allow the user to issue a command
for another printer document.

Print jobs project - Script

The script of the main project Print jobs – HP_1220C first performs some error handling to check the
end-user input. Next, control is passed to the correct action that corresponds with the button pressed.

UMRA Help

Copyright © Tools4ever 1998 - 2012 12

Script action 1: Check %DocumentID%

In the first action, the variable %DocumentID% is tested to see if a document was selected from the
list. If the end-user presses a submit button and no document is selected, the value either does not exist
or equals zero.

Figure 12 - Script action to check if a document was selected

The configuration of the If-Then-Else script action to check the value is shown below:

UMRA Help

Copyright © Tools4ever 1998 - 2012 13

Figure 13 - Configuration of the If-Then-Else conditions to check the %DocumentID% variable

When the value is not valid, script action execution continues with the action with label Ready.

Script action 2: Check %PrinterCommand%

The next action checks the input printer command %PrinterCommand%. Theoretically, this action is
not necessary, but it is a good habit to include thorough error-handling.

Figure 14 - Script action to check input variable % PrinterCommand%

The action checks the value of variable %PrinterCommand%. If the value is not specified or does not
contain one of the valid options, script action execution continues with the action with label Ready.

UMRA Help

Copyright © Tools4ever 1998 - 2012 14

Figure 15 - Configuration of the If-Then-Else conditions to check the %PrinterCommand% variable

Script action 3: Go-To printer command

When the input variables are checked, the script action Go to label %PrinterCommand% is used to
continue script action execution with the action Execute print job command that corresponds with the
button pressed.

Figure 16 - Go to label %PrinterCommand% action

Now how does this work? For each of the possible printer commands, the script contains a separate
section containing two script actions. The first action executes the specific printer command. The printer
execution action contains a label so that the action can be jumped to. The name of the label
corresponds with the value of the variable %PrinterCommand%. This value is set as a form action when
the end user presses one of the form submit buttons. When the printer execution action is executed,
the Go to label ‘Ready’ action is used to end the script.

Example: When the user presses the Restart button in the form, the variable %PrinterCommand% is
set to RESTART. When the script is executed, the action Go to label %PrinterCommand% is executed
as: Go to label RESTART. The RESTART label action executes the printer command to restart the printer
document.

UMRA Help

Copyright © Tools4ever 1998 - 2012 15

Figure 17 – Executing the print job command action

Script action 4: Execute print job command

The execute print job command, UMRA accesses the printer %Printer% as specified with helper project
Print job list – HP_1220C and job %DocumentID%. This printer document ID number corresponds with
the ID of the document that is selected from the table in the form.

For the Restart action, the property Restart print job is set to Yes. The next action jumps to label Ready
to end the script.

When the script is completed, the next form button action is executed: Return the form of the current

project: The cycle starts over again. As part of the form generation process, the script of the initial
project Print job list – HP_1220C is executed.

UMRA Help

Copyright © Tools4ever 1998 - 2012 16

Figure 18 – Resetting the %DocumentID% variable to 0

Script action 5: Reset %DocumentID%

To re-initialize the %DocumentID% variable, the last action sets the value of the variable to 0. This
ensures that no document is referred to when the script is executed the next time in case the end user
has not selected a document.

Linking the auxiliary project to the main project

The auxiliary project Print job list – HP_1220C retrieves the printer documents information and stores
this table information in variable %DocumentsTable%. The main project shows the printer documents
in a table of the form of the project and sends the printer a command when a button of the form is
pressed.

Initial project specification

Now how do the projects work together? The helper project is set as the initial project of the main
project. When the form of the main project is generated by the UMRA Service, the script of the project
Print job list – HP_1220C is executed first.

UMRA Help

Copyright © Tools4ever 1998 - 2012 17

Figure 19 - Initial project configuration of project Print jobs – HP_1220C

The helper project Print job list – HP_1220C collects the printer document information and stores the
resulting table in variable %DocumentTable%. This variable is passed to the main project and used in
the main table form field.

Project execution

The following section shows the log of the UMRA Service when the UMRA Forms application connects to
the service, selects the form, selects a document and presses one of the submit buttons.

Project execution log
09:25:49 09/23/2005 Form message: '09/23/2005,09:25:49,"SSP\J. Vriens","Forms list",OK,N/A,"2 projects found
for user 'SSP\J. Vriens'."'

09:25:53 09/23/2005 Executing form initialization project 'Print job list - HP_1220C'.

09:25:53 09/23/2005 Variable 1: %UmraFormSubmitAccount%=SSP\J. Vriens

09:25:53 09/23/2005 List documents in printer (queue) '\\COUNT\HP Deskjet 1220C'.

09:25:53 09/23/2005 Form message: '09/23/2005,09:25:53,"SSP\J. Vriens","Form load",OK,"Print jobs -
HP_1220C",'

UMRA Help

Copyright © Tools4ever 1998 - 2012 18

09:26:04 09/23/2005 Variable 1: %DocumentID%=6

09:26:04 09/23/2005 Variable 2: %UmraFormSubmitAccount%=SSP\J. Vriens

09:26:04 09/23/2005 Variable 3: %Printer%=\\COUNT\HP Deskjet 1220C

09:26:04 09/23/2005 Variable 4: %DocumentsTable%=Table with 10 rows

09:26:04 09/23/2005 Variable 5: %NowDay%=23

09:26:04 09/23/2005 Variable 6: %NowMonth%=09

09:26:04 09/23/2005 Variable 7: %NowYear%=2005

09:26:04 09/23/2005 Variable 8: %NowHour%=09

09:26:04 09/23/2005 Variable 9: %NowMinute%=26

09:26:04 09/23/2005 Variable 10: %NowSecond%=04

09:26:04 09/23/2005 Variable 11: %PrinterCommand%=PAUSE

09:26:04 09/23/2005 If-Then-Else condition [Variable '%DocumentID%' (numeric) has no value or does not exist OR
Variable '%DocumentID%' (numeric) equal to value '0'] result is FALSE, continue script execution with next action.

09:26:04 09/23/2005 If-Then-Else condition [Variable '%PrinterCommand%' (text) equals (case insensitive) value
'REFRESH' OR Variable '%PrinterCommand%' (text) equals (case insensitive) value 'PAUSE' OR Variable
'%PrinterCommand%' (text) equals (case insensitive) value 'RESTART' OR Variable '%PrinterCommand%' (text)
equals (case insensitive) value 'RESUME' OR Variable '%PrinterCommand%' (text) equals (case insensitive) value
'DELETE' (invert)] result is FALSE, continue script execution with next action.

09:26:04 09/23/2005 Jump to script action with label 'PAUSE'.

09:26:04 09/23/2005 Executing command 'Pause' for job id '6' of printer (queue) '\\COUNT\HP Deskjet 1220C'.

09:26:04 09/23/2005 Command successfully executed

09:26:04 09/23/2005 Jump to script action with label 'Ready'.

09:26:04 09/23/2005 Executing form initialization project 'Print job list - HP_1220C'.

09:26:04 09/23/2005 Variable 1: %DocumentID%=0

09:26:04 09/23/2005 Variable 2: %UmraFormSubmitAccount%=SSP\J. Vriens

09:26:04 09/23/2005 Variable 3: %Printer%=\\COUNT\HP Deskjet 1220C

09:26:04 09/23/2005 Variable 4: %DocumentsTable%=Table with 10 rows

09:26:04 09/23/2005 Variable 5: %NowDay%=23

UMRA Help

Copyright © Tools4ever 1998 - 2012 19

09:26:04 09/23/2005 Variable 6: %NowMonth%=09

09:26:04 09/23/2005 Variable 7: %NowYear%=2005

09:26:04 09/23/2005 Variable 8: %NowHour%=09

09:26:04 09/23/2005 Variable 9: %NowMinute%=26

09:26:04 09/23/2005 Variable 10: %NowSecond%=04

09:26:04 09/23/2005 Variable 11: %PrinterCommand%=PAUSE

09:26:04 09/23/2005 List documents in printer (queue) '\\COUNT\HP Deskjet 1220C'.

09:26:04 09/23/2005 Form message: '09/23/2005,09:26:04,"SSP\J. Vriens","Form submit",OK,"Print jobs -
HP_1220C"'

At 09:25:49, the forms available for the end user are loaded from the UMRA Service. At 09:25:53, the
main form project is loaded. As part of the form generation process, the initial project is executed. At
09:26:04, the user selects a documents and presses the Pause button. The form information is
submitted to the UMRA Service and the script of the project is executed: the print job is paused. Finally,
the cycle starts over again: the script of the form initialization project is executed and the generated
form is returned to the UMRA Forms application.

Project extensions

 The example project can easily be extended to support similar functionality:

 Include documents of multiple printers in a single table

 Show multiple tables with printer documents for multiple printers

 Setup a wizard to select a printer first, and than show the printer document table of the
selected printer

 Add a button to reset the printer spooler service

 Filter out documents from the table from specific users.

For additional information and other UMRA example projects, contact Tools4ever at www.tools4ever.com
http://www.tools4ever.com.

http://www.tools4ever.com/

3.5. Managing Windows computer services
Although primarily focusing on user accounts and associated resources,
you can also manage services using UMRA. From all computers,
including domain controllers and regular workstations, the services can
be managed. In this document, a sample project is described for
managing Windows services.

 Read the full PDF version of UMRA Managing Windows computer services
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/Umra-Service-Management.pdf

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Umra-Service-Management.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Umra-Service-Management.pdf

UMRA Help

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or
transmitted in any form or by any means without the written permission
of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or
consequences resulting from your actions or usage of the informational
material contained in this user guide. Responsibility for the use of any
and all information contained in this user guide is strictly and solely the
responsibility of that of the user.

All trademarks used are properties of their respective owners.

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.5.1. Project definition

In this example project, an implementation is described to (re)start and stop services that can be
selected from a list.

In the form shown, the list presents an overview of all or a number of specific services from a specific
computer. By selecting a service and clicking one of the buttons, the services can be managed.

1. The example project can easily be extended to:

2. Support multiple computers. For each computer, a form can be shown or the services of multiple
computers are shown in a single form.

3. Only specific services are shown. This is especially useful in a helpdesk environment to allow
employees to restart only specific services.

4. The number of commands can be limited. In this case, a user can only restart a not stop a
service.

Note that the example project by default supports delegation and logging: Only specific users are
granted access to run the form and all service management actions are logged.

3.5.2. Project structure

Form projects

The example scenario consists of 2 form projects:

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

1. Manage Services project: The main form project that holds the form and the script to manage
the selected service. At initialization time, the Manage Services project accesses the other
project.

2. Collect Services project: A very simple project that is used to collect the services information
from a specific computer. The Collect Services project only contains a script and not a form. The
script is used to collect the service information and store the services table in a variable.

Both form projects are available from the Tools4ever web-site. The projects are designed in such a way
that only minimal changes are required to make the projects work in your environment.

Principle of operation

As an initialization project, the script of the Collect Services project is executed when the form of the
Manage Services project is executed. The script of the Collect Services projects collects the services
information and stores all data in a single variable. The variable is shown as a table in the Manage

Services project. When a service is selected from the list and one of the buttons is clicked, the script of
the Manage Services project is executed. Next, the complete cycle starts over again, and again...

3.5.3. Step 1: Environment setup

Prerequisites

1. To run the project successfully you need to meet the following requirements:

2. You need to be logged on to the network with administrative privileges. During the
implementation of the project, the UMRA Service is installed. The service can be installed on any
computer but needs to have access to the computer with the services you need to manage.

3. The computer on which UMRA is installed must run one of the following operating systems:
Windows XP, Windows 2000 (all versions) or Windows 2003 (all versions).

UMRA installation

To run the project, you need to install several UMRA modules. Once installed, you can run the product
for 30 demo days. After this period, a valid license code is required. To start, download the UMRA
software from www.tools4ever.com http://www.tools4ever.com and install at least the modules UMRA

Console and UMRA Forms.

UMRA setup

Once installed, start the UMRA Console application: Select menu option All programs, User Management

Resource Administrator, UMRA Console. Upon startup, the User Management Resource Administrator

Wizard is started automatically. You can either run the wizard to become familiar with the product or
move forward and start with the installation of the UMRA Service. To do so, Cancel out of the wizard
and select UMRA Service, Install or upgrade service. Follow the instructions of the application.

http://www.tools4ever.com/

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

It is advised to install the UMRA Service on a computer that is a member of the domain containing the
user accounts and computer services you wish to manage. For test purposes, you can also install the
UMRA Service on the same computer that runs the UMRA Console application.

3.5.4. Step 2: Form project - Collect Services

In this step, the auxiliary project Collect Services is created. As the name describes, the Collect Services
project is used only to collect the information of a specific computer. The project stores the services
information in a table variable that is used by the main project.

Starting the UMRA Console

1. Start the UMRA Console application and connect to the UMRA Service: Select UMRA Service,

Connect… and connect to the computer on which the UMRA Service is installed.

2. To start creating the new form project, select File, New…. Check button Form project and press
OK. Enter the name of the project, Collect Services and press OK.

3. The form project window is initially empty. Only the Window Help sections are shown. To hide
the Window Help sections, right click in one of the three window areas and deselect menu
option Show Window Help.

4. This project is meant only to collect services information using a small script. Therefore, the
project contains no form and the upper half of the window is not used to design a form.

Next, we will setup the action that creates and initializes the variable that holds the name of the
computer from which we want to manage the services. In the Actions – Network bar, activate the
Actions window and expand the tree Variable actions, Variable Operations. Add the action Set variable
to the script of project: drag- and drop the action to the lower left area of the window.

Setting up the Set variable action

1. Select the new action Set the value of variable … in the lower left window of the project window
(not in the Actions bar). In the lower right window, the properties of this action are now shown.
Double click one of the properties (example: Variable name or select main menu action

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

 Now setup the Set variable action as shown below:

The action will create a variable with the name %ComputerName%. The variable will hold the name of
the computer from which the services are managed. Press Edit to specify the name of the computer. In
the example shown, computer COUNT is specified. Note: the variable %ComputerName% is used both
in this project, and in the next project of the wizard: Manage Services. The variable is initialized only
once.

Setting up the List services status action

1. Set up the action to collect the service status information. From the actions bar, select action
Services, List services status and drag and drop the action to the script section (lower left) area
of the project window. The script action is automatically selected and the properties section
(lower right of project window) shows all the properties of this action. You need to setup the
properties of this action one-by-one. By double-clicking each of the properties, you can specify
the value of the selected property.

2. The most important properties of the List services status action are Computer and Services

table. For Computer, specify the name of the variable created with previous action Set variable:

%ComputerName%. The property Services table is by default configured as output variable
%ServicesTable%. The green arrow shown with property Service table indicates that the value
of the property is stored in an output variable. By double-clicking the property, you can setup

UMRA Help

Copyright © Tools4ever 1998 - 2012 5

the property.

 What happens when this action is executed: The UMRA software connects to the computer
specified by %ComputerName% and collects the status of all of the services. The status
information includes, the name of the service, the operational state of each service (running,
stopped), type of service (automatic, manual, disabled) and so on. This information is stored as a
table in variable %ServicesTable%. Note that the single variable will hold a table with multiple
rows and columns. The variable is used in the other project.

Setup project security

The project Collect Services is now almost complete. What remains to be done is to set up the security
settings of the project (i.e. specify who is allowed to execute this form project.

1. Select the menu option Actions, Form properties and click the Security tab.

2. Press the Add button and enter the name of the user or group to setup the form project access
rights. Press OK to finish this step.

UMRA Help

Copyright © Tools4ever 1998 - 2012 6

3. Finally, save the project and close the project window.

Summary

The project Collect Services is now ready for use and has the following characteristics:

 The project has no form, only a script

 The script sets a variable %ComputerName% to a specific value and collects the services
information from the specified computer. The results are stored as a table in variable
%ServicesTable%.

 The form project access rights are set up

3.5.5. Step 3: Form project - Manage Services

The Manage Services project is the main project of this example scenario. The project contains both a
form and script. The form shows the services of the computer and buttons to manage the selected
service:

UMRA Help

Copyright © Tools4ever 1998 - 2012 7

The script of the project executes the Start, Restart or Stop action. When the script action is completed,
the list with service status information is refreshed to reflect the new service status.

Manage Services - Form, part 1

Start a new form project with the name Manage Services. See the previous section for more information
on how to do this. To setup the form project, the form and the script must be designed. To setup the
form, a number of form fields must be added to the form. For each form field, parameters must be
specified.

UMRA Help

Copyright © Tools4ever 1998 - 2012 8

To add a form field, right click in the upper form area of the project window and select menu option Add

form field….

Manage Services - Adding form fields

Add the following form fields:

1. Static text field: The field shows the introduction text: Select a service and click ‘Start’, ‘Restart’, or
‘Stop’.

2. Vertical space: Some open space (10 pixels) to outline the form.

3. Table: This is the table form field that lists the services. The table form field configuration is
described in the next chapter.

Manage Services - Form table

The form table lists the services and services status information. The configuration of the table is
described in this chapter. The services information is obtained in project Collect Services. In that
project, the services information is stored in a table variable. The variable is passed to the Manage

Services project. The generic table type is able to show the table data of a variable. So select Generic

table as shown in the following figure:

UMRA Help

Copyright © Tools4ever 1998 - 2012 9

Press Configure to continue. Next, you need to select the type (source) of the generic table. Select
Variable since the table data is obtained from a variable.

When selected, the configuration window Variable generic table can be selected. The window is used to
specify the name of the variable and to define the columns of the table.

UMRA Help

Copyright © Tools4ever 1998 - 2012 10

Specify the name of the variable: %ServicesTable%. The name must equal the name of the variable
generated by the action List services status of project Collect Services.

Important: A table variable only holds the data of the table, not the names of columns. You therefore
need to add the names of the columns that can be shown with the generic table. As described in the
online help, the List services status generates a table with the following columns: Computer, Service,
Name, State, StateCode, ProcessId, Type (text), Type (code), Interactive, Startup (text), Startup (code),
Executable, Log on as. Add these columns one-by-one. The first part of the generic table configuration is
now complete. Press OK.

You now need to setup the table columns that must be shown in the form. Click on the Columns tab.

UMRA Help

Copyright © Tools4ever 1998 - 2012 11

This window is used to configure the columns that must shown in the form and to specify the variables
that are passed to the UMRA Service when the end-user selects a service and presses a submit button.

On the left side, the Available columns are shown. These columns correspond with the columns
configured in the previous step. By using the add (->) and remove (<-) buttons you can setup a column
configuration. In the example, the form will show a table with 3 columns. The 3rd column is not visible
since it has a width of 0%. This column is included since it uniquely specifies the name of the service.
When the user selects a service and presses a button, the value of this column is stored in variable
%ServiceName%. This variable is passed to the UMRA Service and used for further processing.

Use the Row icon image and Options windows to specify additional table configuration settings. The
configuration of the table is now complete.

To specify additional table display settings such as font and alignment, select the Display window of the
Configure form field window.

UMRA Help

Copyright © Tools4ever 1998 - 2012 12

Manage Services - Form buttons

In the example project, after the table form field, some vertical space is added. Next, the 3 submit
buttons are configured. To setup the Start button, specify the button type as Action button and enter
the text Start as button text.

UMRA Help

Copyright © Tools4ever 1998 - 2012 13

Press the Manage actions button to configure the actions that must be executed when the button is
pressed in the form.

UMRA Help

Copyright © Tools4ever 1998 - 2012 14

The script of the Manage Services project uses the variable %ServiceCommand% to jump to the
appropriate label of the script. This variable is set as the first action of the script. For the start button,
the variable is set to START.

So when the user presses the Start button, the value of the variable %ServiceCommand% is set to the
text START. Similarly, the value of the variable %ServiceCommand% is set to RESTART and STOP for
the other buttons.

UMRA Help

Copyright © Tools4ever 1998 - 2012 15

The next action instructs the UMRA Service to execute the script of the Manage Services project. This
action has no parameters.

Finally, the last action executed when the button is pressed, returns the form of the project. This action
needs no additional configuration settings.

The Restart and Stop buttons are identical to the Start button, except for the variable
%ServiceCommand% as described earlier.

UMRA Help

Copyright © Tools4ever 1998 - 2012 16

To position the buttons next to each other, configure the display settings for the Start and Restart
buttons as follows:

Note the left margin of 2% to separate the buttons. The Position control setting Move cursor to next

line for next field must be unchecked to position the buttons next to each other. For the last button,
Stop, this option must be checked.

Manage Services - Script

When one of the submit buttons, Start, Restart or Stop is pressed, the script of the Manage Services
project is executed as part of the submit button script action execution sequence.

The script uses the following variables:

Variable Description

%ServiceName% The name of the service that is selected by the end-user in the form. When the user
selects no service, the variable is empty. Otherwise, the value of the variable
corresponds with the 3rd column with zero width of the table shown in the form.

UMRA Help

Copyright © Tools4ever 1998 - 2012 17

%ServiceCommand% The value of the variable corresponds with the button pressed by the end-user. The
value is set as an action when the button is pressed. For each button, the value is
different. This button is executed, before the script of the project is executed.

%ComputerName% The name of the computer that maintains the service. The variable is passed from
the other project Collect Services. In a more realistic environment, the variable
could be generated or selected in a window of a sequence of wizard windows.

The script first performs some input checking control and then jumps to the correct label and executes
the requested action.

UMRA Help

Copyright © Tools4ever 1998 - 2012 18

The action checks if the script input variable %ServiceName% is empty or does not exist. If this is the
case, the end-user did not select a service from the list with services in the form, when one of the
buttons was pressed.

When the variable %ServiceName% does not hold a valid value, the script execution proceeds with the
action with label Ready.

Next, the script jumps to the section that corresponds with the button pressed.

UMRA Help

Copyright © Tools4ever 1998 - 2012 19

Note that the variable %ServiceCommand% is set as an action when one of the submit buttons is
pressed. The value of the variable corresponds with the button: START, RESTART of STOP. In the script,
exactly these values are used as labels. The Go to label %ServiceCommand% simply continues script
action execution at one of the labels.

The Execute service command actions are simple to configure. For each of the actions, the Computer
property is set to the variable %ComputerName% that is passed from project Collect Services.

UMRA Help

Copyright © Tools4ever 1998 - 2012 20

The %ServiceName% variable is the result from the form. The Start service, Stop service and Restart

service properties are configure according to the desired service action.

The Execute service command action are followed by a Go to label ‘Ready’ action to continue script
execution at the right location.

Finally, the value of variable %ServiceName% is cleared to reset the input for the next form execution
cycle.

Note that when the script is executed, the next action of the form submit button action sequence is
executed: Return the form of the current project.

Manage Services - Link to project Collect Services

As described earlier, the form of the Manage Services project shows the services information collected
in the script of project Collect Services. To achieve this behavior, the Manage Services project must be
configured to execute the script of the project Collect Services before the form of the Manage Services

project is shown.

Right click in the upper form section of the Manage Services project window and select Form

properties…. Select tab Initial project and specify project Collect Services. The script of the Collect

UMRA Help

Copyright © Tools4ever 1998 - 2012 21

Services project will now be executed, each time the form of the Manage Services project is shown. The
variables that are generated in the Collect Services project can be used in the form fields of the Manage

Services project.

To finish the project, select the Security tab to setup the access rights for the Manage Services project.

3.5.6. Project execution

Now what happens when the user select the form Manage Services in the UMRA Forms application?

1. A request is sent to the from the UMRA Forms application to the UMRA Service to generate and
return the Manage Services form.

2. The UMRA Service checks the access rights of the end-user and the Manage Services project is
loaded by the UMRA Service and the form generation is initialized.

3. As part of the Manage Services form generation process, the project Collect Services is loaded
and the script is executed. Resulting variables (%ServicesTable%) are stored and passed to the
form generation process.

4. The form of the Manage Service project is generated. The table holds the data from the variable
generated by the Collect Services project.

5. The form is returned to the UMRA Forms application and shown.

6. The user selects a service and presses one of the buttons.

7. The selected service is stored in variable %ServiceName% and send with information of the
pressed button to the UMRA Service.

8. The UMRA Service checks the access rights of the end-user and the actions configured for the
button are executed.

9. The form of the Manage Services project is generated and returned to the UMRA Forms
application. As part of the form generation process, the script of the Collect Services project is
executed.

The following section shows the UMRA Service log file information for a complete session:

12:19:47 09/21/2005 Form message: '09/21/2005,12:19:47,"SSP\J. Vriens","Forms list",OK,N/A,"1 projects found
for user 'SSP\J. Vriens'."'

12:19:49 09/21/2005 Executing form initialization project 'Collect Services'.

12:19:49 09/21/2005 Variable 1: %UmraFormSubmitAccount%=SSP\J. Vriens

12:19:49 09/21/2005 Getting services information from computer: 'COUNT'. Options: include services, exclude
drivers, include non-stopped services and/or drivers, include stopped services and/or drivers, include configuration
info.

UMRA Help

Copyright © Tools4ever 1998 - 2012 22

12:19:49 09/21/2005 Form message: '09/21/2005,12:19:49,"SSP\J. Vriens","Form load",OK,"Manage services",'

12:19:54 09/21/2005 Variable 1: %ServiceName%=W3SVC

12:19:54 09/21/2005 Variable 2: %UmraFormSubmitAccount%=SSP\J. Vriens

12:19:54 09/21/2005 Variable 3: %ComputerName%=COUNT

12:19:54 09/21/2005 Variable 4: %ServicesTable%=Table with 96 rows

12:19:54 09/21/2005 Variable 5: %NowDay%=21

12:19:54 09/21/2005 Variable 6: %NowMonth%=09

12:19:54 09/21/2005 Variable 7: %NowYear%=2005

12:19:54 09/21/2005 Variable 8: %NowHour%=12

12:19:54 09/21/2005 Variable 9: %NowMinute%=19

12:19:54 09/21/2005 Variable 10: %NowSecond%=54

12:19:54 09/21/2005 Variable 11: %ServiceCommand%=RESTART

12:19:54 09/21/2005 If-Then-Else condition [Variable '%ServiceName%' (text) equals (case insensitive) value '' OR
Variable '%ServiceName%' (text) has no value or does not exist] result is FALSE, continue script execution with next
action.

12:19:54 09/21/2005 Jump to script action with label 'RESTART'.

12:19:54 09/21/2005 Executing command for service 'W3SVC' on computer 'COUNT': Restart service.

12:19:54 09/21/2005 Waiting 60 seconds for status completion.

12:19:56 09/21/2005 Service successfully 'restarted (stopped)'.

12:19:57 09/21/2005 Service successfully 'restarted (started)'.

12:19:57 09/21/2005 Jump to script action with label 'Ready'.

12:19:57 09/21/2005 Executing form initialization project 'Collect Services'.

12:19:57 09/21/2005 Variable 1: %ServiceName%=

12:19:57 09/21/2005 Variable 2: %UmraFormSubmitAccount%=SSP\J. Vriens

12:19:57 09/21/2005 Variable 3: %ComputerName%=COUNT

12:19:57 09/21/2005 Variable 4: %ServicesTable%=Table with 96 rows

12:19:57 09/21/2005 Variable 5: %NowDay%=21

UMRA Help

Copyright © Tools4ever 1998 - 2012 23

12:19:57 09/21/2005 Variable 6: %NowMonth%=09

12:19:57 09/21/2005 Variable 7: %NowYear%=2005

12:19:57 09/21/2005 Variable 8: %NowHour%=12

12:19:57 09/21/2005 Variable 9: %NowMinute%=19

12:19:57 09/21/2005 Variable 10: %NowSecond%=54

12:19:57 09/21/2005 Variable 11: %ServiceCommand%=RESTART

12:19:57 09/21/2005 Getting services information from computer: 'COUNT'. Options: include services, exclude
drivers, include non-stopped services and/or drivers, include stopped services and/or drivers, include configuration
info.

12:19:57 09/21/2005 Form message: '09/21/2005,12:19:54,"SSP\J. Vriens","Form submit",OK,"Manage services"'

First, at 12:19:47, the forms are loaded into the UMRA Forms application. Then, starting at 12:19:49 the
form of project Manage Services is generated. This includes the execution of project Collect Services. At
12:19:54 the web-service is selected from the list and the Restart submit button is pressed. The script of
the Manage Services project is executed. At 12:19:54 the service is requested to stop. 2 seconds later, at
12:19:56, the service is stopped and started at 12:19:57. Next, the script of project Collect Services is
executed as part of the form generation process of project Manage Service project. At 12:19:57 the
form is returned to the UMRA Forms client application and the process is complete.

3.5.7. Contacts

More information can be found at the following locations:

http://www.tools4ever.com

http://forum.tools4ever.com

3.6. Managing LDAP directory services using UMRA
Although primarily focusing on Microsoft Active Directory, User
Management Resource Administrator (UMRA) can also manage any
other directory service, as long as the directory service supports the
Lightweight Directory Access Protocol (LDAP).

Examples of the directory services that can be managed with UMRA
include Novell eDirectory, Linux OpenLDAP and Microsoft's Active
Directory.

 Read the full PDF version of UMRA Managing LDAP directory services
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/Managing-Ldap-Directory-Services.pdf

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Managing-Ldap-Directory-Services.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Managing-Ldap-Directory-Services.pdf

UMRA Help

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or
transmitted in any form or by any means without the written permission
of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or
consequences resulting from your actions or usage of the informational
material contained in this user guide. Responsibility for the use of any
and all information contained in this user guide is strictly and solely the
responsibility of that of the user.

All trademarks used are properties of their respective owners.

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.6.1. Introduction

Although primarily focusing on Microsoft Active Directory, User Management Resource Administrator
(UMRA) can also manage any other directory service, as long as the directory service supports the
Lightweight Directory Access Protocol (LDAP).

Examples of the directory services that can be managed with UMRA include Novell eDirectory, Linux
OpenLDAP and Microsoft's Active Directory.

Main functions

The main reasons to use the LDAP functions of UMRA deal with the integration of networks with hybrid
directory services. The UMRA LDAP functions include:

 Create user accounts and setup all attributes

 Manage group memberships

 Reset user account passwords

 Delete user accounts

 Manage all other directory service objects

With the UMRA LDAP functions, multiple directory services can be updated by executing a single task.

Example: When a form (of UMRA Forms and Delegation) is submitted, a user account can be created in
Microsoft's Active Directory and Novell eDirectory in a single task.

Deployment scenarios

The UMRA LDAP functions are most often deployed for the following tasks:

 Synchronization of Active Directory updates with other directory services (Novell eDirectory,
LINUX OpenLDAP);

 Synchronization of database system updates with (multiple) directory services;

 Helpdesk task delegation to manage the user account life cycle process, e.g. create user
accounts, reset passwords etc. for hybrid directory services networks.

Secure LDAP (SSL) support

The LDAP functions of UMRA support both secure and non-secure LDAP implementations. Secure LDAP
is implemented using SSL. The SASL authentication methods are not supported in UMRA.

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

3.6.2. Concept

Directory Service Infrastructure

The UMRA LDAP functions are typically used in a Microsoft Active Directory network environment with
some other directory service that co-exists in the same network infrastructure. The other directory
service is for instance Novell eDirectory or an OpenLDAP implementation on Linux. As long as the
directory service supports LDAP, the directory service can be managed with UMRA.

LDAP Server and LDAP Client

The computer that runs the directory service and supports LDAP is referred to as the LDAP Server. The
software that connects to the LDAP Server is referred to as the LDAP Client. According to these
conventions, the UMRA software always acts as the LDAP Client and the contacted directory service
system is the LDAP Server.

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

Helpdesk scenario

In a helpdesk environment, the UMRA Forms client runs on a helpdesk computer. When a form is
submitted by a helpdesk employee, the form and form input data is sent to the UMRA Service. The
UMRA Service executes the script associated with the form. In a hybrid directory service environment,
the script contains UMRA LDAP script actions to manage the LDAP directory service.

Figure 1: Network with helpdesk running UMRA Forms in a hybrid directory services network.

Security

The LDAP protocol supports a large variety of features for security and authentication. With UMRA, 2
options are available:

 Not secure: All communication with the LDAP Server and the UMRA software is not encrypted.
Authentication is accomplished using an account name and a password that is sent as clear
text. Although simple to implement, this option is not recommended because of security
reasons. The option can be used for testing purposes.

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

Secure with SSL: All communication between the LDAP client, e.g. the UMRA software and the LDAP
Server is encrypted using the SSL standard. This option is recommended and secure. All data is
encrypted.

To implement this option, SSL certificates need to be installed on both the LDAP Client and Server. The
methods how to do this, largely depends on the implementation of the operating system and directory
service. For Microsoft Active Directory, Novell eDirectory and Linux OpenLDAP the exact
implementations are described in this document. For other systems, a similar approach must be used.

3.6.3. UMRA LDAP script actions

Script actions overview

In UMRA, a number of script actions are available to manage an LDAP
directory service. The script actions cover the most important LDAP
functions to update a directory service and execute a query in the
directory service. All LDAP calls are executed synchronously.

Script actions

UMRA LDAP action Description

Setup LDAP session on page
5

Initialize a secure or not secure LDAP session
with the LDAP Server. The session parameters
are stored in a variable that is used in
subsequent UMRA LDAP actions.

Load LDAP modification data
on page 7

Setup a data structure that is used to add and
edit directory service items. The resulting LDAP
modification data is stored in a variable that is
referenced in subsequent script actions. The
action is always used in combination with the
Add and Edit UMRA LDAP actions.

Add directory service object
(LDAP) on page 10

Add an item to the LDAP directory service. The
data added is setup with action Load LDAP
modification data.

Modify directory service
object (LDAP) on page 10

Update an existing item in the directory service.
The data used to modify the existing directory
service item is setup with action Load LDAP
modification data.

Delete directory service
object (LDAP) on page 11

Delete an item from the directory service.

Search directory service
(LDAP) on page 11

Execute a search action in the LDAP directory
service. The results are returned in a generic
table variable that can be used in subsequent
script actions and forms.

Table 1: Overview of UMRA LDAP script actions

Script action: Setup LDAP session

For each action to update or search the LDAP directory service, a session
must be initialized first. The session is most often initialized in the

UMRA Help

beginning of the script and than used in all subsequent LDAP actions.
The session is automatically released by the UMRA software when the
script is finished.

Property Description

LDAP server The name of the host running the LDAP server. The name
must be specified using the TCP/IP address or DNS name.
Optionally, the name can be followed by a colon (:) and
port number.

LDAP port Optional: The TCP port number of the LDAP server to
which to connect. The property is ignored if the specified
'LDAP server' includes a port number. If not specified, the
default port is used. For not secure LDAP, the default
LDAP port is 389, for secure LDAP (SSL), the default port is
636.

SSL encryption
flag

If set to 'Yes', the session uses SSL encryption to
communicate. In this case, on both the LDAP client and
server side, appropriate SSL certificates need to be
installed. If set to 'No', the action establishes a plain TCP
connection and uses clear text (no encryption). Several
topics in this document describe how to setup secure
LDAP.

User name The name of the user to connect to the LDAP server. If not
specified, no user is authenticated, and no other LDAP
actions can be executed. The format and exact name
depends on the directory service.

User password The password of the user specified with property User
name. Note that the password is stored with encryption.

LDAP session A data structure representing the resulting LDAP session.
This property is an output only property and is generated
automatically. The data is stored in a variable. (Default
name: %LdapSession%) This property is used in other
script actions.

Table 2: Properties of action Setup LDAP session

UMRA Help

The LDAP session variable can be passed to other scripts that are
executed within the context of the outer script. When the outer script
ends, the LDAP session is released.

Script action: Load LDAP modification data

When a directory service is updated to create a new item or update an
existing item, the operation is always specified by the one or more
attributes, the attribute value(s) and the type of attribute value
modification: add, delete or replace.

To support this mechanism, the script action is Load LDAP modification

data is used. All attributes, attribute values and value modification types
are specified with this action. The result is stored in a variable that holds
all the attribute information. The variable is then used in the action to:

 Create the item with action Add directory service object

(LDAP) on page 10

or

 Update the item with action Modify directory service object

(LDAP) on page 10.

The action Load LDAP modification data does not communicate with the
LDAP Server, that is, no session variable is required.

UMRA Help

The LDAP modification data window is used to specify the LDAP
modification data.

Figure 2: Specification of the LDAP modification data

In the example shown, the data is stored in variable %LdapData%. The
data holds the modification values for 5 attributes: objectClass, sn,

givenName, homePhone and userPassword. The names of the attributes
are specified using their LDAP names as specified in the schema of the
directory service. The values for each attribute can be specified using
variables. Each attribute can have one or more values.

UMRA Help

Directory service schema

To specify the values of an attribute, the Setup LDAP modification data
window is used.

Figure 3: Multiple value specification for a single attribute

For the attribute you need to specify the following:

1. Type of modification: Either Add, Delete or Replace, depending
on the required type of modification.

Add: add the specified values to the attribute. Existing attributes
values are not removed. If the attribute already contains one of
the specified values, an error occurs.

Delete: delete the specified value from the attribute. If the
specified value is not a value of the attribute, an error occurs.

Replace: delete all of the existing attribute values and add the
specified values to the attribute.

2. Data specification: The values of the attribute. The values can be
specified as fixed values or variables.

3. Type of data: The type of the data, either text or binary. Almost
all attribute values, including text, numbers, Boolean flags, date
and time values can be specified using text.

UMRA Help

Script action: Add directory service object (LDAP)

The action is used to add a new item to the directory service. The item is
identified by its name that must be unique. All other parameters of the
item are specified by its attributes. Before this action, the following
actions must have been executed:

 Setup LDAP session: The session (data) is stored in a variable
that is used in the action.

 Load LDAP modification data: Initialize the attributes and
attribute values for the new directory service item.

The script action has the following properties:

Property Description

LDAP session A data structure representing a session with the LDAP
server. The property is initialized with action Setup LDAP
session and passed to this action using a variable. The
default variable name is %LdapSession%.

New object name The name of the new directory service object. The name
must be specified as a distinguished name. Example:
CN=John Smith, OU=Marketing, DC=tools4ever, DC=com.

Object data All attributes and values to add the object. The property
must be specified as a variable name. This variable is
generated by action Setup LDAP modification data.

Table 3: Properties of action Add directory service object (LDAP).

Script action: Modify directory service object (LDAP)

The action is used to update one or more attributes of an existing
directory service item. The item is identified by its name (Object name)
that is specified as a distinguished name. Before this action, the
following actions must have been executed:

 Setup LDAP session on page 5: The session (data) is stored in a
variable that is used in this action.

 Load LDAP modification data on page 7: Initialize the
attributes and attribute values for the new directory service
item.

The script action has the following properties:

UMRA Help

Property Description

LDAP session A data structure representing a session with the LDAP
server. The property is initialized with action Setup LDAP
session and passed to this action using a variable. The
default variable name is %LdapSession%.

Object name The distinguished name of the object to modify. Example:
CN=John Smith, OU=Marketing, DC=tools4ever, DC=com.

Object data All attributes and values to add the object. The property
must be specified as a variable name. This variable is
generated by action Setup LDAP modification data.

Table 4: Properties of action Modify directory service object (LDAP).

Script action: Delete directory service object (LDAP)

The action is used to delete an existing directory service item. Before
this action is executed, an LDAP session must have been initialized with
action Setup LDAP session on page 5.

The script action has the following properties:

Property Description

LDAP session A data structure representing a session with the LDAP
server. The property is initialized with action Setup LDAP
session and passed to this action using a variable. The
default variable name is %LdapSession%.

Object to delete The distinguished name of the object to be deleted.
Example: CN=John Smith, OU=Marketing,
DC=tools4ever, DC=com.

Table 5: Properties of action Delete directory service object (LDAP).

If the item to delete does not exist, an error occurs.

Script action: Search directory service (LDAP)

This action is the general action used to search in the directory service.
The action is used for multiple purposes:

 To obtain a table of directory service item attribute values.
Example: the name and description of the user accounts in a
certain organization.

UMRA Help

 To check the existence of an item.

The result of the search is always represented as a table that is stored in
a single variable. In UMRA, the table can be used in 2 manners:

1. In forms, to show the contents of the resulting table to the end-
user. The end-user can select one or more entries from the table.

2. In script actions, to evaluate the contents of the table and
execute other script actions;

The search action is specified by a number of parameters using two
windows.

Figure 4: LDAP search specification

The LDAP Search window is used to specify the search:

Session: The variable representing the LDAP Session that is initialized
with action Setup LDAP session.

Result: The name of the variable that is used to store the result of the
search. The search result is always stored as a table. The variable does
not need to exist when the action is executed. If it does exist, the old
value is overwritten.

UMRA Help

Base (DN): The distinguished name of the directory service tree where
the search should start. The search is executed at the specified base, and
optionally in the immediate or all subtrees of the directory service.

Filter: The specification of the filter to perform the search. The standard
search specification according to RFC2254 can be used to execute the
search.

Scope - Base only: Limit the search to the specified base only. The
maximum number of matching directory service items is 1.

Scope - One level: The search is performed in all entries of the first level
below the base entry, excluding the base entry.

Scope - Subtree: The search is performed in the base entry and all levels
below the base entry.

Time out interval: When enabled, the specified value is the time-out
value of the LDAP search and the operation time. If disabled, no time-
out value is used.

Size limit: When enabled, the maximum number of matching values is
limited to the specified value. When disabled, the maximum number of
items is not limited.

UMRA Help

In the Attributes window, the attributes that must be returned for each
matching directory service item are specified. The attributes are
specified using the LDAP name as specified in the schema definition of
the directory service.

Figure 5: LDAP search attribute specification.

Distinguished name

The result of the search is a table. In the table, the rows correspond with
matching directory service items. Each column corresponds with an
attribute. The distinguished name is by default stored in the last column
of the table. So the example shown in the above figure, results in a table
with 4 columns. The distinguished name is normally used to identify a
directory service item.

Note: The names of the columns are not stored as part of the table data.
If the variable is in a form to show the table data, the column names
need to be specified as part of the table form field specification.

3.6.4. Directory Service tasks

The way in which the LDAP script actions are used for the different
directory service tasks, is described in this section.

Creating a directory service item

To create an item in the directory service (a user account, for instance)
the following script actions are used:

1. Setup LDAP session on page 5: Connect to the LDAP Server and
authenticate the directory service user account that is used to
perform the update. Depending on the configuration, a secure
session can be initialized;

2. Load LDAP modification data on page 7: Initialize all the
attributes and attributes values that are required to create the
directory service item. The exact attributes and values used vary
for each directory service and are determined by the directory
service schema;

3. Add directory service object (LDAP) on page 10: Add the item to
the directory service using the LDAP modification data prepared
in the previous step.

The attributes and attribute values vary for each directory service. This
document contains examples that show how to create a user account in
Novell eDirectory, LINUX OpenLDAP and Microsoft Active Directory.

Updating directory service item attributes

With an LDAP directory service, directory service management always
deals with directory service items, the attributes of these items and the
values of the attributes. For instance, to make a user account a member
of a group in Novell eDirectory, 2 attributes must be updated for both
the user account and group directory service item.

When updating directory service item attributes, the item must already
exist in the directory service. The following operations can be
performed:

 Add a value to an existing attribute;

 Delete a value from an existing attribute;

 Update the value(s) of an existing attribute;

UMRA Help

 Add an attribute and value to an directory service item

 Delete an attribute and all values from a directory service
item.

The following section lists the general procedure to update the directory
service attributes:

1. Setup LDAP session on page 5: Connect to the LDAP Server and
authenticate the directory service user account that is used to
perform the update. Depending on the configuration, a secure
session can be initialized;

2. Load LDAP modification data on page 7: Initialize all the
attributes and attributes values that are required to update the
directory service item. The exact attributes and values used vary
for each directory service and are determined by the directory
service schema;

3. Modify directory service object (LDAP) on page 10: Modify one
or more of the attributes of the existing directory service item
using the LDAP modification data prepared in the previous step.

This document contains multiple examples to update attributes for
Novell eDirectory, LINUX OpenLDAP and Microsoft Active Directory
items.

Deleting a directory service item

The following section lists the general procedure to delete a directory
service item:

1. Setup LDAP session on page 5: Connect to the LDAP Server and
authenticate the directory service user account that is used to
perform the delete service item operation. Depending on the
configuration, a secure session can be initialized;

2. Delete directory service object (LDAP) on page 11: Delete the
item from the directory service.

This document contains several examples to delete directory service
items.

UMRA Help

Searching a directory service (LDAP)

UMRA supports the LDAP search specification RFC2254 to search in a
directory service. Example: to find all users of which the common name
(cn) starts with H, the following filter is used on Novell eDirectory:

(&(objectClass=user) (cn=H*))

Any filter can be used to return any collection of attribute values for the
matching directory service items.

The following section summarizes the general procedure to search in the
directory service:

1. Setup LDAP session on page 5: Connect to the LDAP Server and
authenticate the directory service user account that is used to
perform the search operation;

2. Search directory service (LDAP) on page 11: Perform a search
operation in the directory service. The result of the search
operation is a table that is stored in a variable.

3.6.5. Novell eDirectory

This section describes how user accounts in Novell eDirectory can be
managed with User Management Resource Administrator (UMRA).

Introduction

This section describes how user accounts in Novell eDirectory can be
managed with User Management Resource Administrator (UMRA). To
manage user accounts in Novell eDirectory, the LDAP protocol is used.

The main functions of UMRA to manage Novell eDirectory user accounts
are:

 Create user account

 Set user account password

 Manage user account attributes

 Delete user accounts

 Setup user account group memberships

All of these functions are described in this document. Sample projects
that implement these functions are available from the Tools4ever web-
site at http://www.tools4ever.com http://www.tools4ever.com.

The sample projects are implemented and tested in the following
environment:

 Novell Netware 5.60

 Novell eDirectory 8.6.0

The LDAP protocol supports secure (SSL) and not secure sessions. UMRA
supports both mechanisms. Because of confidentiality requirements, in
most environments, the secure SSL implementations will be used. This
chapter includes a section how to setup a secure LDAP environment
between the UMRA software and the Novell eDirectory environment.

Secure LDAP eDirectory environment

To setup a secure LDAP environment, certificates must be configured on
both the computer that runs the UMRA software and the Novell
eDirectory server. The certificates must be signed by a Certification
Authority that is trusted by both sides.

http://www.tools4ever.com/

UMRA Help

SSL Certification Authority

By default, Novell eDirectory installs and configures an SSL Certification
Authority and the eDirectory LDAP Server can be configured to use a
certificate from the Certification Authority. A simple method to setup
the certificates for both sides is to export the root certificate from the
Novell eDirectory Certification Authority and import that certificate on
the computer that runs the UMRA software. This procedure is described
step by step in the following section:

Enabling SSL on Novell eDirectory LDAP Server

Start the Novell management application ConsoleOne and locate the LDAP
Server item in eDirectory.

Figure 6: eDirectory shown in Novell ConsoleOne with the LDAP Server on server
SRVNW6.

UMRA Help

Access the properties of the LDAP Server. Several attributes deal with
the configuration of the SSL support of the LDAP Server.

Figure 7: Novell ConsoleOne: LDAP Server SSL attributes.

1. LDAP Enable SSL: Set to true to enable SSL support for the
Novell eDirectory server.

2. LDAP SSL Port: The TCP port used to access the LDAP Server.
Default LDAP SSL port: 636.

3. LDAP:keyMaterialName: The name of the SSL certificate used by
the LDAP Server. By default, a certificate is specified that is
issued by the Certification Authority of the Novell eDirectory
server.

By default, the SSL support is enabled on port 636 and a certificate is
configured. If you want to use a different port or certificate, you need to
update the attributes.

UMRA Help

Exporting the Novell eDirectory root certificate

To export the root certificate, select the LDAP Server certificate from
eDirectory.

Figure 8: Novell ConsoleOne: LDAP Server SSL attributes.

Access the properties of the certificate and navigate to the Trusted root

certificate of the certificate. Click Export.

Figure 9: Novell ConsoleOne: Properties of trusted root certificate.

This image cannot currently be displayed.

UMRA Help

Follow the instruction to export the root certificate to a file in binary
DER format. Do not include the private key of the certificate.

Importing the certificate on the UMRA computer

To complete, you need to import the exported certificate on the
computer that runs the LDAP Client, e.g. the UMRA software. The UMRA
software that communicates with the LDAP Server is either the UMRA

Console application or the UMRA Service. For each software module, the
procedure to import the certificate is different. For the UMRA Console
application, the certificate is imported for the logged on user account.
For the UMRA Service, the certificate must be imported for the
computer that runs the service.

Importing the certificate for the UMRA Console

In Microsoft Internet Explorer 6, select Tools, Internet options…,

Content, Certificates. Press Import… and follow the instructions of the
wizard. When asked, select the option Automatically select the certificate

store based on the type of certificate. When completed, you can check the
list with Trusted Root Certification Authorities. The list must contain the
new entry.

Figure 10: List with Trusted Root Certification Authorities showing the imported
LDAP Server certificate

UMRA Help

Importing the certificate for the UMRA Service

On the computer that runs the UMRA Service, start the Microsoft

Management Console by selecting menu option Start, Run. Enter MMC
and press Enter. Add the management snap-in to manage certificates
with menu option File, Add/Remove snap-in. Press Add and select snap-
in Certificates.

Figure 11: Add Certificates snap-in to Microsoft Management Console in order to
import the certificate for UMRA Service.

UMRA Help

Click Add and select the option to manage certificates for the Computer

account. Next select the Local computer and exit the configuration
dialogs. With the MMC you can now manage the certificates of the local
computer.

Figure 12: The MMC configured to manage the certificates of the local computer
as used by the UMRA Service.

To add the certificate, browse to the item Certificates of the Trusted

Root Certification Authorities and select menu option All tasks,

Import… and follow the instructions of the wizard. When asked, select
the option Automatically select the certificate store based on the type of

certificate. When completed, you can check the list with Trusted Root

Certification Authorities. The list must contain the new entry.

UMRA Help

Testing the certificate configuration

You can test the SSL configuration with the tool LDP.EXE, part of the
Windows Support Tools from Microsoft Windows Server 2003. (Note:
the LDP.EXE tool part of the Windows Support Tools from Microsoft
Windows 2000 does not support SSL). When the Windows Support Tools
for Microsoft Windows Server 2003 are installed, start the tool by
entering LDP.EXE on the command prompt. Select menu option
Connection, Connect…. Specify the connection settings and enable SSL.

Figure 13: LDAP.EXE connection settings

When the SSL certificates are not installed successfully, the connection
cannot be established.

Figure 14: LDP.EXE failure when SSL certificates are not or incorrectly configured.

UMRA Help

When the SSL are correctly installed, the connection is established with
the LDAP Server.

Figure 15: LDP.EXE successful connection setup using SSL.

When successfully configured, the UMRA software can communicate
with the LDAP Server using SSL.

Creating user accounts in Novell eDirectory

This example describes a mass project that is used to import a number
of user accounts from a csv-file into Novell eDirectory. The script of the
project is deliberately limited to the essential actions that deal with user
account creation in Novell eDirectory with UMRA using LDAP. A similar
script can be used with UMRA Form and Automation projects.

Example project

The example project can be found at the following location relative to
the UMRA Console program directory:

.\Example
Projects\LDAP\Novell\AddUserMass\Novell_eDir_CreateUserAccountM
ass.upj

The example project contains embedded input data representing user
accounts. For each line of the input data, the script does the following:

1. Setup a secure LDAP session with the LDAP Server;

2. Setup the LDAP modification data to add the user account;

3. Add the account.

UMRA Help

The following section describes the project in detail.

Figure 16: Example project to import bulk user accounts in Novell eDirectory
using UMRA and secure LDAP (SSL).

Setting up an LDAP session

The LDAP session is setup with the LDAP Server, in this case the
computer that runs Novell eDirectory: pacific.tools4ever.local2.

Figure 17: Setup LDAP session script action

The LDAP server is specified using a DNS name or TCP/IP address. The
LDAP port only needs to be specified when it does not equal the default
port (LDAP, no SSL: 389, LDAP with SSL: 636). The SSL encryption flag is
set to enable secure communication. When SSL is used, certificates need

UMRA Help

to be installed on both the LDAP Server and Client side. The User name
depends on the directory service implementation. In this case, an
organization O=Servers contains the administrator account admin that
is used to access the data. The password is not actually shown.

When the action is successfully executed, the session is initialized. The
session object is stored in a variable with default name:
%LdapSession%. This session is variable is used in subsequent actions
of the script.

Note: When the action is executed, the password specified is send over
the line. When SSL is enabled, the password is automatically encrypted
since all communication with the LDAP Server is encrypted. When SSL is
not used, the password is send as clear text.

Loading LDAP modification data

With the next action, the data structure used to add the user account is
prepared. This data structure contains a number of attributes, each with
one or more values. The exact attributes used to add a user account vary
for each directory service implementation that supports LDAP.

Figure 18: Load LDAP modification data script action.

UMRA Help

The resulting data structure is stored in a variable. In this example, the
default variable name %LdapData% is used to store the structure. The
variable is used in subsequent script actions.

According to the Novell eDirectory schema documentation, a user
account must have the following attributes defined:

1. objectClass: This attribute must get 3 values, top, person and
inetOrgPerson to make the new object a user account.

2. cn (Common Name): The common name is the unique identifier
of the object in the directory service.

3. sn (Surname): The surname attribute must have a text value,
representing the last name of the user account.

The common name is defined in the next action (Add directory service
object (LDAP)). The objectClass and sn attribute are initialized in the
modification data structure. Besides these attribute, also the
givenName, homePhone and userPassword attributes are setup.

Figure 19: Properties of action to setup LDAP modification data.

UMRA Help

Depending on the schema definition, an attributes can have a single or
multiple values. Values can be specified using variables. In the example
shown, the attributes sn, givenName and homePhone are specified
using variables %SurName%, %GivenName% and %HomePhone%
and linked to the input csv file. The objectClass attribute gets the same 3
values for each user account: top, person and inetOrgPerson as defined
by the eDirectory schema.

To setup an individual attribute, double click one of the attributes.

Figure 20: Dialog used to specify the modification type and values of a single
attribute.

This image cannot currently be displayed.

UMRA Help

Add directory service object

Finally the user account is created with script action Add directory

service object (LDAP). During this action, the UMRA software actually
communicates with the LDAP Server.

Figure 21: Add directory service object (LDAP) script action.

The action has 3 attributes:

1. LDAP session: The session is specified by a variable and must
have been initialized with a previously executed action Setup

LDAP session.

2. New object name: The common name of the new LDAP object.
The name must be specified as a distinguished name and
depends on the directory service structure. In this example, the
account is created in organizational unit UserAccounts, part of
the organization Tools4ever of the eDirectory tree. The first part
of the new name is composed from the 2 variables
%GivenName% and %SurName%. The total name must be
unique in the directory service.

3. Object data: The modification data structure that is the result of
script action Load LDAP modification data. The data is
referenced using a variable, %LdapData% in this example.

Log information

When executed successfully, the user account is created. The log file of a
successfully executed user account creation script is shown below:

Starting User Management Resource Administrator session, build 1207 at
11:58:45 11/18/2005

UMRA Help

11:58:45 11/18/2005 ***** Processing entry 241...

11:58:45 11/18/2005 Variable 1: %GivenName%=Circe

11:58:45 11/18/2005 Variable 2: %SurName%=Eris

11:58:45 11/18/2005 Variable 3: %HomePhone%=460-608-205

11:58:45 11/18/2005 Variable 4: %NowDay%=18

11:58:45 11/18/2005 Variable 5: %NowMonth%=11

11:58:45 11/18/2005 Variable 6: %NowYear%=2005

11:58:45 11/18/2005 Variable 7: %NowHour%=11

11:58:45 11/18/2005 Variable 8: %NowMinute%=58

11:58:45 11/18/2005 Variable 9: %NowSecond%=45

11:58:45 11/18/2005 Setting up LDAP sessions with host
'pacific.tools4ever.local2'. Using SSL encryption: 'Yes'.

11:58:45 11/18/2005 User name: 'CN=admin,O=Servers'.

11:58:45 11/18/2005 Secure LDAP session established with host
'pacific.tools4ever.local2' (Protocol: 'SSL 3.0 client-side', encryption: 'RC4
stream', cipher strength: 128 bits, hash: 'MD5', 128 bits, key exchange: 'RSA',
2048 bits).

11:58:45 11/18/2005 Authenticating user 'CN=admin,O=Servers'...

11:58:45 11/18/2005 User 'CN=admin,O=Servers' successfully authenticated on
LDAP server host 'pacific.tools4ever.local2'.

11:58:45 11/18/2005 LDAP session information stored in variable
'%LdapSession%'.

11:58:45 11/18/2005 Storing LDAP modification data in variable '%LdapData%'.

11:58:45 11/18/2005 LDAP modification data:

11:58:45 11/18/2005 ************** Modification data element: 0

11:58:45 11/18/2005 Operation: 'add', type of data: 'text'

11:58:45 11/18/2005 Attribute: 'objectClass'

11:58:45 11/18/2005 Value 0: 'top'

UMRA Help

11:58:45 11/18/2005 Value 1: 'person'

11:58:45 11/18/2005 Value 2: 'inetOrgPerson'

11:58:45 11/18/2005 ************** Modification data element: 1

11:58:45 11/18/2005 Operation: 'add', type of data: 'text'

11:58:45 11/18/2005 Attribute: 'sn'

11:58:45 11/18/2005 Value 0: 'Eris'

11:58:45 11/18/2005 ************** Modification data element: 2

11:58:45 11/18/2005 Operation: 'add', type of data: 'text'

11:58:45 11/18/2005 Attribute: 'givenName'

11:58:45 11/18/2005 Value 0: 'Circe'

11:58:45 11/18/2005 ************** Modification data element: 3

11:58:45 11/18/2005 Operation: 'add', type of data: 'text'

11:58:45 11/18/2005 Attribute: 'homePhone'

11:58:45 11/18/2005 Value 0: '460-608-205'

11:58:45 11/18/2005 ************** Modification data element: 4

11:58:45 11/18/2005 Operation: 'add', type of data: 'text'

11:58:45 11/18/2005 Attribute: 'userPassword'

11:58:45 11/18/2005 Value 0: 'secret'

11:58:45 11/18/2005 Adding LDAP directory service object 'cn=Circe Eris,
ou=UserAccounts,o=Tools4ever' with LDAP modification data obtained from
variable '%LdapData%'.

11:58:45 11/18/2005 ***** Ready processing entry 241...

11:58:45 11/18/2005 Total number of script action execution errors: 0.

End of session

UMRA Help

The log file shows the following information:

1. The LDAP session is setup using SSL with Novell eDirectory host
pacific.tools4ever.local2.

2. The account used to authenticate and access the LDAP Server is
cn=admin, o=Servers. The password specified is sent encrypted
over the line since SSL is enabled.

3. Once the connection is successfully initialized, the SSL encryption
parameters are shown. The user is authenticated and the session
structure is stored in variable %LdapSession%.

4. The LDAP modification data structure is setup and stored.

5. The item is added to the directory service, e.g. the user account
is created.

Setting a user account password on Novell eDirectory

This example describes a form project to reset the password of a
selected user account. With respect to the LDAP call, the project scripts
include the following features:

 Replace the attribute value of an existing attribute (password)

 Search user accounts in LDAP

UMRA Help

The project is intentionally implemented as simple as possible to show
the usage of LDAP script actions in the best possible way.

Figure 22: UMRA Forms application to reset passwords of Novell eDirectory user
accounts.

The result form shows a list with user accounts. The end-user can select
an account from the list and specify a new password. Next, the password
is set when the end-user clicks the Set password button.

Example project

The UMRA application consists of the following projects, described in
detail in the next sections. The example project can be found at the
following location relative to the UMRA Console program directory:

.\Example Projects\LDAP\Novell\ResetPassword

The project directory contains all three projects of the UMRA
application.

UMRA Help

Project Description

ResetPassword - InitializeVars Simple project with a script only to initialize
LDAP session and environment variables that
are used by the other projects.

ResetPassword - GetUsers Project with a script only to collect the user
accounts with an LDAP search and store the
results in a table.

Novell eDirectory - Reset
password

The main project that contains the form of the
UMRA application and the script to reset the
password of the selected user account.

Table 6: Projects of UMRA application to reset the password of
Novell eDirectory user accounts.

UMRA application flow

This section briefly describes the most important features executed
when the UMRA application runs:

1. In the UMRA Forms application, the end-user selects the form
project - Novell eDirectory - Reset password. A request is sent to
the UMRA Service to create the form and contents of the form
and return it to the UMRA Forms client.

2. As a response, the UMRA Service checks the access rights and
loads the form of the Novell eDirectory - Reset password
project. As the initial project, the ResetPassword - GetUsers is
configured. Before the form is created, the script of this project
is executed.

3. The ResetPassword - GetUsers project executes the variable
initialization project ResetPassword - InitializeVars. Next, the
project connects to the LDAP server to setup a session, and
queries for the user accounts. The results are stored in a table
and shown in the form.

4. The end-user selects a user account, enters a new password and
submits the form.

5. The script of the main project, Novell eDirectory - Reset

password is now executed. First, the variables are initialized
(project: ResetPassword - InitializeVars). An LDAP modification
data structure that contains the new password is initialized. The
password is updated. The procedure contains with step 2.

UMRA Help

Project: ResetPassword - InitializeVars

The project only contains a script, not a form. The script initializes the
variables that are specific to your environment. The other projects used
in the UMRA application do not contain any other environment
dependant variable.

Figure 23: Script actions of initialization project ResetPassword -
InitializeVars.

The variables initialized are used to setup the LDAP session
(%LdapServer%, %LdapUserName and %LdapPassword%) and to search
for user accounts in the eDirectory subtree (%LdapUserTreeDn%).

The project is used in the UMRA application at two places:

1. As the initial project of project ResetPassword - GetUsers;

2. The project is also executed as the first line of the script of the
main project Novell eDirectory - Reset password to initialize the
variables.

Note that the password specified is encrypted. The actual value is
obtained by decryption just before the actual session is setup.

Project: ResetPassword - GetUsers

The project contains a script only, not a form. The project is configured

as the initial project of the main project. The script is therefore
executed by the UMRA Service, just before the form is created. Goal of
the project is to return a variable (%LdapUsers%) that holds a table with
all user accounts.

UMRA Help

The script of the project establishes a connection with the LDAP Server
to perform a query to find user accounts. The accounts are stored in a
table variable.

Figure 24: Script action to execute script of project ResetPassword -
InitializeVars.

Before the LDAP session is setup, the variables used are initialized. Next,
the LDAP session is established.

Figure 25: Script action to setup LDAP session.

This image cannot currently be displayed.

UMRA Help

In this case, the session is encrypted so all communication between the
UMRA software and the LDAP Server is secure. The resulting LDAP
session is stored in the LDAP session property output variable
%LdapSession%.

Figure 26: Script action to search in Novell eDirectory.

Finally, the actual search is executed. The search uses the established
session (variable: %LdapSession%) to communicate with the LDAP
Server. The results of the search are stored in table variable
%LdapUsers%. Note that the variable contains all of the table data.

In the subtree, specified by %LdapUserTreeDn% (example:
ou=UserAccounts,o=Tools4ever), the search operation collects all
directory service items of type User (Filter: objectClass=User). For each
matching item, e.g. all user accounts, the common name (cn) and the
distinguished name is returned. So the final table contains 2 columns.
The common name is used to present the end-user a user-friendly name
while the distinguished name is used to refer to the actual account.

This image cannot currently be displayed.

UMRA Help

Project: Novell eDirectory - Reset password

The main project of the UMRA application contains both a form and a
script. The form show a list with user accounts and a text input box to
specify the new password for the selected user account.

Figure 27: Preview in UMRA Console of project Novell eDirectory - Reset
password

When the Set password button is pressed, the form is submitted to the
UMRA Service and the form project is executed.

UMRA Help

Table with user accounts

Besides some text elements, the project form contains a table, password
input field and a submit button.

Figure 28: Definition of the form of project Novell eDirectory - Reset password

UMRA Help

The table shows the user accounts, collected with project
ResetPassword - GetUsers. The table data is stored in variable
%LdapUsers%. When setting up the form generic table, note that the
columns need to be defined for the table. The variable %LdapUsers%
stores the table data, but not the name of the table columns.

Figure 29: Specification of columns of generic table derived from variable
%LdapUsers%.

UMRA Help

In order to use the table data successfully, you need to know the
number of columns and the name and type of data for each column. You
must enter the name of the columns manually. In the example shown,
the columns are called User account and UserDN, referencing the name
of the user account and the distinguished name. When configuring the
columns for the form, the width of the column with the distinguished
name is set to 0.

Figure 30: Specification of the table columns shown in the form.

With this mechanism, you can return the name of the selected user
account in a variable (%UserDN%) but not show the (ugly format) name
to the end-user. Instead, the common name is shown.

Setting a password submit button

When the Set password button is pressed, the form output variables are
collected and send to the UMRA Service. The form output variables are:

1. %UserName%: The user-friendly name of the selected user
account. This variable is returned only for logging purposes;

UMRA Help

2. %UserDN%: The name that uniquely identifies the selected user
account. The variable is used to identify the directory service
user account of which the password is reset.

3. %NewPassword%: The new password specified for the selected
user account.

The variables form the input of the project's script.

Script to reset a password

The script to reset the password of the selected user account connects
to the LDAP Service, initializes the attributes modification data and
updates the directory service user account.

Figure 31: Script action to execute the script of project ResetPassword -
InitializeVars.

With the Execute script action, the variables used to setup the LDAP
session are initialized. The LDAP session is initialized using SSL.

Figure 32: Script action to setup the LDAP session.

The LDAP modification data is setup with a single attribute that is used
for the user account password. The name of the attribute, as defined by

UMRA Help

the eDirectory schema is: userPassword. The type of modification is:
replace since the current attribute value must be replaced by the new
one.

Figure 33: Script action to initialize the LDAP modification data.

The value of the attribute is set equal to the specified variable
%NewPassword%.

When the modification data is setup, the update can be made.

Figure 34: Script action to modify the directory service item.

The action is completely specified by the following variables:

1. %LdapSession%: The data structure representing the LDAP
session with the LDAP Server.

2. %UserDN%: The distinguished name of the of the selected user
account. The name identifies the directory service item, e.g. the
user account.

3. %LdapData%: The modification data, holding the new
replacement value of the password attribute of the user account.

When the script is executed, the form is returned to allow the end-user
to reset the password of the next user account.

This image cannot currently be displayed.

UMRA Help

Deleting user accounts in Novell eDirectory

To delete user accounts or other directory service items, a very simple
UMRA script is required. The script contains two action only:

1. Setup LDAP session on page 5: Connect to the LDAP Server and
authenticate the connecting eDirectory user account;

2. Delete directory service object (LDAP) on page 11: Delete the
directory service object or item. The object to delete must be
specified by its distinguished name. Example: cn=John Smith,
ou=SomeOU, o=Tools4ever.

To delete an item from the directory service, no attribute modification
structure is required. When the directory service item is deleted, all
attributes of the item are deleted automatically.

Setting up user account group memberships on Novell eDirectory

To setup user account group memberships on Novell eDirectory, you
need to update the attributes of two directory service items: the user
account and the group. This is specified by the eDirectory service
schema.

The following table shows the attribute updates in order to add a user
account to a group:

Item Attribute Value update action

User account groupMembership Add distinguished name of group

User account securityEquals Add distinguished name of group

Group uniqueMember Add distinguished name of user
account

Group equivalentToMe Add distinguished name of user
account.

Table 7: Required attribute value changes to update group membership in Novell
eDirectory.

UMRA Help

The example project is not very user-friendly but shows exactly how to
use the LDAP script actions. The example project can be found at the
following location, relative to the UMRA Console program directory:

.\Example Projects\LDAP\Novell\AddToGroup\Novell eDirectory - Add
User To Group.ufp

The UMRA application consists of a single project with a form and script.
The form show some text fields and two input fields for the
distinguished names of the user account and the group.

Figure 35: Form to enter the distinguished names of the user accounts and
group.

A more user-friendly form is available from the example project,
described in the next topic.

The values entered in the form input fields are stored in the variables
%UserDN% and %GroupDN%.

UMRA Help

When the end-user clicks the Add button, the script of the project is
executed. The script first initializes the session with the LDAP Server.
Next, the modification data to update the user account attributes are
initialized.

Figure 36 Script action to initialize the LDAP modification data to update user
account attributes groupMembership and securityEquals.

Two attributes of the user account, groupMembership and
securityEquals are updated by adding the value of the distinguished
name of the group (%GroupDN%).

Figure 37: Script action to update the attributes of the user account.

Next, the attributes of the group are updated.

This time, two attributes of the group, uniqueMember and
equivalentToMe are updated by adding the value of the distinguished

UMRA Help

name of the user account (%UserDN%).

Figure 38 Script action to initialize the LDAP modification data to update group
attributes uniqueMember and equivalentToMe.

When the last action is executed successfully, the user account has
become a member of the group.

Figure 39: Script action to update the attributes of the group.

If the last action fails, it is advised to remove the values from the user
account attributes that were added in the previous modification action.
To keep the script clean and clear, this action is not part of the example
script.

The UMRA Service log file shows all of the action executed.

UMRA Service log

17:40:23 11/24/2005 Variable 1: %UserDN%=cn=Melanip Carg,
ou=UserAccounts,o=Tools4ever

UMRA Help

17:40:23 11/24/2005 Variable 2: %GroupDN%=cn=SupportGroup,
o=Tools4ever

17:40:23 11/24/2005 Variable 3:
%UmraFormSubmitAccount%=T4ELOC2\Administrator

17:40:23 11/24/2005 Variable 4: %NowDay%=24

17:40:23 11/24/2005 Variable 5: %NowMonth%=11

17:40:23 11/24/2005 Variable 6: %NowYear%=2005

17:40:23 11/24/2005 Variable 7: %NowHour%=17

17:40:23 11/24/2005 Variable 8: %NowMinute%=40

17:40:23 11/24/2005 Variable 9: %NowSecond%=23

17:40:23 11/24/2005 Variable 10: %LdapSession%=(0,0X0)

17:40:23 11/24/2005 Variable 11: %LdapData%=(0,0X0)

17:40:23 11/24/2005 Setting up LDAP sessions with host
'pacific.tools4ever.local2'. Using SSL encryption: 'Yes'.

17:40:23 11/24/2005 User name: 'cn=Admin,O=Servers'.

17:40:23 11/24/2005 Secure LDAP session established with host
'pacific.tools4ever.local2' (Protocol: 'SSL 3.0 client-side', encryption: 'RC4
stream', cipher strength: 128 bits, hash: 'MD5', 128 bits, key exchange: 'RSA',
2048 bits).

17:40:23 11/24/2005 Authenticating user 'cn=Admin,O=Servers'...

17:40:23 11/24/2005 User 'cn=Admin,O=Servers' successfully authenticated on
LDAP server host 'pacific.tools4ever.local2'.

17:40:23 11/24/2005 LDAP session information stored in variable
'%LdapSession%'.

17:40:23 11/24/2005 Storing LDAP modification data in variable '%LdapData%'.

17:40:23 11/24/2005 LDAP modification data:

17:40:23 11/24/2005 ************** Modification data element: 0

17:40:23 11/24/2005 Operation: 'add', type of data: 'text'

UMRA Help

17:40:23 11/24/2005 Attribute: 'groupMembership'

17:40:23 11/24/2005 Value 0: 'cn=SupportGroup, o=Tools4ever'

17:40:23 11/24/2005 ************** Modification data element: 1

17:40:23 11/24/2005 Operation: 'add', type of data: 'text'

17:40:23 11/24/2005 Attribute: 'securityEquals'

17:40:23 11/24/2005 Value 0: 'cn=SupportGroup, o=Tools4ever'

17:40:23 11/24/2005 Modifying LDAP directory service object 'cn=Melanip
Carg, ou=UserAccounts,o=Tools4ever' with LDAP modification data obtained
from variable '%LdapData%'.

17:40:23 11/24/2005 Storing LDAP modification data in variable '%LdapData%'.

17:40:23 11/24/2005 LDAP modification data:

17:40:23 11/24/2005 ************** Modification data element: 0

17:40:23 11/24/2005 Operation: 'add', type of data: 'text'

17:40:23 11/24/2005 Attribute: 'uniqueMember'

17:40:23 11/24/2005 Value 0: 'cn=Melanip Carg,
ou=UserAccounts,o=Tools4ever'

17:40:23 11/24/2005 ************** Modification data element: 1

17:40:23 11/24/2005 Operation: 'add', type of data: 'text'

17:40:23 11/24/2005 Attribute: 'equivalentToMe'

17:40:23 11/24/2005 Value 0: 'cn=Melanip Carg,
ou=UserAccounts,o=Tools4ever'

17:40:23 11/24/2005 Modifying LDAP directory service object
'cn=SupportGroup, o=Tools4ever' with LDAP modification data obtained from
variable '%LdapData%'.

17:40:24 11/24/2005 Form message:
'11/24/2005,17:40:23,T4ELOC2\Administrator,"Form submit",OK,"Novell
eDirectory - Add User To Group"'

UMRA Help

Managing user account group memberships on Novell eDirectory

A full functional wizard to manage group memberships is described in
this example. The wizard contains a number of projects, to implement
the wizard.

Besides the LDAP script actions, the wizard project scripts contain a lot
of other UMRA actions that are used to make the wizard more user-
friendly. The wizard can be extended in many ways to improve the
functionality.

The wizard contains 2 screens: The first screen is used to select a user
account.

Figure 40: Update user group membership wizard, step 1: Select user.

UMRA Help

The second screen shows the available groups and the groups of which
the user account is a member. The end-user can add the selected user
account to the available groups and remove the group membership from
groups of which the user account is a member.

Figure 41: Update user group membership wizard, step 2: Select group.

The wizard contains a number of projects. The projects can be found at
the following location, relative to the UMRA Console program directory:

.\Example projects\LDAP\Novell\ManageGroupMembershipWizard

The following table briefly describes the projects of the wizard.

Project Description

Novell eDirectory -
InitializeVars.ufp

Initialize the variables that user used in the
other project. This project is executed by the
other projects.

Novell eDirectory - Get
Users.ufp

Find the user accounts from which the group
memberships need to be managed. The users
will be presented in a list.

Novell eDirectory - Find
Group Name.ufp

From a distinguished group name, find the
more user-friendly common name.

UMRA Help

Novell eDirectory - Manage
groupmembership.ufp

Show a list with user accounts and let the end-
user select one of the accounts.

Novell eDirectory - Update
Groupmembership.ufp

Show the list with available groups and the
groups of which the user account is a member.
When one of the buttons is pressed, add the
selected user to the selected group or remove
the user from a selected group or let the end-
user select another user account.

Table 8: Projects of UMRA application to manage Novell eDirectory
group memberships.

3.6.6. Linux OpenLDAP

This section describes how user accounts in Linux OpenLDAP can be
managed with User Management Resource Administrator (UMRA).

Introduction

In many networks environment, Linux servers are integrated in the
Active Directory network. For most Linux distributions, an LDAP
implementation is available: OpenLDAP. OpenLDAP is an Open Source
implementation of LDAP. On Linux, OpenLDAP is used to setup a
directory service for different applications and implementations of for
instance

 Linux Pluggable Authentication Modules (PAM)

 Linux Name Service Switch (NSS)

 Samba

 FTP/HTTP

 FreeRadius

Such applications can be LDAP enabled using OpenLDAP. The UMRA
LDAP actions can be used to manage the OpenLDAP directory service in
order to create, manage, delete, edit and search directory service items.

Depending on the package and compilation, OpenLDAP supports SSL. In
this case, the LDAP communication between the LDAP Client (UMRA)
and the LDAP Server (Linux OpenLDAP) is secure using SSL.

In this document, the following Linux and OpenLDAP environment is
used:

 Debiun GNU/Linux 3.1 (kernel 2.4.27-2-386)

 OpenLDAP, version 2.2.23-8

This section on Linux OpenLDAP covers the following topics:

1. Setting up a secure Linux OpenLDAP environment on page 57

2. Example project to create directory service items on page 65

Secure Linux OpenLDAP environment

To setup a secure Linux OpenLDAP environment, SSL certificates must be
installed on the LDAP Server (Linux OpenLDAP) and the LDAP Client
(UMRA software).

UMRA Help

The OpenLDAP configuration file slapd.conf must be updated with the
SSL configuration settings. The following parameters must be specified:

Parameter Description

TLSCipherSuite Specification of ciphers accepted by
the LDAP Server. Examples:

RC4:DES:EXPORTS40

HIGH:MEDIUM

3DES:SHA1:+SSL2

See the ciphers(1) manpage
distributed with OpenSSL for more
information.

TLSCertificateFile The name of the file that contains the
certificate to be used by the LDAP
Server

TLSCertificateKeyFile The name of the file that contains the
associated private key of the
certificate.

Regarding the certificate, two file names are specified, one for the
certificate itself and one for the associated private key. To generate
these files, the following procedure can be used.

The certificates are first generated on the Linux computer using the
CA.pl script, part of the OpenSSL installation.

t4elnx:/ldap-ssl# /usr/lib/ssl/misc/CA.pl -newcert

Generating a 1024 bit RSA private key

.............++++++

......................++++++

writing new private key to 'newreq.pem'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

UMRA Help

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:nl

State or Province Name (full name) [Some-State]:utrecht

Locality Name (eg, city) []:baarn

Organization Name (eg, company) [Internet Widgits Pty Ltd]:tools4ever

Organizational Unit Name (eg, section) []:development

Common Name (eg, YOUR name) []:t4elnx.tools4ever.local2

Email Address []:

Certificate (and private key) is in newreq.pem

The above listing shows how to create the certificate with the command

CA.pl -newcert

The certificate is self signed and no Certification Authority is required.
The contents specified for the fields does not really matter, except for
the following fields:

Common Name: Specify the dns name of the computer that runs the
Linux OpenLDAP.

Email Address: Leave this field blank.

When ready, the file newreq.pem contains both the private key and the
certificate. The private key is password protected. The total file looks like
this:

-----BEGIN RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

UMRA Help

DEK-Info: DES-EDE3-CBC,D704DED67B9622AB

1aUi3gvkxF+kfnpuc0BH7lTU+du4TgoPu/QDMGVUnhuEBN3EXu+m0bIfEWrljqzw

fujUUNIemHGO3fKbUaJa7Q5EhWAMWLv7nE/U+ud4Smul6zjXj0Snv6aM6jOvAH
/9

MHRFO8jB0O1zfmzA6h6wq0v+0GknS1sSH+bLlm1Hb9wlGilRZTopPZUfd1FhTdO
F

odNWfhVIL2CoIlnT/+0qHKl1YqF5PCdkKxGLbMC9IM30mZuOZSbDeDQMiOtRPQ
nD

WMgJuWChtHWTcVfriRbEPEimPQ7zOhq5PFsSZXwB8TjXCL8m42knL9h/csBZLjW
l

Eq4fgCy4odSoQA6bVsRdXHMWYzKLTArUKXkh9yCKimx2EeDVWgl80hm3htus5V
rR

VCbflBmuA3gghgEFjsrYps5jSsYCIVbesOelyT/K6uafKnax1JsfdKfYKzbMwfOa

Qcq13Mv1EFMlyFROUMMvFiVMjUQnfsaDCMglJxj+XuDFmOWHUUG6CJp0f+XH
2Sbg

xuACcyMomKlWHzBIGCk6W0p5Xeavnboj8ZiYPcAvQ0vUEGt5owXwJVbyblafuRd
p

JoHOpyin+q+2pK4oZpfZO0yuTfFP+sLF6iIuG77b5QRZS2kLy6mK+8R0qfVjI7Uv

VAItadLhyKKAzeTQLOgoArmNe6iAXiJ03cJnVR+qkoW6bmBSuz7fhYD2k8Xyh/hk

9Uh35ALf+GSZ8c5kYVGgLcrr0d7m82bKfGP2fmx3CxWL7wIwSAMP8ZZxNof3vJAf

crr96ju7/0MMjVskyh6XeIXClDUzbWke+9MVwGsUGnTaxoCN/s1kag==

-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----

MIIDXDCCAsWgAwIBAgIJALbVQcGOAzn4MA0GCSqGSIb3DQEBBAUAMH0xCzAJ
BgNV

BAYTAm5sMRAwDgYDVQQIEwd1dHJlY2h0MQ4wDAYDVQQHEwViYWFybjETMB
EGA1UE

ChMKdG9vbHM0ZXZlcjEUMBIGA1UECxMLZGV2ZWxvcG1lbnQxITAfBgNVBAMTG
HQ0

UMRA Help

ZWxueC50b29sczRldmVyLmxvY2FsMjAeFw0wNTEyMDIxMTA4NTRaFw0wNjEy
MDIx

MTA4NTRaMH0xCzAJBgNVBAYTAm5sMRAwDgYDVQQIEwd1dHJlY2h0MQ4wDA
YDVQQH

EwViYWFybjETMBEGA1UEChMKdG9vbHM0ZXZlcjEUMBIGA1UECxMLZGV2ZWxv
cG1l

bnQxITAfBgNVBAMTGHQ0ZWxueC50b29sczRldmVyLmxvY2FsMjCBnzANBgkqhki
G

9w0BAQEFAAOBjQAwgYkCgYEAq6flBA9IsTX3dUwN5pNIGM3RTE4Ctnc5HgyLmo
NM

LyDLrNLIijSlf717aNCae1RzpLZnezHiug7dRZKIcqBjGp1wmTohoIbSiHJSOdKp

B5YK4nT2oRyrGnFM/XtftagosOQnWOYCEk3iA5Iyk28i4wMZpl6Ad//oZEDBg47C

WHMCAwEAAaOB4zCB4DAdBgNVHQ4EFgQUOYKI1q4QzlHlLBVLWpCikwIvhWA
wgbAG

A1UdIwSBqDCBpYAUOYKI1q4QzlHlLBVLWpCikwIvhWChgYGkfzB9MQswCQYDV
QQG

EwJubDEQMA4GA1UECBMHdXRyZWNodDEOMAwGA1UEBxMFYmFhcm4xEzAR
BgNVBAoT

CnRvb2xzNGV2ZXIxFDASBgNVBAsTC2RldmVsb3BtZW50MSEwHwYDVQQDExh0
NGVs

bngudG9vbHM0ZXZlci5sb2NhbDKCCQC21UHBjgM5+DAMBgNVHRMEBTADAQH
/MA0G

CSqGSIb3DQEBBAUAA4GBAGqhYqMj6p1h6zoF/uTlXUho9alKYeFmggwr7mm4P
XJV

4KDYWD/XPNIHEJxOj0Y9zOJmsTIN+/pYBLm6xYri5Lbm9NWS3AmM0Gpn63LDb8
MB

O1CqEFOMWOt4GSBHGkkJF/9WOkQHCfunS3t7bYQyhcM1QdfsWl52Z77FAcYjr
GHe

-----END CERTIFICATE-----

To remove the password protection from the private key and to export
the private key that is used by the LDAP Server, enter the following
command:

UMRA Help

 openssl rsa -in newreq.pem slapd-key.pem

On output, the file slapd-key.pem contains the private key with no
password protection.

-----BEGIN RSA PRIVATE KEY-----

MIICXQIBAAKBgQCrp+UED0ixNfd1TA3mk0gYzdFMTgK2dzkeDIuag0wvIMus0siK

NKV/vXto0Jp7VHOktmd7MeK6Dt1FkohyoGManXCZOiGghtKIclI50qkHlgridPah

HKsacUz9e1+1qCiw5CdY5gISTeIDkjKTbyLjAxmmXoB3/+hkQMGDjsJYcwIDAQAB

AoGBAJ/lQg/5CLaB1aM+mAg7E0J/ncGdPSuofNz/xJ7GRRX1T6QJqGIMzkjiQO2O

uwe80AgTHOuFuXOk2vqul0lnG0gt561TgpYn8NA987MGYMsj5Vw/wV+bl+tZW/
9p

ZoFJlRrdIxtfrOsejGlpxCGs+TWdzzuecoqIY7nhZSr9CTiRAkEA047LiBn0mEym

leQv6a3UXw23VvxGwkdAD9OQM9YZWl7lycXdKQPL3VYbYMUq0v9MEGJk+zGr4
eYu

EQS7iT3TGQJBAM+3PifZwz7No/hmkfjELNNB23C3kwQCpNy9knHWbrMEeJQOF
ucK

SC+1b2/D+RZ55+2zeJnLC9zdqg1WiLc8pWsCQDlFuRf5Xtw0NAz0H3x1kL7C6dVk

qotB2rfuIGXIGkj6096R8FOAMZqUCwlhlzxT3PW6jXfrdIrNU79LtrFqyVECQQDI

J0vWfKj+KIv7PWMlcmu7OfepWstojt+r8WRfG4DaMdG64QTCpw6+Ijf6W733IYsS

auEoWRbaQiKt7ZeZ8e93AkBLRx6O3ez3Jj/5hDL57jXFeg/THV59qCEBOkcKjPA7

BAnnjPnQGK5h32g4IfU5Mf0jQTapxu1icNhstFhwFAIq

-----END RSA PRIVATE KEY-----

In a real environment, this file should be highly protected since it
contains the main secret: the private key (You should never publish the
contents of this file in a document). From the other file, newreq.pem,
you need to create a file that contains the certificate only. In this
example description, the certificate from the file is stored in a new file
slapd-cert.pem.

This file should contains something like this:

-----BEGIN CERTIFICATE-----

UMRA Help

MIIDXDCCAsWgAwIBAgIJALbVQcGOAzn4MA0GCSqGSIb3DQEBBAUAMH0xCzAJ
BgNV

BAYTAm5sMRAwDgYDVQQIEwd1dHJlY2h0MQ4wDAYDVQQHEwViYWFybjETMB
EGA1UE

ChMKdG9vbHM0ZXZlcjEUMBIGA1UECxMLZGV2ZWxvcG1lbnQxITAfBgNVBAMTG
HQ0

ZWxueC50b29sczRldmVyLmxvY2FsMjAeFw0wNTEyMDIxMTA4NTRaFw0wNjEy
MDIx

MTA4NTRaMH0xCzAJBgNVBAYTAm5sMRAwDgYDVQQIEwd1dHJlY2h0MQ4wDA
YDVQQH

EwViYWFybjETMBEGA1UEChMKdG9vbHM0ZXZlcjEUMBIGA1UECxMLZGV2ZWxv
cG1l

bnQxITAfBgNVBAMTGHQ0ZWxueC50b29sczRldmVyLmxvY2FsMjCBnzANBgkqhki
G

9w0BAQEFAAOBjQAwgYkCgYEAq6flBA9IsTX3dUwN5pNIGM3RTE4Ctnc5HgyLmo
NM

LyDLrNLIijSlf717aNCae1RzpLZnezHiug7dRZKIcqBjGp1wmTohoIbSiHJSOdKp

B5YK4nT2oRyrGnFM/XtftagosOQnWOYCEk3iA5Iyk28i4wMZpl6Ad//oZEDBg47C

WHMCAwEAAaOB4zCB4DAdBgNVHQ4EFgQUOYKI1q4QzlHlLBVLWpCikwIvhWA
wgbAG

A1UdIwSBqDCBpYAUOYKI1q4QzlHlLBVLWpCikwIvhWChgYGkfzB9MQswCQYDV
QQG

EwJubDEQMA4GA1UECBMHdXRyZWNodDEOMAwGA1UEBxMFYmFhcm4xEzAR
BgNVBAoT

CnRvb2xzNGV2ZXIxFDASBgNVBAsTC2RldmVsb3BtZW50MSEwHwYDVQQDExh0
NGVs

bngudG9vbHM0ZXZlci5sb2NhbDKCCQC21UHBjgM5+DAMBgNVHRMEBTADAQH
/MA0G

CSqGSIb3DQEBBAUAA4GBAGqhYqMj6p1h6zoF/uTlXUho9alKYeFmggwr7mm4P
XJV

4KDYWD/XPNIHEJxOj0Y9zOJmsTIN+/pYBLm6xYri5Lbm9NWS3AmM0Gpn63LDb8
MB

UMRA Help

O1CqEFOMWOt4GSBHGkkJF/9WOkQHCfunS3t7bYQyhcM1QdfsWl52Z77FAcYjr
GHe

-----END CERTIFICATE-----

Now, update OpenLDAP configuration file, so that it contains the
following lines to enable SSL:

TLSCipherSuite HIGH:MEDIUM

TLSCertificateFile /ldap-ssl/slapd-cert.pem

TLSCertificateKeyFile /ldap-ssl/slapd-key.pem

The file names should point to the locations of the files with the
certificate and the associated private key. Finally, restart the LDAP
Server:

 /etc/init.d/slapd restart

The LDAP Server is now able to communicate using SSL. Now, the
certificate must be imported on the computer that runs the UMRA
software: Copy the file slapd-cert.pem to the computer that runs the
UMRA software and follow the instructions as described in section:
Import the certificate on the UMRA computer.

When ready, the test with LDP.EXE, part of the Windows Support Tools,
should show a result as in the following figure:

UMRA Help

By default, you can then bind with the admin account:

cn=admin,dc=tools4ever,dc=local2

to authenticate the user account.

Creating directory service items with OpenLDAP on Linux

The example project describes a mass project to import directory service
items. On Linux, different applications use different LDAP schemas. In
this example project, the default general schema is used. To create
directory service items that are used by LDAP enabled applications,
modification might be required. Examples of these applications are
Samba, PAM, NSS, FTP/HTTP, FreeRadius.

The example project can be found in the following location, relative to
the UMRA Console program directory:

.\Example Projects\LDAP\Linux\CreateItemMass\LinuxCreateMass.upj

The project contains embedded input data representing user accounts.
For each line of the input data, the project repeats the following steps:

1. Setup a secure LDAP session with the LDAP Server running on the Linux
computer on page 66;

2. Setup an LDAP modification data structure that contains all the attributes
to create a person directory service item on page 67.

UMRA Help

3. Add the item to the directory service in a specific organizational unit on
page 68.

The following sections describes the script of the project in detail.

Setting up a secure session with Linux LDAP Server

The LDAP session is setup with the Linux computer
t4elnx.tools4ever.local2. To authenticate the session, the full
distinguished name of the administrator root account is specified. The
password of the account is encrypted. It is decrypted just before the
UMRA script engine needs it to access the LDAP Server.

Figure 42: Script action to setup a secure LDAP session with the OpenLDAP Linux
server.

UMRA Help

The session is encrypted using SSL. When the action is executed, the
LDAP session is initialized. The associated session data is stored in the
variable specified for property Ldap session (default variable name:
%LdapSession%). The variable is used in the subsequent script actions.

Specifying LDAP attributes and values of directory service item

In the next script action, the LDAP modification data structure is
initialized. The structure must contain all the attributes and values of the
new directory service item.

Figure 43: Script action to initialize the LDAP modification data that is used to
create an person item in the directory service on Linux using OpenLDAP.

To create a person in the directory service, the following attributes are
used:

Attribute Description

objectClass Defines the type of the directory service item that must
be created. Contains multiple values: inetOrgPerson,
organizationalPerson, person. The attribute values are
the same for items created.

UMRA Help

cn The common name of the person. SAM account name
of the new user account. The value is set equal to the
variable combination %GivenName%
%SurName% that is read from the input file.

sn The surname of the new person. This is a mandatory
attribute. The value is set equal to the variable
%SurName%.

telephoneNumber An example of an attribute as defined in the schema.
The value is set equal to the variable
%HomePhone%, copied from the input file.

givenName An example of an attribute that is available though one
of the parent object classes: The givenName attribute
is defined for object class inetOrgPerson. Since the
objectClass values for the new directory service item
include the value inetOrgPerson, the attribute exists
for the object that is created with this action.

Table 9: LDAP attributes to create an user account in Active
Directory.

Adding the person directory service item

Finally, the person directory service item is created with this action.

Figure 44: Script action to add the person to the Linux OpenLDAP directory
service.

Add person directory service item

The LDAP session and Object data properties are specified using
variables. The New object name property specifies the full object
distinguished name of the item and thus determines the position in the
directory service tree. This name must be unique within the directory
service. In this example, all person items are created in the same
organizational unit: people. The common name (cn) is copied from the
input data:

UMRA Help

cn=%GivenName% %SurName%,
ou=people,dc=tools4ever,dc=local2

Note that the common name (cn) is specified on two locations:

1. As an attribute in action Load LDAP modification data.

2. In this action Add directory service object (LDAP).

If the names do not correspond, a naming violation error occurs and the
person directory service item is not created.

Logging information

UMRA Console log of user creation using secure LDAP

When executed successfully, the UMRA Console log file produces a log
file as shown below:

Starting User Management Resource Administrator session, build 1213 at
13:45:12 12/06/2005

13:45:12 12/06/2005 ***** Processing entry 66...

13:45:12 12/06/2005 Variable 1: %GivenName%=Tece

13:45:12 12/06/2005 Variable 2: %SurName%=Cowsake

13:45:12 12/06/2005 Variable 3: %HomePhone%=304-411-583

13:45:12 12/06/2005 Variable 4: %NowDay%=06

13:45:12 12/06/2005 Variable 5: %NowMonth%=12

13:45:12 12/06/2005 Variable 6: %NowYear%=2005

13:45:12 12/06/2005 Variable 7: %NowHour%=13

13:45:12 12/06/2005 Variable 8: %NowMinute%=45

13:45:12 12/06/2005 Variable 9: %NowSecond%=12

13:45:12 12/06/2005 Setting up LDAP sessions with host
't4elnx.tools4ever.local2'. Using SSL encryption: 'Yes'.

13:45:12 12/06/2005 User name: 'cn=admin,dc=tools4ever,dc=local2'.

13:45:12 12/06/2005 Secure LDAP session established with host
't4elnx.tools4ever.local2' (Protocol: 'TLS 1.0 client-side', encryption: 'RC4

UMRA Help

stream', cipher strength: 128 bits, hash: 'MD5', 128 bits, key exchange: 'RSA',
1024 bits).

13:45:12 12/06/2005 Authenticating user 'cn=admin,dc=tools4ever,dc=local2'...

13:45:12 12/06/2005 User 'cn=admin,dc=tools4ever,dc=local2' successfully
authenticated on LDAP server host 't4elnx.tools4ever.local2'.

13:45:12 12/06/2005 LDAP session information stored in variable
'%LdapSession%'.

13:45:12 12/06/2005 Storing LDAP modification data in variable '%LdapData%'.

13:45:12 12/06/2005 LDAP modification data:

13:45:12 12/06/2005 ************** Modification data element: 0

13:45:12 12/06/2005 Operation: 'add', type of data: 'text'

13:45:12 12/06/2005 Attribute: 'objectClass'

13:45:12 12/06/2005 Value 0: 'person'

13:45:12 12/06/2005 Value 1: 'organizationalPerson'

13:45:12 12/06/2005 Value 2: 'inetOrgPerson'

13:45:12 12/06/2005 ************** Modification data element: 1

13:45:12 12/06/2005 Operation: 'add', type of data: 'text'

13:45:12 12/06/2005 Attribute: 'cn'

13:45:12 12/06/2005 Value 0: 'Tece Cowsake'

13:45:12 12/06/2005 ************** Modification data element: 2

13:45:12 12/06/2005 Operation: 'add', type of data: 'text'

13:45:12 12/06/2005 Attribute: 'sn'

13:45:12 12/06/2005 Value 0: 'Cowsake'

13:45:12 12/06/2005 ************** Modification data element: 3

13:45:12 12/06/2005 Operation: 'add', type of data: 'text'

UMRA Help

13:45:12 12/06/2005 Attribute: 'telephoneNumber'

13:45:12 12/06/2005 Value 0: '304-411-583'

13:45:12 12/06/2005 ************** Modification data element: 4

13:45:12 12/06/2005 Operation: 'add', type of data: 'text'

13:45:12 12/06/2005 Attribute: 'givenName'

13:45:12 12/06/2005 Value 0: 'Tece'

13:45:12 12/06/2005 Adding LDAP directory service object 'cn=Tece Cowsake,
ou=people,dc=tools4ever,dc=local2' with LDAP modification data obtained from
variable '%LdapData%'.

13:45:12 12/06/2005 LDAP directory service object 'cn=Tece Cowsake,
ou=people,dc=tools4ever,dc=local2' successfully added.

13:45:12 12/06/2005 ***** Ready processing entry 66...

13:45:12 12/06/2005 Total number of script action execution errors: 0.

End of session

The log file shows the following topics:

1. initialization of the secure LDAP session;

2. the authentication of the connecting account;

3. initialization of the LDAP modification data

4. creation of the directory service item

3.6.7. Microsoft Active Directory

This section describes how Microsoft Active Directory objects can be
managed using UMRA LDAP actions.

Introduction

Native UMRA actions

For a Microsoft Active Directory environment, UMRA contains many
native actions. It is advised to use these (AD) actions to manage Active
Directory. However, since Active Directory does also support LDAP, it is
also possible to manage Active Directory objects using the UMRA LDAP
actions. How to do that is described in this section.

Deployment scenario

In case no trust relation exists between the computer that runs the
UMRA software and the Active Directory domain controllers, the LDAP
actions can be used to manage Active Directory. In such an environment,
the native UMRA actions cannot be used. Because of security reasons,
such an environment should be configured using encrypted
communication only.

This section describes how to:

 setup a secure Active Directory Windows 2003 LDAP environment on
page 73.

and gives some example projects to:

 create a user account on page 85;

 reset passwords on page 93;

 update group memberships on page 115.

Secure LDAP Active Directory environment

By default, the Microsoft LDAP implementation does not support secure
LDAP. To setup secure LDAP using SSL, certificates must be installed on
both sides, the LDAP Server and LDAP Client. In this case, the LDAP
Server is the domain controller running Active Directory. The LDAP Client
is the UMRA software, either the UMRA Console application or the
UMRA Service.

The certificates required to run secure LDAP using SSL can be configured
in many ways. The concept is always the same:

UMRA Help

1. The Active Directory domain controller uses a special certificate
that is issued by a trusted certification authority.

2. The UMRA software (computer) trusts the certification authority
that issues the certificate to the Active Directory domain
controller.

Creating the certificate listed in step 1 requires a special procedure, as
described in article Q321051. In this document, the same steps are used
and described. Also, the procedure to setup a Certification Authority is
described.

First, a certificate request is created. Next, a Certification Authority (CA)
is setup and the certificate is signed, e.g. issued by the certification
authority. Finally, the root certificate of the certification authority is
exported and then imported by the computer that runs the UMRA
software.

In this procedure the environment used runs Active Directory on
Windows 2003 Standard Edition. For Windows 2000, a similar procedure
can be used. The Certification Authority is installed on a Windows 2003
domain controller. For other versions, the procedure might be different.

Creating an Active Directory domain controller certificate request

Log on to domain controller

This topic follows the guidelines of article Q321051. Log on to the
domain controller (LDAP Server) with an enterprise administrator
account.

To create the certificate request, the certreq.exe program is used. The
certreq.exe program is part of the Windows installation and requires a
text input file to generate a certificate request.

With your favorite ASCII editor (notepad.exe?), create a file with the
following contents:

[Version]

Signature="$Windows NT$"

[NewRequest]

Subject = "CN=king.tools4ever.local3"

UMRA Help

; replace with the FQDN of the DC

KeySpec = 1

KeyLength = 2048

; Can be 1024, 2048, 4096, 8192, or 16384.

; Larger key sizes are more secure, but have

; a greater impact on performance.

Exportable = TRUE

MachineKeySet = TRUE

SMIME = False

PrivateKeyArchive = FALSE

UserProtected = FALSE

UseExistingKeySet = FALSE

ProviderName = "Microsoft RSA SChannel Cryptographic Provider"

ProviderType = 12

RequestType = PKCS10

KeyUsage = 0xa0

[EnhancedKeyUsageExtension]

OID=1.3.6.1.5.5.7.3.1

In the file, the entry regarding the subject,

Subject = "CN=king.tools4ever.local3"

must be changed to contain the fully qualified domain name of the
Active Directory domain controller that is going to support secure LDAP.
Example:

Subject = "CN=OtherServer.mydomain.com"

Save the file to ldapcert.inf. From a command prompt, create the
request file with certreq.exe:

certreq -new ldapcert.inf ldapcert.req

UMRA Help

A new file is now created: ldapcert.req. This is the base64 encoded
request file and it contains something like this:

-----BEGIN NEW CERTIFICATE REQUEST-----

MIIELDCCAxQCAQAwITEfMB0GA1UEAxMWa2luZy50b29sczRldmVyLmxvY2FsMz
CC

ASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANFwryRM0qxBNQKr/fQlZr
bL

gqs9LMWFSolAzVA342N2RisBLXVFtuoNxZPkD0UIQmcLLjwBA8svmVsfLRMa+0yg

GKnxYkrpVLOwGkEsLtPKKrt/ZfS1IeChkTSC7xZ2U/ajx0qVqUyxtEfGvNl9t7gO

Qr5o0f4Ydeld70Y42J2uxmYophZQQrwfDxdE8RB98TjXm+ATdVbKw500Egv7oYD
9

E5eH7tk3BVNzL65n+MdUTl3jtg7LiivFBbZrDy4WbDjQDcBTx8T98E6sgtOt5iMU

W3rdpPtg8kPWwCDCFPCaXTeaRnGWx5QlvfanoOml/EhxclXi82vCAH6HkTzy8rU
C

AwEAAaCCAcQwGgYKKwYBBAGCNw0CAzEMFgo1LjIuMzc5MC4yMFAGCSqGSIb3
DQEJ

DjFDMEEwHQYDVR0OBBYEFHf9nSUn4NT5wX9p4jI2tcwHS/2eMBMGA1UdJQQ
MMAoG

CCsGAQUFBwMBMAsGA1UdDwQEAwIFoDBUBgkrBgEEAYI3FRQxRzBFAgEBDB9j
b3Vu

dC5ub2JpbGl0eS50b29sczRldmVyLmxvY2FsDBZOT0JJTElUWVxBZG1pbmlzdHJh

dG9yDAdjZXJ0cmVxMIH9BgorBgEEAYI3DQICMYHuMIHrAgEBHloATQBpAGMAcg
Bv

AHMAbwBmAHQAIABSAFMAQQAgAFMAQwBoAGEAbgBuAGUAbAAgAEMAcgB
5AHAAdABv

AGcAcgBhAHAAaABpAGMAIABQAHIAbwB2AGkAZABlAHIDgYkAAAAAAAAAAAA
AAAAA

AA
AAAAAAAA

AA
AAAAAAAA

UMRA Help

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADANBgkqhkiG9w0BAQUFA
AOCAQEA

nTAOKjTTbz/ABAHCZRNmn/SSj5w7DoMBUP07I8QQMf4ruI0ClEuX5jhlm+jwnypY

pDNHnn2uRI08hN5jwOcc/36DGNaSgu9cOg3s/FCHnDkhMotqST4UgjH8bVBXfTr
P

ryAswB4CtFDPK4Po9+Fz/TeNb1rD4yC0hvYL2m+Gwyl9rupfj9eyy7VaFZDeHltR

2DkGjF7fOiwjZgXi7jy4w0GtC53hWYWxfTaRTPjKuoGFIwDcUHNucdSEQ216xTg7

yLgyyQv8imBI98dr+XXVJeAQk/ByD8uCU0DWM2M64i2ccw8QhlyOPyj36914K2z
d

WJSRbwjM1KpvtyFrzwCGJg==

-----END NEW CERTIFICATE REQUEST-----

Creating a Certification Authority

Log on to computer that runs Certification Authority

In this example, Certification Authority is installed on another domain
controller running Windows 2003. For other configurations, you are
referred to Microsoft documentation for more information on how to
setup a Certification Authority.

UMRA Help

Log on to the computer with enterprise administrator access rights.
Select Start, Control Panel, Add or Remove programs. Click the button
Add/Remove windows components. Select entry Certificate Services

Figure 45: Installation of Certificates Services on a Windows 2003 domain
controller.

UMRA Help

Click Next. When asked, select the option to create a Stand-alone root

CA.

Figure 46: Selection of Certification Authority: Stand-alone root CA.

UMRA Help

Follow the wizard instructions and specify the name of the Certification
Authority.

Figure 47: Specification of the Certification Authority identification information.

Follow the instructions of the wizard. When finished, the certification
authority is installed.

Sign the certificate request by the Certification Authority

In this step, the Certification Authority converts the certificate request
to a real certificate by signing/issuing the request.

Click Start, All Programs, Administrative Tools, Certification Authority.
The MMC shows the Certification Authority snap-in. Select the
Certification Authority and select menu option All tasks, Submit new

request….

Browse to the file that contains the certificate request ldapcert.req and
submit the request. If the computer that runs the LDAP Server and the
computer that runs the Certification Authority are not connected, you
need to use a diskette or memory stick to access the file.

UMRA Help

The request is now processed by the Certification Authority. When ready
the request can be selected from the section with Pending Requests.

Figure 48: Issue the submitted certification request.

Select menu option Issue to accept the request. The certificate is then
stored in the section Issued Certificates. Select the certificate from the
section Issued Certificates and select menu option Open.

Figure 49: Result certificate, issued by the Certification Authority.

Click on the Details tab and select the button Copy to File… to export
the certificate to a file. Follow the wizard instructions. When asked,
select the format Base-64 encoded binary X.509 (.CER). For the name of
the file, select ldapcert.cer. Complete the wizard.

UMRA Help

Before the certificate can be installed on the domain controller, the root
certificate of the Certification Authority must be installed on the domain
controller.

Exporting the root certificate Certification Authority

To export the root certificate, select Certification Authority and select
menu option Properties.

Figure 50: Export the root certificate of the Certification Authority.

Click View Certificate, select Details and click on the button Copy to File

to export the root certificate of the Certification Authority. For the name
of the file, enter LdapRootCA.cer.

Importing the root certificate Certification Authority

Log on to domain controller

On the domain controller that runs Active Directory, you need to install
both the root certificate of the Certification Authority and the created
certificate.

Log on to the domain controller as an enterprise administrator and start
the MMC. (Start, Run, mmc). Add the Certificates snap-in (File,

This image cannot currently be displayed.

UMRA Help

Add/Remove snap-in, click Add and select Certificates). Select the
option to manage certificates for the Computer account of the Local

Computer.

Navigate to the certificates item Trusted Root Certification Authorities,

Certificates and select menu option All Tasks, Import.

Figure 51: Import the root certificate of the Certification Authority on the Active
Directory domain controller.

Follow the wizard instructions and import the root certification file
LdapRootCA.cer.

When finished, the root certificate of the Certification Authority is
installed on the domain controller.

Importing the LDAP Server certificate

Finally, on the domain controller that runs Active Directory, you need to
accept the certificate signed by the Certification Authority. From a
command prompt, navigate to the directory that contains the certificate
ldapcert.cer and issue the following command:

 certreq -accept ldapcer.cer

The certificate is now installed. To verify the certificate installation, start
the MMC and open the snap-in that manages the certificates on the
local computer. In the tree, browse to the location Certificates (Local

Computer), Personal, Certificates. A certificate issued to the domain

UMRA Help

controller should exist.

Figure 52: Verification of the purpose of the certificate.

Select the certificate and choose menu option Properties. The
Certificate purposes should show Server Authentication.

To finish the configuration on the domain controller, restart the domain
controller.

Setting up the UMRA (LDAP Client) computer

The computer that runs the UMRA software needs to have the root
certificate of the Certification Authority installed. To do so, repeat the
steps of topic Import root certificate Certification Authority, but this
time, import the certificate on the computer that runs the UMRA
software.

Verifying secure LDAPS using SSL

The secure LDAP connection can be tested with UMRA or with the Active
Directory Administration Tool LDP.EXE, part of the Windows Support

Tools. (Windows 2003 only)

UMRA Help

Start the tools LDP.EXE from a command prompt in the Windows

Support Tools. Select menu option Connection, connect.

Figure 53: Test the LDAP SSL connection using LDP.EXE from the Windows
Support Tools.

Specify the name of the LDAP Server, the default SSL port 636 and check
the option SSL.

Press OK. When the connection is setup successfully, the window shows
the connection information.

Figure 54: Connection information when a successful connection is established.

Creating user accounts in Microsoft Active Directory using LDAP

This example describes a mass project to import user accounts into
Microsoft Active Directory with UMRA using the UMRA LDAP actions
instead of the normal UMRA Active Directory action.

UMRA Help

User secure LDAP when connecting to a not trusted environment

Such a project can be used when a foreign domain is managed and the
UMRA software runs on a computer that has no trust relationship with
the domain. By using SSL, the application is completely secure.

The example project can be found in the following location, relative to
the UMRA Console program directory:

.\Example
Projects\LDAP\ActiveDirectory\AddUserMass\LdapADUserAccountMas
s.upj

The project contains embedded fake input data representing user
accounts. For each line of the input data, the project repeats the
following steps:

1. Setup a secure session with the LDAP Server running on the Active
Directory domain controller on page 87.

2. Setup an LDAP modification data structure that contains all the attributes
and values required to create an user account on page 88.

3. Add the account in the specified container (domain, container or
organizational unit) of Active Directory on page 90.

Figure 55: Example project to create mass user accounts in Active Directory using
secure LDAP.

The following sections describes the script of the project in detail.

UMRA Help

Setting up a secure session with Active Directory domain controller

The LDAP session is setup with the Active Directory domain controller
king.tools4ever.local3. To authenticate the session, the full
distinguished name of an administrator account is specified. The account
must have access rights to create the account. The password of the
account is encrypted. It is decrypted just before the UMRA script engine
needs it to access the LDAP Server.

Note: The password can only be set using SSL.

Figure 56: Script action to setup a secure LDAP session with an Active Directory
domain controller.

The session is encrypted using SSL. This is secure and required in order

to (re)set passwords of Active Directory user accounts. See Microsoft's
knowledge base article KB269190 for more information.

When the action is executed, the LDAP session is initialized. The
associated session data is stored in the variable specified for property
Ldap session (default variable name: %LdapSession%). The variable is
used in the subsequent script actions.

UMRA Help

Specifying Active Directory LDAP attributes

In the next script action, the LDAP modification data structure is
initialized. The structure must contain all the attributes and values of the
new directory service item.

Figure 57: Script action to initialize the LDAP modification data used to create an
user account in Active Directory.

To create a user account in Active Directory, the following attributes are
used:

Attribute Description

objectClass Defines the type of the directory service item that must
be created. Contains multiple values: top,
organizationalPerson, person, user. The attribute
values is the same for all user accounts.

sAMAccountName The SAM account name of the new user account. The
value is set equal to the variable %SurName% that is
read from the input file, second column. The SAM
account name must be unique in the domain.

userPrincipalName The official user logon name, specified as
%SurName%@tools4ever.local3.

userAccountControl A number of flags indicating the type of the user
account (see below).

UMRA Help

unicodePwd The user account password. This value can only be
specified if the LDAP session is secure using SSL. (Note:
Internally, this attribute is handled a bit different
compared to the other attributes, see knowledge base
article KB269190 to check the details)

Table 10: LDAP attributes to create an user account in Active Directory.

User account control flags

To specify the value of the userAccountControl attribute, a simple
calculation must be made. Add the values shown in the table below to
determine the exact value.

userAccountControl
bitmask value

Description Comment

512 Normal account Always include this value

2 Disabled account

4096 Computer
account

When included, the account
is setup as an computer
account

- User must change
password at next
logon

This flag cannot be set
directory. Instead, the
attribute pwdLastSet must
be set to 0.

64 User cannot
change password

65536 Password never
expires

32 Password not
required

Table 11: Overview of the bit flags specified by attribute userAccountControl

When the user account is created, the Active Directory software checks
and updates the value of the userAccountControl attribute. When no

UMRA Help

password is specified, the flag User must change password at next logon
is set automatically.

The result of this action is stored in variable %LdapData% that is used
by the next action.

Adding a directory service object

Finally, the user account is created with this action.

Figure 58: Script action to add the user account to Active Directory.

Adding the user account

The LDAP session and Object data properties are specified using
variables. The New object name property specifies the full object
distinguished name of the Active Directory item and thus determines the
position in the directory service tree. In this example, all user accounts
are created in the same organizational unit. The common name (CN) is
copied from the input data:

cn=%SurName%,ou=Sales,dc=tools4ever,dc=local3

The full name must be unique in the Active Directory tree.

Logging information

UMRA Console log of user creating using secure LDAP

When executed successfully, the UMRA Console log file produces a log
file as shown below:

Starting User Management Resource Administrator session, build 1213 at
09:29:20 12/02/2005

09:29:20 12/02/2005 ***** Processing entry 105...

09:29:20 12/02/2005 Variable 1: %GivenName%=Otio

UMRA Help

09:29:20 12/02/2005 Variable 2: %SurName%=Methyl

09:29:20 12/02/2005 Variable 3: %HomePhone%=950-491-354

09:29:20 12/02/2005 Variable 4: %NowDay%=02

09:29:20 12/02/2005 Variable 5: %NowMonth%=12

09:29:20 12/02/2005 Variable 6: %NowYear%=2005

09:29:20 12/02/2005 Variable 7: %NowHour%=09

09:29:20 12/02/2005 Variable 8: %NowMinute%=29

09:29:20 12/02/2005 Variable 9: %NowSecond%=20

09:29:20 12/02/2005 Setting up LDAP sessions with host
'king.tools4ever.local3'. Using SSL encryption: 'Yes'.

09:29:20 12/02/2005 User name:
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'.

09:29:20 12/02/2005 Secure LDAP session established with host
'king.tools4ever.local3' (Protocol: 'TLS 1.0 client-side', encryption: 'RC4 stream',
cipher strength: 128 bits, hash: 'MD5', 128 bits, key exchange: 'RSA', 2048 bits).

09:29:20 12/02/2005 Authenticating user
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'...

09:29:20 12/02/2005 User 'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'
successfully authenticated on LDAP server host 'king.tools4ever.local3'.

09:29:20 12/02/2005 LDAP session information stored in variable
'%LdapSession%'.

09:29:20 12/02/2005 Storing LDAP modification data in variable '%LdapData%'.

09:29:20 12/02/2005 LDAP modification data:

09:29:20 12/02/2005 ************** Modification data element: 0

09:29:20 12/02/2005 Operation: 'add', type of data: 'text'

09:29:20 12/02/2005 Attribute: 'objectClass'

09:29:20 12/02/2005 Value 0: 'top'

09:29:20 12/02/2005 Value 1: 'organizationalPerson'

UMRA Help

09:29:20 12/02/2005 Value 2: 'person'

09:29:20 12/02/2005 Value 3: 'user'

09:29:20 12/02/2005 ************** Modification data element: 1

09:29:20 12/02/2005 Operation: 'add', type of data: 'text'

09:29:20 12/02/2005 Attribute: 'sAMAccountName'

09:29:20 12/02/2005 Value 0: 'Methyl'

09:29:20 12/02/2005 ************** Modification data element: 2

09:29:20 12/02/2005 Operation: 'add', type of data: 'text'

09:29:20 12/02/2005 Attribute: 'userPrincipalName'

09:29:20 12/02/2005 Value 0: 'Methyl@tools4ever.local3'

09:29:20 12/02/2005 ************** Modification data element: 3

09:29:20 12/02/2005 Operation: 'add', type of data: 'text'

09:29:20 12/02/2005 Attribute: 'userAccountControl'

09:29:20 12/02/2005 Value 0: '512'

09:29:20 12/02/2005 ************** Modification data element: 4

09:29:20 12/02/2005 Operation: 'add', type of data: 'binary'

09:29:20 12/02/2005 Attribute: 'unicodePwd'

09:29:20 12/02/2005 Binary data

09:29:20 12/02/2005 Adding LDAP directory service object
'cn=Methyl,ou=Sales,dc=tools4ever,dc=local3' with LDAP modification data
obtained from variable '%LdapData%'.

09:29:20 12/02/2005 LDAP directory service object
'cn=Methyl,ou=Sales,dc=tools4ever,dc=local3' successfully added.

09:29:20 12/02/2005 ***** Ready processing entry 105...

09:29:20 12/02/2005 Total number of script action execution errors: 0.

UMRA Help

End of session

The log file first shows the following topics:

1. Initialization of the secure LDAP session;

2. Authentication of the connecting account;

3. Initialization of the LDAP modification data;

4. Creation of the user account.

Searching accounts and resetting passwords in Microsoft Active
Directory using LDAP

Search and reset password

This example project describes an UMRA application that searches the
user accounts in an Active Directory domain. The accounts are shown in
a form table. From the table, the end-user selects a user account and
specifies a new password for the account. When the form is submitted,
the password is reset.

Figure 59: UMRA Forms client showing Reset password application.

Example project location

The example project can be found at the following location, relative to
the UMRA Console directory:

.\Example Projects\LDAP\ActiveDirectory\SearchResetPassword

This image cannot currently be displayed.

UMRA Help

The UMRA application contains the following projects:

Project Description

LdapAd_Init Initialize all of the variables used by the other
projects of the application. This project is executed
by the other projects.

LdapAd_Search Search the user accounts in Active Directory using an
LDAP query. The resulting user accounts are stored
in a table that is passed to the next project of the
wizard.

LdapAd_ResetPassword Present the form to the end-user. When the form is
submitted, reset the password of the selected user
account.

Table 12: Projects of the UMRA application to reset passwords

The next sections describe each of the projects in detail.

Project: LdapAd_Init

Initialization project

The project only contains a script, not a form. The project's script only
sets a number of variables and it is executed by the other projects:
LdapAd_Search and LdapAd_ResetPassword.

Figure 60: Variable initialization with project LdapAd_Init.

By using this method, the environment dependant variables need to be
updated only in this project. The following variables are initialized by the
project:

This image cannot currently be displayed.

UMRA Help

Variable Example value Descriptio
n

%LdapServer% king.tools4ever.local3 The DNS
name of the
Active
Directory
domain
controller
that runs the
LDAP Server.

%LdapAccount
%

cn=Administrator,cn=Users,dc=tools4ever,dc
=local3

The full
distinguishe
d name of
the
administrati
ve account
that is
authenticate
d on the
domain
controller.
The account
needs to
have
sufficient
privileges to
reset the
password of
the domain
accounts.

%LdapPasswor
d%

bA0U@HGWxUhz8MqG/+Uf23P#/qEDIG8A+ The
password of
the account
that is
authenticate
d. The
password is
stored
encrypted in
the UMRA
script.

UMRA Help

%SearchBase% ou=Sales,dc=tools4ever,dc=local3 The part of
the Active
Directory
tree from
which user
accounts
must be
obtained.

Table 13: Variables initialized with project LdapAd_Init.

When the script of the project is executed, the variables are initialized.

Project: LdapAd_Search

Searching for user accounts

The project searches for the user accounts that must be presented to
the end-user. The results are stored in a table variable that is shown in
the form of project LdapAd_ResetPassword. The project is configured as
the initial project of project LdapAd_ResetPassword.

The project only contains a script, not a form.

Script action: Execute script

Initializing variables by calling other script

In the first script action, the variable initialization script LdapAd_Init is
called to initialize the variables used in the subsequent script actions.

Figure 61: Script action: Execute script of project LdapAd_Init.

UMRA Help

The subsequent script actions do not use environment specified variable
settings. To customize this UMRA application for another network
environment, only the LdapAd_Init script needs to be updated.

Script action: Setup LDAP session

Setup secure LDAP session

With this script action, the LDAP session is setup with the LDAP Server.

Figure 62: Script action: Setup LDAP session.

Since in subsequent script actions, a password of a user account is reset,
the session must be setup using SSL encryption. This is a requirement
from the Microsoft LDAP implementation. If SSL is not used, the search
action will succeed, but the password reset action will always fail.

The LDAP session is setup using the values of the variables specified in
project LdapAd_Init. The resulting LDAP session is stored in variable
%LdapSession% as specified by property Ldap session.

Script action: Search LDAP

LDAP search specification

UMRA Help

In the next action, the search is performed. The search uses the
initialized LDAP session (%LdapSession%) and returns the results in
table variable %LdapUsers%.

Figure 63: Script action: Search LDAP.

In this particular case, the search is performed in Active Direcotory
subtree

ou=Sales,dc=tools4ever,dc=local3

as specified by variable %SearchBase%. All users found
(objectClass=User) are returned. For each user account, the common
name (cn), a phone number (telephoneNumber) and the distinguished

name is obtained. The common name is needed to show to the end-
user. The phone number is included to show how additional attribute
values can be collected. The distinguished name is required to uniquely
identify the user account, when the account is selected and the
password of the account is reset.

When the action is executed, the table data is stored in output variable
%LdapUsers%. This variable is used in the next project of the UMRA
application.

Project: LdapAd_ResetPassword

Reset password project

UMRA Help

This is the main project of the UMRA application. It contains both a form
and a script. The form shows the table with user accounts and the input
fields for the new password. The script actually resets the password of
the selected user account.

Figure 64:UMRA form project LdapAd_ResetPassword with form and script to
reset the password of an Active Directory user account using secure LDAP..

Besides a number of explanation text fields the form contains the
following fields:

1. Table with user accounts

2. Two input fields for the new password

UMRA Help

3. Button to submit the form.

Figure 65: Resulting form of ProjectLdapAd_ResetPassword.

These fields are described in detail in the next sections.

Form field: Table with user accounts

Variable generic table

UMRA Help

The table is defined as a generic table and with table type: Variable. To
configure the table, the name of the variable and the names of the
columns contains by the table variable must be specified.

Figure 66: Generic table of the variable type. Specification of the name of the
variable with table data and the name of the columns of the table.

The name of the variable corresponds with the name of the variable
generated by script action Search LDAP of project LdapAd_Search:
%LdapUsers%. The project LdapAd_Search is configured as the initial
project of this project. The script of the initial project is executed just
before the form of this project is created. In this application, the script of
project LdapAd_Search fills the variable %LdapUsers% with user
accounts.

UMRA Help

Table columns and return variable

The variable %LdapUsers% only holds the table data, not the name of
the columns. Therefore, the column names must be specified separately.
When the generic table is configured, the table columns can be setup.

Figure 67: Specification of the columns shown in the form and the variable
returned.

The Columns tab of the Configure table window shows the available
columns and the configured columns. The available columns correspond
with the columns specified for the generic table variable. In this example
project, all three columns are configured. The column with the
DistinguishedName has a zero width and an associated variable:
%DistinguishedName%. The name does not look very user-friendly
(example: cn=John, ou=Sales, dc=tools4ever, dc=local2). It therefore has
a zero width, e.g. is not visible. When the end-user selects an account
from the list, the distinguished name of the user account is copied into
the variable and passed to the UMRA Service when the form is
submitted.

Form fields: Password text input fields

Password fields

UMRA Help

Two input text fields are used to specify the new password. Initially, the
input fields are empty. When the end-user has entered the password
and confirmation field and the form is submitted, the values are copied
to %NewPassword% and %ConfirmPassword% and sent to the UMRA
Service.

Figure 68: Password input text field specification.

The script of the project will process the specified values to reset the
password.

Form fields: Reset password submit button

Submit button actions

UMRA Help

When the user clicks the Reset password submit button, a number of
actions are executed. First, the values of the form field variables are set
according to the form input. This information is then sent to the UMRA
Service.

Figure 69: Form actions executed by the UMRA Service when the Reset password
button is clicked by the end-user.

The following actions are then executed by the UMRA Service:

1. Check the input fields of the submitted form: A check is
performed to see if a user account is selected. If this is not the
case, an error message is returned and the other script actions
are not executed.

2. Execute the script of the project that contains the form: The
script of the project is executed. The script resets the password
of the selected user account and is described in the next
sections.

3. Return the form of project LdapAd_ResetPassword: The wizard
starts over again and presents the screen with user accounts to
the end-user.

The script of the project initializes a secure LDAP session with the LDAP
Server and resets the password of the selected user account. The script
is executed as one the button actions.

Script action: Delete a specific variable

When the form is submitted and processed, the same form is presented
again. To reset the internal queue with variables, the %ScriptMessage%
variable is reset. This variable is used to show a message to the end-user

UMRA Help

and not automatically reset. Since the message from the previous
session is no longer needed the variable must be reset. (If it was not
reset, error messages from the previous session would still popup in the
UMRA Forms client).

Figure 70: Script action: Delete a specific variable.

Note that all variables are reset as specified by the submit button action
Return the form of project LdapAd_ResetPassword with 2 exceptions:
The variables %UmraFormSubmitAccount% and %ScriptMessage% are
maintained.

Script action: If-Then-Else

Check password input

The script then checks the specified password and confirmed password
with an If-Then-Else script action.

UMRA Help

Figure 71: Script action: If-Then-Else to check the password and confirmed
password

If the values of the variables %ConfirmPassword% and
%NewPassword% correspond, execution of the script continues with
the script action with label Start.

Figure 72: If-Then-Else specification.

If the values are not equal, an error message is generated by setting the
variable %ScriptMessage% and jumping to the end of the script
(Action: Go to label Ready).

When everything is fine, the script continues at the Start location.

Script action: Execute script

Variable initialization

UMRA Help

The variable initialization script LdapAd_Init is called to initialize the
variables used in the subsequent script actions.

Figure 73: Script action to execute the initialization script.

When the variables are initialized, the LDAP session is setup.

Script action: Setup LDAP session

Setup secure LDAP session

With the action, the LDAP session is setup. The action properties are all
specified by variables.

Figure 74: Script action to setup a secure LDAP session.

UMRA Help

SSL required to reset password

Note that the session must be setup with SSL. If SSL is not used, the
LDAP Server will not accept the password reset action. This is a
restriction enforced by the Active Directory LDAP Server
implementation. When the session is initialized successfully, the session
is stored in variable %LdapSession% as specified by the action property
Ldap session.

Script action: Load LDAP modification data

Password attribute specification

Next, the LDAP modification data used to reset the password is
initialized. To reset a password, the attribute unicodePwd must be used

Figure 75: Script action to initialize the LDAP modification data with the password
attribute value.

For the attribute, the type of modification is set to Replace since the
existing password is replaced by a new one. The value of the attribute is
set equal to the value of variable %NewPassword% as specified by the
end-user. The resulting LDAP modification data is stored in variable
%LdapData%.

Note: Internally, the unicodePwd attribute is handled a bit different
compared to the other attributes, see knowledge base article KB269190
to check the details.

UMRA Help

Script action: Modify directory service object (LDAP)

Password reset action

Finally, the password of the user account is reset.

Figure 76: Script action to reset the password.

The action uses the following properties:

1. LDAP session: The LDAP session object, as initialized by script
action Setup LDAP session.

2. Object name: The distinguished name of the directory service
item of which one or more attribute values must be modified. In
this case, the directory service item is the user account. The
name of the account corresponds with the account selected in
the form table with user accounts. The attribute value is
specified with variable %DistinguishedName%. The variable is
the output variable of the form table and determined when the
user selects the Reset password submit button.

3. Object data: The modification data, specified by variable
%LdapData% as determined by the previous action.

When executed successfully, the password is reset. Next a No operation
action is executed. This action is used only as a script location reference.
The action is jumped to when the entered password is incorrectly
confirmed.

Script action: Delete a specific variable

Variable cleanup

UMRA Help

When the script is executed, the wizard starts over again. To make sure
that all variables are reset, the variable used for the selected user
account is reset.

Figure 77: Script action to delete the %DistinguishedName% variable.

This action is not required since the variable is already reset by the
action Return the form of project LdapAd_ResetPassword specified for
the Reset password submit button. When the script is used in another
project, this might not be the case.

Logging information

UMRA Service log

When executed successfully, the UMRA Service produces a log file as
shown below.

Form is generated by the UMRA Service

09:11:22 12/09/2005 Form message: '12/09/2005,09:11:22,"SSP\J.
Vriens","Forms list",OK,N/A,"1 projects found for user 'SSP\J. Vriens'."'

09:11:24 12/09/2005 Executing form initialization project 'LdapAd_Search'.

09:11:24 12/09/2005 Variable 1: %UmraFormSubmitAccount%=SSP\J. Vriens

09:11:24 12/09/2005 Calling project 'LdapAd_Init'. Executing script of project.

09:11:24 12/09/2005 Variable 1: %UmraFormSubmitAccount%=SSP\J. Vriens

UMRA Service connects to LDAP Server using SSL

UMRA Help

09:11:24 12/09/2005 Setting up LDAP session with host 'king.tools4ever.local3'.
Using SSL encryption: 'Yes'.

09:11:24 12/09/2005 User name:
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'.

09:11:24 12/09/2005 Secure LDAP session established with host
'king.tools4ever.local3' (Protocol: 'TLS 1.0 client-side', encryption: 'RC4 stream',
cipher strength: 128 bits, hash: 'MD5', 128 bits, key exchange: 'RSA', 2048 bits).

09:11:24 12/09/2005 Authenticating user
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'...

09:11:24 12/09/2005 User 'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'
successfully authenticated on LDAP server host 'king.tools4ever.local3'.

09:11:24 12/09/2005 LDAP session information stored in variable
'%LdapSession%'.

UMRA Service instructs LDAP Server to search for user accounts

09:11:24 12/09/2005 Searching LDAP with filter 'objectClass=User' in tree
'ou=Sales,dc=tools4ever,dc=local3' using session variable '%LdapSession%'.
Scope: 'Subtree'.

09:11:24 12/09/2005 No time out interval used.

09:11:24 12/09/2005 No size limit used.

219 user accounts found, form is presented to end-user

09:11:24 12/09/2005 Search action successfully completed, 219 entries found,
stored in variable '%LdapUsers%'.

09:11:24 12/09/2005 Form message: '12/09/2005,09:11:24,"SSP\J.
Vriens","Form load",OK,LdapAd_ResetPassword,'

End-user selects a user account, enters password and clicks submit button

09:11:45 12/09/2005 Variable 1: %DistinguishedName%=CN=Actanth
Dane,OU=Sales,DC=tools4ever,DC=local3

09:11:45 12/09/2005 Variable 2: %NewPassword%=hio78^

09:11:45 12/09/2005 Variable 3: %ConfirmPassword%=hio78^

09:11:45 12/09/2005 Variable 4: %UmraFormSubmitAccount%=SSP\J. Vriens

09:11:45 12/09/2005 Variable 5: %LdapServer%=king.tools4ever.local3

UMRA Help

09:11:45 12/09/2005 Variable 6:
%LdapAccount%=cn=Administrator,cn=Users,dc=tools4ever,dc=local3

09:11:45 12/09/2005 Variable 7:
%LdapPassword%=bA0U@HGWxUhz8MqG/+Uf23P#/qEDIG8A+

09:11:45 12/09/2005 Variable 8:
%SearchBase%=ou=Sales,dc=tools4ever,dc=local3

09:11:45 12/09/2005 Variable 9: %LdapSession%=(0,0X0)

09:11:45 12/09/2005 Variable 10: %LdapUsers%=Table with 219 rows

09:11:45 12/09/2005 Variable 11: %NowDay%=09

09:11:45 12/09/2005 Variable 12: %NowMonth%=12

09:11:45 12/09/2005 Variable 13: %NowYear%=2005

09:11:45 12/09/2005 Variable 14: %NowHour%=09

09:11:45 12/09/2005 Variable 15: %NowMinute%=11

09:11:45 12/09/2005 Variable 16: %NowSecond%=45

09:11:45 12/09/2005 Deleting variable '%ScriptMessage%'.

UMRA Service compares entered password and confirmed password

09:11:45 12/09/2005 If-Then-Else condition [Variable '%ConfirmPassword%'
(text) equals (case sensitive) variable '%NewPassword%'] result is TRUE,
continue script execution with action 'Start'.

09:11:45 12/09/2005 Calling project 'LdapAd_Init'. Executing script of project.

09:11:45 12/09/2005 Variable 1: %DistinguishedName%=CN=Actanth
Dane,OU=Sales,DC=tools4ever,DC=local3

09:11:45 12/09/2005 Variable 2: %NewPassword%=hio78^

09:11:45 12/09/2005 Variable 3: %ConfirmPassword%=hio78^

09:11:45 12/09/2005 Variable 4: %UmraFormSubmitAccount%=SSP\J. Vriens

09:11:45 12/09/2005 Variable 5: %LdapServer%=king.tools4ever.local3

09:11:45 12/09/2005 Variable 6:
%LdapAccount%=cn=Administrator,cn=Users,dc=tools4ever,dc=local3

UMRA Help

09:11:45 12/09/2005 Variable 7:
%LdapPassword%=bA0U@HGWxUhz8MqG/+Uf23P#/qEDIG8A+

09:11:45 12/09/2005 Variable 8:
%SearchBase%=ou=Sales,dc=tools4ever,dc=local3

09:11:45 12/09/2005 Variable 9: %LdapSession%=(0,0X0)

09:11:45 12/09/2005 Variable 10: %LdapUsers%=Table with 219 rows

09:11:45 12/09/2005 Variable 11: %NowDay%=09

09:11:45 12/09/2005 Variable 12: %NowMonth%=12

09:11:45 12/09/2005 Variable 13: %NowYear%=2005

09:11:45 12/09/2005 Variable 14: %NowHour%=09

09:11:45 12/09/2005 Variable 15: %NowMinute%=11

09:11:45 12/09/2005 Variable 16: %NowSecond%=45

UMRA Service connects to LDAP Server using SSL

09:11:45 12/09/2005 Setting up LDAP session with host 'king.tools4ever.local3'.
Using SSL encryption: 'Yes'.

09:11:45 12/09/2005 User name:
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'.

09:11:46 12/09/2005 Secure LDAP session established with host
'king.tools4ever.local3' (Protocol: 'TLS 1.0 client-side', encryption: 'RC4 stream',
cipher strength: 128 bits, hash: 'MD5', 128 bits, key exchange: 'RSA', 2048 bits).

09:11:46 12/09/2005 Authenticating user
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'...

09:11:46 12/09/2005 User 'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'
successfully authenticated on LDAP server host 'king.tools4ever.local3'.

09:11:46 12/09/2005 LDAP session information stored in variable
'%LdapSession%'.

LDAP modification data is setup with new password

09:11:46 12/09/2005 Storing LDAP modification data in variable '%LdapData%'.

09:11:46 12/09/2005 LDAP modification data:

UMRA Help

09:11:46 12/09/2005 ************** Modification data element: 0

09:11:46 12/09/2005 Operation: 'replace', type of data: 'binary'

09:11:46 12/09/2005 Attribute: 'unicodePwd'

09:11:46 12/09/2005 Binary data

Password is reset

09:11:46 12/09/2005 Modifying LDAP directory service object 'CN=Actanth
Dane,OU=Sales,DC=tools4ever,DC=local3' with LDAP modification data
obtained from variable '%LdapData%'.

09:11:46 12/09/2005 LDAP directory service object 'CN=Actanth
Dane,OU=Sales,DC=tools4ever,DC=local3' successfully modified.

09:11:46 12/09/2005 Deleting variable '%DistinguishedName%'.

Wizard starts over again

09:11:46 12/09/2005 Executing form initialization project 'LdapAd_Search'.

09:11:46 12/09/2005 Variable 1: %UmraFormSubmitAccount%=SSP\J. Vriens

09:11:46 12/09/2005 Calling project 'LdapAd_Init'. Executing script of project.

09:11:46 12/09/2005 Variable 1: %UmraFormSubmitAccount%=SSP\J. Vriens

09:11:46 12/09/2005 Setting up LDAP sessions with host
'king.tools4ever.local3'. Using SSL encryption: 'Yes'.

09:11:46 12/09/2005 User name:
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'.

09:11:46 12/09/2005 Secure LDAP session established with host
'king.tools4ever.local3' (Protocol: 'TLS 1.0 client-side', encryption: 'RC4 stream',
cipher strength: 128 bits, hash: 'MD5', 128 bits, key exchange: 'RSA', 2048 bits).

09:11:46 12/09/2005 Authenticating user
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'...

09:11:46 12/09/2005 User 'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'
successfully authenticated on LDAP server host 'king.tools4ever.local3'.

09:11:46 12/09/2005 LDAP session information stored in variable
'%LdapSession%'.

UMRA Help

09:11:46 12/09/2005 Searching LDAP with filter 'objectClass=User' in tree
'ou=Sales,dc=tools4ever,dc=local3' using session variable '%LdapSession%'.
Scope: 'Subtree'.

09:11:46 12/09/2005 No time out interval used.

09:11:46 12/09/2005 No size limit used.

09:11:46 12/09/2005 Search action successfully completed, 219 entries found,
stored in variable '%LdapUsers%'.

09:11:46 12/09/2005 Next form project: 'LdapAd_ResetPassword'
('LdapAd_ResetPassword')

09:11:46 12/09/2005 Form message: '12/09/2005,09:11:45,"SSP\J.
Vriens","Form submit",OK,LdapAd_ResetPassword'

Updating group memberships in Microsoft Active Directory using LDAP

Update group memberships

This example describes a mass project to add user accounts to a specific
Active Directory global group with UMRA using the LDAP actions instead
of the normal UMRA Active Directory action.

The main purpose of the project is to show how to manage the different
Active Directory object attributes to update user account group
memberships.

Such a project can be used when a foreign domain is managed and the
UMRA software runs on a computer that has no trust relationship with
the domain. By using SSL, the application is completely secure.

Example project location

The example project can be found in the following location, relative to
the UMRA Console program directory:

.\Example
Projects\LDAP\ActiveDirectory\GroupUpdate\UpdateGroupMembershi
p.upj

The project contains embedded input data representing user accounts.
The user accounts do exist in the Active Directory domain. For each line
of the input data, the project repeats the following steps:

UMRA Help

1. Setup a session with the LDAP Server running on the Active
Directory domain controller.

2. Setup an LDAP modification data structure that contains all the
attributes and values required to update the members of a
specific group.

3. Update the group membership

Figure 78: UMRA mass project to update group memberships

The next sections describe the project in detail.

Script action: Setup LDAP session

The session is setup with the LDAP Server running on the domain
controller. In this example project, the LDAP server is

 king.tools4ever.local3

When connected, a user account is authenticated. The user account
must have sufficient access rights in the Active Directory domain to
update the group memberships. Although not required for this type of
operation, it is recommended to initialize a secure session with SSL. This
is particularly important since the administrative account password is
send over the line.

When successfully established, the session is stored in variable
%LdapSession% as specified by property Ldap session.

UMRA Help

Script action: Load LDAP modification data

Update member attribute of group

When the user account is added to a group, two Active Directory items
are updated:

1. The user account is now a member of the group. In LDAP: the
memberOf attribute of the user account contains an extra value:
the distinguished name of the group.

2. The group now has an extra member. In LDAP: the member
attribute of the group contains an extra value: the distinguished
name of the user account.

In Active Directory, the update must be performed by changing the
member attribute of the group. The memberOf attribute of the user
account is a so called computed back-link attribute and cannot be used
to update user account group memberships.

When the membership is updated, the memberOf attribute of the user

account is updated automatically.

Figure 79: Script action to setup LDAP modification data for the group

So the LDAP modification data must specify the new value for the
member attribute of the group: the distinguished name of the user
accounts. In the example project, the distinguished name of the user
account is

cn=%GivenName% %SurName%,ou=Sales,dc=tools4ever,dc=local3

The variables %GivenName% and %SurName% are taken from the
input file.

The LDAP modification data is stored in variable %LdapData% that is
used by the next action.

UMRA Help

Script action: Modify directory service object (LDAP)

Finally, the user account is added to the group by updating the member
attribute of the group.

Figure 80: Script action to add the user account to the group by updating
a group attribute.

In the example project, the group is specified as:

cn=GroupA,ou=Sales,dc=tools4ever,dc=local3

Add user account to group

The example project shows how to add a user account to a group. To
remove a user account from a group, a similar script must be used but
the modification data must be specified as a Delete modification type.

Logging information

UMRA Console log

When executed successfully, the UMRA Console produces a log file with
the following contents.

Starting User Management Resource Administrator session, build 1213 at
10:58:09 12/09/2005

10:58:09 12/09/2005 ***** Processing entry 22...

10:58:09 12/09/2005 Variable 1: %GivenName%=Neme

10:58:09 12/09/2005 Variable 2: %SurName%=Cafer

10:58:09 12/09/2005 Variable 3: %HomePhone%=496-411-709

10:58:09 12/09/2005 Variable 4: %NowDay%=09

10:58:09 12/09/2005 Variable 5: %NowMonth%=12

10:58:09 12/09/2005 Variable 6: %NowYear%=2005

UMRA Help

10:58:09 12/09/2005 Variable 7: %NowHour%=10

10:58:09 12/09/2005 Variable 8: %NowMinute%=58

10:58:09 12/09/2005 Variable 9: %NowSecond%=09

Setup secure LDAP session

10:58:09 12/09/2005 Setting up LDAP sessions with host
'king.tools4ever.local3'. Using SSL encryption: 'Yes'.

10:58:09 12/09/2005 User name:
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'.

10:58:09 12/09/2005 Secure LDAP session established with host
'king.tools4ever.local3' (Protocol: 'TLS 1.0 client-side', encryption: 'RC4 stream',
cipher strength: 128 bits, hash: 'MD5', 128 bits, key exchange: 'RSA', 2048 bits).

10:58:09 12/09/2005 Authenticating user
'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'...

10:58:09 12/09/2005 User 'cn=Administrator,cn=Users,dc=tools4ever,dc=local3'
successfully authenticated on LDAP server host 'king.tools4ever.local3'.

10:58:09 12/09/2005 LDAP session information stored in variable
'%LdapSession%'.

Setup LDAP modification data to update member attribute of group

10:58:09 12/09/2005 Storing LDAP modification data in variable '%LdapData%'.

10:58:09 12/09/2005 LDAP modification data:

10:58:09 12/09/2005 ************** Modification data element: 0

10:58:09 12/09/2005 Operation: 'add', type of data: 'text'

10:58:09 12/09/2005 Attribute: 'member'

10:58:09 12/09/2005 Value 0: 'cn=Neme
Cafer,ou=Sales,dc=tools4ever,dc=local3'

Add user account to group

10:58:09 12/09/2005 Modifying LDAP directory service object
'cn=GroupA,ou=Sales,dc=tools4ever,dc=local3' with LDAP modification data
obtained from variable '%LdapData%'.

UMRA Help

10:58:09 12/09/2005 LDAP directory service object
'cn=GroupA,ou=Sales,dc=tools4ever,dc=local3' successfully modified.

10:58:09 12/09/2005 ***** Ready processing entry 22...

10:58:09 12/09/2005 Total number of script action execution errors: 0.

End of session

3.6.8. References

LDAP System Administration, by Gerald Carter, O'Reilly Media Inc. 2003

Debian GNU/Linux 3.1 Bible , by Benjamin Mako Hill, Wiley Publishing, Inc.
2005

Novell's Guide to Netware 6 Networks, by Jeffrey F. Hughes and Blair W.
Thomas, Wiley Publishing, Inc. 2002

3.7. Name generation
In Active Directory, a user has many different names. Some of these
names have to be unique, which means that you cannot have another
user account with the same name. UMRA can generate all user names
used in Active Directory, including these unique user names. To generate
these names automatically, UMRA uses name generation algorithms.

Before you start reading this guide, you should have a basic
understanding of the concept of variables. For more information, see
UMRA Basics on page 3.

 Read the full PDF version of Name Generation
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/umra-name-generation.pdf

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-name-generation.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/umra-name-generation.pdf

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.7.1. Generating user names

In UMRA, you can either use the built-in name generation algorithms to generate user names or create
your own algorithms. Both methods are explained in the following sections.

Using the built-in name generation algorithms

In Active Directory, many different user names can be found:

 CommonName

 sAMAccountName – Must be unique within the domain

 User-Principal-Name - this internet style login name is the SAM Account Name combined with
the domain it is defined within, making it unique within a forest.

 Given-name

 DisplayName

 Etc.

UMRA comes with a set of built-in name generation algorithms to generate all these names
automatically. A name generation algorithm is a set of rules which defines the following:

 How one or more names can be composed from other names. By default, the first, middle and
last name of a user are used to generate the above mentioned user names.;

 How the resulting names can be made unique.

This set of rules can be defined in many different ways and completely in compliance with company
naming conventions.

Generating Active Directory names based on the user’s first, middle and last name

By default, a name generation algorithm can generate all user names in Active Directory based on the
first, middle, and last name of a user. To see the various name generation results when using the
standard name generation algorithms in UMRA, you can perform the following test:

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

1. In the UMRA Console, select ToolsOptions and click the Manage button in the Manage name

generation algorithms section.

The Select and specify user name generation algorithm comes up, in which example values are
shown for the input names, a list with available algorithms and the results of these algorithms
according to the specified values of the input names.

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

2. Enter the names “John”, “F.”Kennedy” in the %FirstName%, %MiddleName% and %LastName%
fields respectively to see the results of each of the available name generation algorithms.

Note that by default, UMRA generates two output names, which are displayed in the Name1 and
Name2 columns respectively. Entering “John”, “F.”Kennedy” results and choosing the Default
name generation algorithm results in the following two output names:

 Name1 = kennedyjf

 Name2 = John F. Kennedy

Together with the user’s first, middle and last name, these output names can be used to specify
all user names for an account.

Specifying input names

The first, middle and last name of a user can be obtained in various different ways:

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

1. Read directly from an input file

2. User input in a form

3. Database query

Using variables to specify input names

In practice, UMRA uses variables to specify input (and output) names. The input from a CSV file, form or
database is linked to a variable (e.g. %FirstName%, %MiddleName% and %LastName%). In turn,
these variables can be used for the following purposes:

 to provide input for the name generation algorithm to generate other user names;

 to specify some of the user names in Active Directory.

UMRA Help

Copyright © Tools4ever 1998 - 2012 5

If the first, middle and last name are entered by the end user in a form for instance, this information can
be linked to the variables %FirstName%, %MiddleName% and %LastName%. With the value of these
variables you can specify the following user names:

Name attribute Active Directory Variable
Given-name %FirstName%

Initials %MiddleName%

Surname %LastName%

Using variables to specify output names

Based on the value of the variables %FirstName%, %MiddleName% and %LastName%, the default
name generation algorithm will generate the remaining user names and store the result in the variables
%FullName% and %Username%. These variable values can then be used to set various name
attributes as shown in the table below:

Name attribute Active Directory Variable

CommonName %FullName%

sAMAccountName %UserName%

User-Principal-Name %UserName%@<Domain_name>

DisplayName %FullName%

Customizing name generation algorithms

In some cases it is not sufficient to use the built-in name generation algorithm. This could be the case
when your company has specific requirements regarding naming conventions. For such cases, it is
possible to customize the way in which an output name is generated.

Name generation methods

A name generation method performs the following tasks:

1. it specifies in detail how a single output name is generated based on one or more input names
(e.g. first name, middle name, last name).

UMRA Help

Copyright © Tools4ever 1998 - 2012 6

2. it can ensure the uniqueness of a user name. This is explained in more detail in Using a method
to create unique user names.

Using a method to generate output names

To generate an output name (e.g. %UserName%, %FullName%), a name generation algorithm uses a
name generation method.

Figure 1 – A name generation method uses input names to construct a new output name

A method could take the following input names, for instance:

%FirstName% = John

%MiddleName% = F.

%LastName% = Kennedy

and tranform these names into a new output name which can be created to specify, amongst others,
the SAMAccountName:

jfkennedy

You will clearly see that in this case:

“John” must be transformed to “j”

“F.” must be transformed to “f”

“Kennedy” must be transformed to “kennedy”.

UMRA Help

Copyright © Tools4ever 1998 - 2012 7

These transformations are achieved by using formatting functions. UMRA comes with a wealth of
formatting functions to change the value of a variable.

The table below shows which formatting functions can be used for the method described above to
obtain the new name parts.

Input name Formatting function(s) Example Result

%Firstname% Shorten name: Convert to the first character
of the name

Case conversion: convert to lowercase

John

J

J

j

%Middlename% Shorten name: Convert to the first character
of the name

Case conversion: convert to lowercase

F.

F

F

f

%Lastname% Case conversion: convert to lowercase

Kennedy kennedy

The new name parts “j”, “f” and “kennedy” together make up the new output name.

Using a method to create unique user names

In many cases you will want to create output names which are unique. When creating user accounts in
Active Directory for instance, there are two user name attributes which must be unique:

 SAM Account Name

 User Principal Name

UMRA Help

Copyright © Tools4ever 1998 - 2012 8

To ensure the uniqueness of user names, you can specify an iteration for a name generation method.
The most simple form of iteration is the addition of a sequential number at the end of a generated user
name (e.g. johnw1, johnw2, johnw3, etc.). Using iteration, the same method can be applied again and
again until the generated output name has been made unique (see figure 2).

Figure 2 – Generating unique output names

The number of iterations for each method and the iteration sequence can be specified.

If the generated output name is not unique after one pass, a new output name will be generated using
the same method with the specified iteration sequence. If the number of iterations has exhausted the
specified number of iterations for the method, the algorithm will continue with the next method. This
process will stop when a unique name has been generated.

3.8. UMRA tables
In UMRA, the use of tables is an important instrument for managing user
accounts and associated resources, both in Active Directory and other
information systems. This concept is explained in detail in this section.

 Read the full PDF version of UMRA tables
http://www.tools4ever.com/resources/pdf/user-management-resource-
administrator/Umra-Tables-User-Guide.pdf

http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Umra-Tables-User-Guide.pdf
http://www.tools4ever.com/resources/pdf/user-management-resource-administrator/Umra-Tables-User-Guide.pdf

UMRA Help

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or
transmitted in any form or by any means without the written permission
of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or
consequences resulting from your actions or usage of the informational
material contained in this user guide. Responsibility for the use of any
and all information contained in this user guide is strictly and solely the
responsibility of that of the user.

All trademarks used are properties of their respective owners.

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.8.1. Introduction

Many employees nowadays have access to a wide variety of systems and applications. Some examples
are access to a company’s intranet, phone systems, HR systems, printers, etc. User accounts and
associated resources are usually maintained in Active Directory (or other directory services). Larger
organizations often have multiple information systems, in which case user resource data are also stored
outside Active Directory (a SQL server holding HR data, phone book applications, location systems, etc.).
Using UMRA, an administrator can create projects to deal with virtually any user management task.

In UMRA, the use of tables is an important instrument for supporting this concept of managing users
and associated resources in Active Directory and other information systems, by facilitating the following
tasks :

Managing and selecting user accounts, resources and other input fields - In case of a delegation project,
a list table can be included in a form window to display and select fixed data (a list table), Active
Directory data (LDAP query), results of an NT 4 network call or database data. Some examples:

to select a user for whom the password needs to be reset. Figure 1 shows a form table listing the users
obtained through an LDAP query on Active Directory.

Figure 1 - Delegated project for resetting a password

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

to show a list of services or printers you wish to manage. A script action can then be executed for the
selected table entry (see Figure 2) ;

Figure 2 - List of services as part of a delegation project to manage services (e.g. stop, start, pause,
resume services)

to select data from a database (e.g. a list of departments or a table containing corporate telephone
numbers)

Figure 3 - List of departments as a result of a database query

Manage the processing of tabular data (row by row) – this method is used to run actions against each
row of a table. It can be used for instance, to query Active Directory for all the groups of which a user is
a member and to perform an action for each group in the resulting table (e.g. setting a new group
membership and removing the existing one(s)).

Bulk data processing - Tables are also used to facilitate the mass update of user data (e.g. mass creating
Exchange mailboxes or bulk create and edit users as part of a migration project). In such mass projects,
where a table is based on an imported CSV file, script actions can be executed for each row in a table
(containing user resource objects, for instance). This specific use of a table will not be discussed in this
document.

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

The last chapter of this user guide contains several hands-on examples to get familiar with the various
table types. Each hands-on will take approximately 30 minutes to complete.

3.8.2. The concept of tables in UMRA

General

With UMRA, solutions can be created for the delegation of one or more user management tasks. Forms
& Delegation includes two separate applications, the UMRA Console and UMRA Forms. In this document,
it is assumed that you already have basic knowledge of working with UMRA. If this is not the case,
please make yourself familiar first with the UMRA basics.

The UMRA Console is used by systems administrator to build an interface for the end user and to add
and configure built-in script actions for the delegation project. The interface is created using forms
which can be fully customized with your own titles, text fields, user input fields, buttons, tables,
graphics, etc. Once the form project has been properly set up, the delegate user can run it in the UMRA
Forms application to perform a specific user management task. The underlying scripting intelligence is
neither accessible nor visible for the delegate user.

Selecting data using form tables

In a form, the administrator can also add form tables. Form tables are used to display user resource data
from Active Direcory and other information systems.

Figure 4 - LDAP table showing users in Active Directory as part of a Reset Password delegation form

In the UMRA Console, the administrator specifies which script actions should be run on the selected
table entries. The execution of these script actions can be assigned to a button (e.g. “Reset Password”).

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

In UMRA, a wide variety of script actions is included to create, manage and delete Active Directory
objects. Finally, the administrator also specifies who has priviliges to run the project.

In figures 5 and 6, the use of a form table is shown in more detail. As part of a delegation project to
reset passwords, an LDAP table is inserted in the form window to retrieve all users in a specific
organizational unit in Active Directory using the query

(&(objectClass=user)(!(objectClass=computer)))

with a binding to LDAP://OU=<NameOU>, DC=MyDomain, DC=local.

 Figure 5 - Defining an LDAP query for an LDAP table

This query retrieves all objects of the “user” object class in the OU “<NameOU>”. Computer accounts are
exempted from the results. In the resulting form table (Figure 6), a user can be selected for whom the
password needs to be reset.

UMRA Help

Copyright © Tools4ever 1998 - 2012 5

Figure 6 - Reset password delegation project. The result of the LDAP query is displayed in the LDAP
table (shown here w ith a red marquee)

Form table types

In a project form, several table types are available which are shown in the table below:

UMRA Help

Copyright © Tools4ever 1998 - 2012 6

Table type Subtype Description

Network table Used to obtain the user accounts of an OU, global group, domain
or single computer using an NT network call.

Fixed table Used to display a list of fixed content in a table (e.g. a list of
department names).

Generic table LDAP Used to show the results of an LDAP query in a table.

Generic table Database Used to show the results of a database query in a table.

Generic table Variable See section Special table type - Generic table Variable on page 16
for more information.

Network table

A network table is used for Windows NT 4 environments and can be of one of the following network
data types:

 User accounts of an OU,

 User accounts of a global group,

 User accounts of a domain

 User accounts of a single computer.

Specifying the network data type only determines the scope of the network calls to be executed by
UMRA and the columns that can be shown for the corresponding network data table. To determine the
data that must be collected, you must specify the actual parameters or arguments that are used to
collect the network data. These are different for each network data type (see the table below).

Network table Scope Arguments Columns

OU User accounts of one or more
OUs (including child OUs)

<Domain>/<OU>/<OU> or LDAP
name of the object.

Common name

Description

Username

Display name

Domain

OrganizationalUnit

Object
distinguished
name

UMRA Help

Copyright © Tools4ever 1998 - 2012 7

Network table Scope Arguments Columns

Global group User accounts that are a member
of one or more groups

<Domain>\<GlobalGroup> or
<DomainController\<GlobalGroup>

Full name

Description

Username

Global group

Domain

Domain User accounts in a domain Domain name (NETBIOS or DNS
format)

Full name

Description

Username

Domain

Single computer User accounts that are
maintained on a computer (not
necessarily a domain controller).

Computer name (NETBIOS or DNS
format)

Full name

Description

Username

Computer

Domain

Type

The columns can be assigned to a variable. When a delegate user selects an entry in the resulting
network table, the name of the variable and the corresponding value will be passed to the UMRA
service. See the section Processing user input on page 20 for more information.

Generic table - LDAP query

This powerful generic table type allows you to query Active Directory and show the results in a form
table. To run a (complex) LDAP search, the following information should be specified:

1. LDAP binding - the scope of the LDAP search;

2. LDAP filter - the objects you wish to filter on;

3. LDAP Attributes – the attributes you wish to retrieve for these objects. These components will
be individually discussed.

LDAP binding

Starting with Windows 2000, the LDAP provider is used to access Active Directory. This binding method
requires a binding string, which can be defined in three different ways in UMRA:

UMRA Help

Copyright © Tools4ever 1998 - 2012 8

Binding method Description

Global Catalog The global catalog is a searchable master index containing directory data of all
domains in a forest. It contains an entry for every object in the forest, but it
does not include all properties of each object. The Global Catalog is used to
improve the response time of LDAP searches. The properties included in the
Global Catalog are generally useful for searches and are considered static.

Active Directory root This option will bind to the Active Directory root of a domain controller. The
Active Directory contains all the network information for the forest. This binding
method is suitable for retrieving dynamic properties.

Manual You can also enter a binding string yourself. This binding string is the AdsPath of
an object in Active Directory, consisting of the LDAP provider moniker (LDAP://)
appended to the Distinguished Name of the object. The Distinguished Name
specifies both the name and the location of an object in the Active Directory
hierarchy.

Figure 8 - LDAP binding options to bind to Active Directory

LDAP filter

An LDAP search filter can be defined as a clause specifying the conditions that must be met by Active
Directory objects. Only those objects meeting the requirements are returned.

A condition takes the form of of a conditional statement, such as "(cn=TestUser)". Each condition must
be enclosed in parenthesis. In general, a condition includes an attribute and a value, separated by an
operator.

UMRA Help

Copyright © Tools4ever 1998 - 2012 9

Conditions can be combined using the following operators (note that the operators "<" and ">" are not
supported).

Operator Description

= Equal to

~= Approximately equal to

<= Less than or equal to

>= Greater than or equal to

& AND

| OR

! NOT

Conditions can also be nested using parenthesis. Furthermore, you can use the "*" wildcard character in
the search filter.

An example of an LDAP filter is shown in figure 9:

(&(objectCategory=person)(objectClass=user) (userAccountControl:1.2.840.113556.1.4.803:=2))

Figure 9 - Defining an LDAP filter

This filter, used to obtain disabled user objects, includes 3 conditions, which should all be met (indicated
by the AND (“&”) operator).

UMRA Help

Copyright © Tools4ever 1998 - 2012 10

The userAccountControl attribute in this example needs some further explanation. This is a so called
bitmask attribute, a single attribute containing numerous property values for controlling user account
behaviour. A bitmask attribute can be evaluated using an LDAP matching rule using the following syntax:

attributename:ruleOID:=value

where attributename is the LDAPDisplayName of the attribute, ruleOID is the object ID (OID) for the
matching rule control, and value is the decimal value you want to use for comparison. In the example
above, the string “1.2.840.113556.1.4.803=2” represents an LDAP matching rule for disabled user
accounts.

LDAP Attributes

Each object in Active Directory has a set of attributes, defined by and depending on its type and class.
Using the LDAP filter you have filtered on some objects representing single entities (users, computers,
printers, applications, etc.) and their attributes. In the Attributes tab you can define the LDAP display
name for the attributes you wish to return for the filtered objects. In the example shown in figure 10,
the attributes Name, Description and sAMAccountName are specified as the attributes to be returned.

Figure 10 - Specifying attributes to be returned for filtered objects

Attributes can either be selected from an extensive list of built-in attributes, or entered by the user. For
a full list of attributes, see http://msdn.microsoft.com/library/default.asp?url=/library/en-

UMRA Help

Copyright © Tools4ever 1998 - 2012 11

us/adschema/adschema/attributes_all.asp http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/adschema/adschema/attributes_all.asp or check the MSDN library.

The final result of an LDAP search is displayed in a generic table (see figure 11). In the same way, you can
retrieve user accounts in a specific OU, show a list of groups, etc.

To process selected table entries, the column holding the attribute values can be assigned to a variable
and used as input for a script action. For more information, see section Processing user input on page 20.

Figure 11 - Table as a result of an LDAP search on all disabled user accounts in a domain

Fixed table

The content of this table is either entered directly in UMRA or taken from a flat text file. It is used to to
present the end user with specific fixed content in a form, such as a division, department, OU, domain
etc. The characteristics of a fixed table are that the information is not derived from Active Directory,
that it only contains 1 column and that it always has the same contents.

Figure 7 - Simple fixed table (list of entries)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adschema/adschema/attributes_all.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adschema/adschema/attributes_all.asp

UMRA Help

Copyright © Tools4ever 1998 - 2012 12

Generic table - Database query

In a large enterprise environment, not all user resource data are stored in Active Directory. Other
information systems, an HR system or a phone system for example, may also hold user related
information. In an UMRA project form, a generic table can be inserted to display information from these
systems. As part of the table setup, the administrator needs to specify the database to connect to, as
well as a database query to define which data should be retrieved and shown in the table.

The generic table for databases can be used to connect to any database or information system. MS
Access databases can be accessed directly through the Jet engine. Other databases (SQL, ERP, HR
systems, PeopleSoft, etc.) can be accessed through OLE DB. The number of available OLE DB providers
will depend on your local configuration (see Figure 12).

Figure 12 - List of available OLE DB database connections

UMRA Help

Copyright © Tools4ever 1998 - 2012 13

The option to connect to other databases is an extremely powerful feature in UMRA, since it allows you
to combine Active Directory with user data from a wide range of other information systems. Figures 9
and 10 show an example where a generic form table is configured to connect to an HR system (SQL
server). When the connection settings have been specified correctly, the message “Test connection
succeeded” will be displayed when you click the Test Connection button.

Figure 13 - Setting up a SQL database connection

UMRA Help

Copyright © Tools4ever 1998 - 2012 14

When the connection data have been specified, a binding string is created to connect to the database.

Figure 14 - Binding string to connect to the database

Once the connection has been properly set up, a SQL query can be created. In the example in figure 15,
a SQL query has been specified to retrieve names of employees, locations and phone numbers for the IT
department from the EmployeePhone table:

SELECT Employee, Department, Location, Phone FROM EmployeePhone WHERE Department=’IT’.

Figure 15 - Specifying the database query

UMRA Help

Copyright © Tools4ever 1998 - 2012 15

The result of this database query is shown in figure 16. The query has returned the data in the columns
Employee, Department, Location and Phone for all rows where Department is equal to “IT”.

Figure 16 - Result of a database query is shown in an UMRA form

UMRA Help

Copyright © Tools4ever 1998 - 2012 16

Specifying columns

For each of the before mentioned generic tables you need to specify which columns of the table you
would like to display. This can be configured in the Column tab of the Configure table window (see
figure below). In the same window, you can specify the sort order for the selected column and assign a
variable to the selected column.

For the generic table Variable you first need to specify the column headers, which is discussed in Special

table type - Generic table Variable on page 16.

3.8.3. Special table type - Generic table Variable

Not all user relevant data can be captured using an LDAP or database query. Table data are also
generated by some specific script actions, in which case the collected data are stored in a variable,
instead of being generated as part of a form table object. UMRA comes with several built-in script
actions producing table output, stored in a variable:

List services status – script action to manage services;

List printer documents – script action to manage printers and printer queues;

Generate generic table - script action to generate a generic table (LDAP query, database query or
variable) and store the result in a variable for further processing;

UMRA Help

Copyright © Tools4ever 1998 - 2012 17

LDAP script actions to access other (non-Active Directory) directory service like Novell eDirectory and
Linux OpenLDAP;

Manage table data – script action for creating, editing, and merging tables. See section Programmatically

creating and evaluating tables on page 20 and the Help for more information.

Projects making use of these script actions, usually consist of two parts. The first project, or “auxiliary”
project can be defined as the project in which the project data are collected using one of the above
mentioned script actions. The result is stored in a variable. In the second project, or “main” project, a
table of the variable type can be inserted to show the contents of this variable. Script actions can then
be executed for selected rows in the table (see the figure below).

Figure 17 - Concept of the generic table Variable

UMRA Help

Copyright © Tools4ever 1998 - 2012 18

The practical use of this powerful concept is illustrated in figure 17. Project A contains the script action
“List services status”. The result of this script action is stored in table format in a variable called
%ServicesTable%.

Figure 18 - Project A - Running a script action collecting data in table format. The results are stored in
a variable.

By defining project A as an initial project in project B, the script in project A will be executed before the
form of project B is displayed. The variables in project A will be passed to project B. In project B (see
Figure 15), a generic table of the variable type can now be inserted in the form window to display
content of the variable %ServicesTable%.

UMRA Help

Copyright © Tools4ever 1998 - 2012 19

Figure 19 - Project B - The content of the variable is now displayed using the generic table Variable

Specifying columns for table type Variable

The special table type Variable takes its input from a variable contaning table data. This variable (which
is the the result of script actions such as Generate Generic table, List services status, Get User Table)
does not contain any header info. This means that you need to specify the correct column names. For
variables which are the result of one of the before mentioned script actions, this is simply a matter of

UMRA Help

Copyright © Tools4ever 1998 - 2012 20

selecting the right column template.

Script action Variable Use column template

Get user table %UsersTable% User info

List services status %ServicesTable% Services status (without config info)

Services status (with config info). If you
choose this template, 3 column names will
be added.

List printer documents %DocumentsTable% Printer documents

List files and/or directories User defined Files and or directories list

Once you have defined the column names as indicated above, you can select the columns to be
displayed and assign variables to columns using the Columns tab. This is done in the same way as for the
other generic tables.

Generate Generic table - Script

It is also possible to perform LDAP queries and database queries as part of a script action and have the
result stored as a variable. This is done using the script action Generate generic table. The principle of
operation is identical to the one described above.

Programmatically creating and evaluating tables

Using the tables described in this document, you should be able to manage table data for most user
management tasks. There are situations however, where these standard tables may not be sufficient:

 You wish to evaluate an existing table programmatically and / or create a new table from
scratch ;

 You need to combine data from the tables described earlier, with data which are not
contained in a table.

In such cases, you can use the For-Each and Manage table data script actions to create your own tables.

3.8.4. Processing user input

When your form project includes a table from which the (Helpdesk) user can make a selection, the
selected data will have to be processed. To understand how this works, we need to have a closer look at
UMRA.

UMRA Help

Copyright © Tools4ever 1998 - 2012 21

In the UMRA architecture, the form project as presented to the delegate user in UMRA Form (client) has
been separated from the actual script. In other words, the UMRA project as shown on the client side
does not contain any scripting. The project script, developed by the administrator in the UMRA Console,
is part of the project maintained by the UMRA Service. The script actions in this project script make use
of variables. As soon as a delegate user hits an action button in the project form on the client side, the
following data are submitted to the UMRA service:

 the project form ID

 the name of the variables and their corresponding values

 the ID of the button which has been clicked

The UMRA Service then retrieves the project with the corresponding project ID from the forms database
and executes the script of the project, substituting the variables in the script actions with the actual
values. This principle is shown in figure 20.

Figure 20 - Submitting variable values to the UMRA Service

UMRA Help

Copyright © Tools4ever 1998 - 2012 22

In the case of form tables, table columns can be assigned to a variable. This could be a table column
holding the distinguishedName attribute as part of an LDAP table (see figure 21).

Figure 21 - Assigning variables to table columns

The distinguishedName attribute uniquely identifies users with the full LDAP string. For example:

CN=John Johnson,OU=Marketing,DC=T4EDOC, DC=LOCAL

When the user hits the action button in the form, the variable %DN% for the selected user (e.g
“CN=John Johnson,OU=Marketing,DC=T4EDOC, DC=LOCAL”) is submitted to the UMRA Service. The
UMRA Service then executes the script (e.g. Get User (AD)) of the project, substituting the variable
%DN% in the script action property LDAP name with its actual value (see figure 22).

Figure 22 - Passing a variable holding the distinguishedName attribute to the Get user script action

UMRA Help

Copyright © Tools4ever 1998 - 2012 23

3.8.5. Formatting tables

In UMRA, the display of tables can be fully customized. The table lay-out can be fully configured in the
Configure form field window for tables (Display tab).

 Table alignment

 Margins

 Vertical offset

 Fonts

 Background colour

 Etc.

UMRA Help

Copyright © Tools4ever 1998 - 2012 24

3.8.6. Using tables in UMRA - Forms & Delegation - Hands-on

Example 1 - Creating an LDAP table showing all disabled users in a domain

The project created in this example can also be found in the directory \Tools4ever\User Management

Resource Administrator\Example Projects\Forms\DisabledUsers.ufp.

LDAP table - Creating a table listing all disabled users in a domain

1. Start the UMRA Console application and connect to the UMRA Service: Select UMRA Service,
Connect… and connect to the computer on which the UMRA Service is installed.

2. Start the UMRA Console and create a new Forms project.

3. Right-click in the Forms window and choose the Add form field command.

4. Select the Table option.

5. Select the Generic table option and click the Configure button.

6. Click the Configure button once more.

7. Select the option LDAP query under Table type. A dialog box appears to configure your LDAP
table.

8. Click the LDAP binding tab. In this window, the binding method for the LDAP query is specified.
You can either choose a default binding to the Global Catalog or Active Directory root, or define
your own binding string. For this example, we want to perform an LDAP search on all user
objects in a domain, so we can select the option Global Catalog. This is is a searchable master
index with data about all objects in the domain.

UMRA Help

Copyright © Tools4ever 1998 - 2012 25

9. Click the LDAP Filter tab to define a search filter.

You can either enter an LDAP search query directly in the LDAP search filter window or select a
predefined search filter from the Example LDAP search filters list box. For this example, please
enter the following LDAP query:
(&(objectCategory=person)(objectClass=user)
(userAccountControl:1.2.840.113556.1.4.803:=2)).
The next step is to specify which attributes should be returned.

10. Click the Attributes tab.

The list of attributes for an Active Directory is endless. Which one you need to choose, also
depends on the script action you wish to perform on the user selection. For this simple example,
select the predefined attribute setting “Users – general information”. This will return the cn

UMRA Help

Copyright © Tools4ever 1998 - 2012 26

attribute and the description attribute. Click the Set button when you are done. The LDAP query
is now ready to be tested.

11. Click the Run test tab.

Click the Test button. The result of your LDAP query will appear in the Table data section. Click
OK three times to return to the Forms window.

12. Right-click in the form window and choose the Toggle auto preview command to preview your
table. The result should be similar to the figure shown below (the user names in your network
will of course be different).

You have now created an LDAP table which returns all the disabled users in a domain. Script actions can
now be added to your project specifying what action needs to be performed on the selected data.

Example 2 - Creating a form table to connect to a database
As part of a delegation project, you want to show a delegate user a table containing the phone numbers of
employees in the IT department. These data are available in the database EmployeePhoneNrs.mdb. In the example
below we will show you how a table can be created in UMRA to display these data.

The project created in this section can also be found in the directory \Tools4ever\User Management

Resource Administrator\Example Projects\Forms\GetPhoneNumbers.ufp.

UMRA Help

Copyright © Tools4ever 1998 - 2012 27

LDAP table - Linking UMRA to an MS-Access database containing phone numbers for all employees,
listed by department

The MS Access database we need to link to, contains one table which is called EmployeePhone. This
table holds the columns ID, PersNr, Employee, Department, Manager, Location, FirstName and Phone:

The link to the MS Access database is established through the Jet Engine, so there is no need to have
MSAccess installed. In case you wish to explore the database yourself, you will find it in
\Tools4ever\User Management Resource Administrator\Example
Projects\Forms\EmployeePhoneNrs.mdb.

1. Start the UMRA Console application and connect to the UMRA Service: Select UMRA Service,

Connect… and connect to the computer on which the UMRA Service is installed.

2. Create a new Forms project.

3. Right-click in the Forms window and choose the Add form field command.

4. Select the Table option.

5. Select the Generic table option and click the Configure button.

6. Click the Configure button once more.

UMRA Help

Copyright © Tools4ever 1998 - 2012 28

7. Select the option Database query under Table type. A dialog box appears in which you can
configure your database table. The following step is to define the database type and name.

8. Click the Database tab. The following dialog box will appear:

UMRA Help

Copyright © Tools4ever 1998 - 2012 29

9. Click the Configure button to specify the database you wish to use. Select the option MS Access

(Jet) database from the Database type list.

Note - linking to a database is not limited to an MS Access database. You can connect to any database
for which a OLE DB provider is available. If your database is not included in the standard OLE DB list of
OLE DB providers, please check with your database provider.

10. Click the MS-Access (Jet) tab and browse to the file EmployeePhoneNrs.mdb. Click the Open
button.

UMRA Help

Copyright © Tools4ever 1998 - 2012 30

11. Click OK to return to the database setup window. We have now specified which database needs
to be used. In order to specify which data we want to retrieve from the database, a database
query must be specified. Click the Query tab. The following dialog box will appear:

12. Enter the following query:

13. SELECT Employee, Location, Phone FROM EmployeePhone WHERE Departments=”IT”
14. This query will return all records in the columns Employee, Location and Phone of the

EmployeePhone table (the table name you obtained in step 2) where the column Department is
“IT”.

15. Click the Run test tab and click the Test button. The following data should appear:

In the Columns tab, the displayed columns can be changed.

16. Click the Columns tab.

UMRA Help

Copyright © Tools4ever 1998 - 2012 31

This window is used to configure which columns must be shown in the form. Here you also
specify the variables that are passed to the UMRA Service when the end-user selects a table
entry and presses a submit button. On the left side, the Available columns are shown. When the
Run test was performed successfully in step 13, the actual column names will be shown here.
Change the column width for column 1-3 as shown in figure 23. Exclude the columns 4-10 by
selecting the column and clicking the left arrow (). Finally, click OK.

Figure 23 - Configuring the columns to be displayed in the form table

17. Click OK. When you run the preview, the resulting table as shown in figure 24 will be displayed.

Figure 24 - Displaying database data in a form table

You have now succcessfully created a form table object to hold database content.

UMRA Help

Copyright © Tools4ever 1998 - 2012 32

Example 3 - Creating a variable with table data and showing the content in a form table

In this excercise, the project Collect Services is created which collects the services information of a
specific computer. These data can subsequently be shown in another project defining how to manage
these services. Assigning script actions to the table data in the second project falls outside the scope of
this exercise, but is described in detail in the document “UMRA Example projects: Service Management”.

The project created in this example can also be found in the directory \Tools4ever\User Management

Resource Administrator\Example Projects\Forms\CollectServices.ufp and ShowServices.ufp.

Project A - Collecting services

1. Start the UMRA Console application and connect to the UMRA Service: Select UMRA Service,

Connect… and connect to the computer on which the UMRA Service is installed.

2. Choose FileNew. Select the option Form project and click OK. Enter the name of the project,
Collect Services, and click OK.

3. First we will set up the action that creates and initializes the variable holding the name of the
computer of which we want to manage the services.

4. Drag the Set variable script action into the script action window and configure this script action
as shown in figure 25. In this example, the name of the computer is “SERVER_A”.

Figure 25 - Defining the variable for the computer name

Next, we need to collect the service status information for the computer “SERVER_A”.

UMRA Help

Copyright © Tools4ever 1998 - 2012 33

5. In the Actions bar, drag the script action List services status from the Services folder to the
script section window. Specify the properties for this script action as shown in figure 26.

Figure 26 - Configuring the properties for the List services status script action

The UMRA software will connect to the computer specified by %ComputerName% and collect
the status of all services. The status information includes the name of the service, the
operational state of each service (running, stopped), type of service (automatic, manual,
disabled) and so on. This information is stored as a table in the variable %ServicesTable%. In
other words, this single variable will hold a table with multiple rows and columns. The content of
this variable can be displayed as a form table in another project for managing the collected
services.

Finally, the security settings for the project Collect Services must be specified.

6. Choose the Form properties command from the Actions menu and click the Security tab. For this
exercise, you can set the group to “Everyone”.

7. Save the project and close the project window

In the second project, a form table will be set up to display the content of the variable
%ServicesTable%.

Project B - Inserting a form table to display table content in a variable

1. Choose FileNew. Select the option Form project and click OK. Enter the project name, Show

Services, and click OK.

Next, the project CollectServices must be specified as an initial project to ensure that the
variable %ServicesTable% is properly passed to the Show Services project.

2. Right-click the Form window and select Form properties…. Select the Initial project tab and
select CollectServices as the initial project. Click OK.

UMRA Help

Copyright © Tools4ever 1998 - 2012 34

3. Insert a table object in the Forms window. Select the Generic table option and click the
Configure button.

The table data we wish to use are contained in the variable %ServicesTable%, so we need to
select the generic table type Variable as shown in the figure below.

For this table type, the name of the variable and the columns contained in this variable need to
be specified in the Variable generic table tab.

4. Enter %ServicesTable% in the Variable name list.

Specifying the column names is necessary because a table variable only holds the data of the
table, not the column names. Built-in column templates are available for this purpose.

5. Select the column template Services status (with config info) in the Columns section and click
the Set columns button. This will include the column names “Computer”, “Internal name”,

UMRA Help

Copyright © Tools4ever 1998 - 2012 35

“Name”, “Service”, “Status (text)”, “Status (code)”, “Process ID”, “Svc type (text)”, “Svc type
(code)”, “Interactive”, “Startup-type (text)”, “Startup-type (code)”, “Binary file” and “Logon as”|.
See the Help for more detailed information regarding these status fields. Finally, click OK.

If you wish to make changes to the displayed columns, you can do so in the Columns tab.

6. Click the Columns tab.

This window is used to configure which columns must be shown in the form. Here you also
specify the variables that are passed to the UMRA Service when the end-user selects a service
and presses a submit button. On the left hand side, the available columns are shown. These
columns correspond with the columns configured in the previous step.

By using the add (->) and remove (<-) buttons you can set up and modify a column configuration.
In the example shown, the form will have a table with 3 columns. The third column (Internal

UMRA Help

Copyright © Tools4ever 1998 - 2012 36

name) will not be visible since it has a width of 0%. This column is included since it uniquely
specifies the name of the service, but there is no need to display it for the end user. When the
user selects a service and presses a button, the value of this column is stored in variable
%ServiceName%. This variable is passed to the UMRA Service and used for further processing.

7. Click OK. When you run the preview, the resulting table as shown in the figure below.

3.8.7. Contacts

You can visit our Tools4Ever web site for contact,support and other information about our products:

http://www.tools4ever.com/ (http://www.tools4ever.com/ http://www.tools4ever.com/)

http://forum.tools4ever.com/ (http://forum.tools4ever.com/ http://forum.tools4ever.com/)

3.9. Lotus Notes user guide
The topics in this section describe how to configure Umra for user with Lotus Notes

http://www.tools4ever.com/
http://forum.tools4ever.com/

UMRA Help

Copyright © Tools4ever 1998 - 2012 37

3.9.1. Configuring the UMRA console for use with Lotus Notes

This topic describes step by step how to configure UMRA console application for use with Lotus Notes. It
assumes that you have already have successfully installed and configured the UMRA console and the
UMRA Service for general usage. It assumes also a basic level of understanding of both Lotus Notes
administration and of UMRA.

You need configure the UMRA console for use with Lotus Notes if you want to run local mass projects
with the console that make use of the Lotus Notes functionality. For all other project types you need
to configure the Umra service. See Configuring the UMRA service for use with Lotus Notes on page 42 for
instructions.

Step by step configuration of the UMRA Console application for use with Lotus Notes.

1. Install the Lotus Notes client software.

Install the Lotus Notes client and the Lotus Domino Admin software of IBM on the computer that
runs the UMRA Console, configure these applications, and verify their proper operation

2. Create a Lotus Notes initialization file for the UMRA console application.

When the UMRA console connects to the Lotus Notes environment it needs to provide a notes
initialization file with all relevant connection parameters. Such a file can be created as follows:

a) Log on to Windows with the account you use to run the UMRA console.

b) Start the IBM Lotus Notes client and verify the correct operation of the application. Make sure

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or transmitted in any form or by any means
without the written permission of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or consequences resulting from
your actions or usage of the informational material contained in this user guide. Responsibility for the
use of any and all information contained in this user guide is strictly and solely the responsibility of that
of the user.

All trademarks used are properties of their respective owners.

UMRA Help

Copyright © Tools4ever 1998 - 2012 38

you connect to the Domino server with a Lotus Notes user ID that has sufficient administrative
rights in Lotus Notes. It is this Lotus Notes User ID that will be used by the UMRA console to
perform all its actions in Lotus Notes. You may consider using the administrator account of Lotus
Notes for this purpose, or alternatively create a special Lotus Notes user with administrative
rights.

c) Exit the Lotus Notes client application.

d) Locate the Lotus Notes Program directory, and find the file Notes.ini. The default location is
c:\Program Files\Lotus\notes\notes.ini.

e) Copy the file Notes.ini to a new file, e.g. UMRAConsoleNotes.ini.

3. Configure a password dll file.

In order to be able to exchange session passwords between the UMRA application and the Lotus
Notes environment, Lotus Notes requires a special password dll file. The Lotus Notes software will
access the password dll file (part of the UMRA software) to obtain a (session) password when it
requires one. This is required to prevent the appearance of Lotus notes login screens at
inconvenient moments, which may impair proper operation of the console.

a) Locate the UMRA program directory (default c:\program files\Tools4ever\User Management
Resource Administrator).

b) This directory contains the file UMlnpw.dll. Copy this file to the Lotus Notes program directory,
(i.e the directory containing the UMRAConsoleNotes.ini file).

c) Open a text editor, for instance Notepad.exe, to edit the file UMRAConsoleNotes.ini. Navigate to
the end of the file and add an extra line:

EXTMGR_ADDINS=UMlnpw.dll and make sure that there still is an empty line at the end of the
file.

This configuration setting instructs the Lotus Notes software to access the specified dll (part of
the UMRA software) to obtain a (session) password when it requires one.
The resulting ini file will look something like this:

UMRA Help

Copyright © Tools4ever 1998 - 2012 39

d) Save the file, and exit the editor.

4. Add the Lotus Notes program directory to the system environment variable "Path".

a) Open the Windows Control Panel, and choose System.

b) Select the Advanced tab, and press the Environment variables button

c) In the bottom section, scroll to the variable Path, and click Edit.

d) Add here the Lotus Notes program directory (default C:\program files\lotus\notes) to the end of
the Path variable. precede the variable with a ";" separator character.

e) If the UMRA console application was running, exit the console application. The new environment

settings will be used the next time the console is started.

5. Enable and configure the Lotus Notes configuration in the UMRA console itself.

a) Start the UMRA console application, and select the menu Tools, Options.

b) Select the Lotus Notes Tab.

UMRA Help

Copyright © Tools4ever 1998 - 2012 40

c) Select the checkbox Enable Lotus Notes functions, and specify the Lotus Notes initialization file
you have created in the previous steps. Specify the password. The password must be the
password of the Lotus Notes User ID file that is listed in the KeyFilename property in the
specified ini file. If you have followed the above procedure, this will be the Lotus Notes User ID
file of the user you specified in the Lotus Notes Client.

UMRA Help

Copyright © Tools4ever 1998 - 2012 41

Note that the Lotus Notes client has created many items in the .ini file. Some are required for
the UMRA connection, many others are not. However, unless you are very familiar with their
meaning, we suggest not altering this file manually. If for some reason you want UMRA to
connect to the Lotus Notes environment with a different user ID, please repeat the steps 2 and
3.

d) Press OK to continue.

e) If you now examine the log messages in the console, you should see something like:

UMRA Help

Copyright © Tools4ever 1998 - 2012 42

6. Now the Console is successfully initialized. You can start using the Lotus Notes actions in your local
UMRA projects.

Configuration of the UMRA Service for use with Lotus Notes.

If you want to use the Lotus notes functionality of UMRA also when using service based projects, which
is most likely, you also need to configure the UMRA service for use with Lotus Notes. The method of
configuring the UMRA Service for use with Lotus Notes requires comparable steps as configuring the
UMRA console. See Configuring the UMRA service for use with Lotus Notes on page 42 for a description how
to do this.

3.9.2. Configuring the UMRA service for use with Lotus Notes

This topic describes step by step how to configure UMRA Service application for use with Lotus Notes. It
assumes that you have already have successfully installed and configured the UMRA console and the
UMRA Service for general usage. It assumes also a basic level of understanding of both Lotus Notes
administration and of UMRA.

You need configure the UMRA console for use with Lotus Notes if you want to run local mass projects
with the console that make use of the Lotus Notes functionality. For all other project types you need
to configure the Umra service. See Configuring the UMRA Console for use with Lotus Notes on page 37 for a
description how to configure the console.

UMRA Help

Copyright © Tools4ever 1998 - 2012 43

Step by step Configuration of the UMRA Service for use with Lotus Notes

1. Install the Lotus Notes client and the Lotus Domino Admin program of IBM on the server that runs
the UMRA Service. Configure these applications and verify their correct operation.

2. Create a Lotus Notes initialization file for the UMRA Service.

When the UMRA Service connects to the Lotus Notes environment it needs to provide a Lotus
Notes initialization file with all relevant connection parameters. Such a file can be created as
follows:

a) Log on locally to Windows at the server running the UMRA service, with the same Windows
account that is used by the UMRA service application itself.

b) Start the IBM Lotus Notes client and verify the correct operation of the application. Make sure
you connect to the Domino server with a Lotus Notes user ID that has sufficient administrative
rights in Lotus Notes. It is this Lotus Notes User ID that will be used by the UMRA service to
perform all its actions in Lotus Notes. You may consider using the administrator account of Lotus
Notes for this purpose, or alternatively create a special Notes user with administrative rights.

c) Exit the Lotus Notes application.

d) Locate the Lotus Notes Program directory on the server, and find the file Notes.ini. The default
location is c:\Program Files\Lotus\notes.

e) Copy the file Lotus Notes.ini to a new file, e.g. UMRAServiceNotes.ini.

3. Configure a password dll file.

In order to be able to exchange session passwords between the UMRA service and the Lotus Notes
environment, Notes requires a special password dll file. The Lotus Notes software will access the
password dll file (part of the UMRA software) to obtain a (session) password when it requires one.
This is required to prevent the Lotus Notes software form trying to produce pop-up Lotus Notes
login screens, which would obstruct proper operation of the service, as it cannot respond to such
pop-up windows.

a) Locate the UMRA service program directory (default c:\program files\UMRAService).

b) This directory contains the file UMlnpw.dll. Copy this file to the Lotus Notes program directory
(i.e the directory containing the UMRAServiceNotes.ini file).

c) Open a text editor, for instance Notepad.exe, to edit the file UMRAServiceNotes.ini. Navigate to
the end of the file and add an extra line:

EXTMGR_ADDINS=UMlnpw.dll

Make sure that there is still is an empty line at the end of the file.

This configuration setting instructs the Lotus Notes software to access the specified dll (part of
the UMRA software) to obtain a (session) password when it requires one.

UMRA Help

Copyright © Tools4ever 1998 - 2012 44

The resulting ini file will look something like this:

d) Save the file, and exit the editor.

4. Add the Lotus Notes program directory to the system environment variable "Path".

a) Open the Windows Control Panel, and choose System.

b) Select the Advanced tab, and press the Environment variables button

c) In the bottom section, scroll to the variable Path, and click Edit.

d) Add here the Lotus Notes program directory (default C:\program files\lotus\notes) to the end of
the "Path" variable. precede the variable with a ";" separator character.

e) Stop and restart the UMRA service to make sure that it will use the new settings.

UMRA Help

Copyright © Tools4ever 1998 - 2012 45

5. Enable and configure the Lotus Notes configuration of the UMRA service itself by using the UMRA
console.

a) Start UMRA console application, and select the menu UMRA Service, connect and connect to
the UMRA service on the server you are currently configuring.

b) Select UMRA Service,Service properties and select the Lotus Notes tab

c) Select the checkbox Enable Lotus Notes Functions, and specify the Lotus Notes ini file you have
created in the previous steps. Specify the password. The password must be the password of the
Lotus Notes User ID file that is listed in the KeyFilename property in the specified ini file. If you
have followed the above procedure, this will be the Lotus Notes User Id file of the user you
specified in the Lotus Notes Client.

UMRA Help

Copyright © Tools4ever 1998 - 2012 46

Note that the Lotus Notes client has created many items in the .ini file some are required for the
UMRA connection, many others are not. However, unless you are very familiar with their
meaning, we suggest not altering this file manually. If for some reason you want UMRA to
connect to the Lotus Notes environment with a different user ID, please repeat the steps 2 and
3.

d) Press OK to continue.

e) If you now examine the log messages in the reported by the service(default location C:\Program
Files\UMRAService\Log\UMRASvcLog1.txt), you should see something like:

UMRA Help

Copyright © Tools4ever 1998 - 2012 47

6. Now the service is successfully initialized, you can start using the Lotus Notes actions in your
service based UMRA projects.

Configuration of the UMRA Console for use with Lotus Notes

If you want to use the Lotus notes functionality of UMRA also when using local (mass) projects executed
by the console the UMRA, you also need to configure the UMRA console for use with Lotus Notes. The
method of configuring the UMRA Console for use with Lotus Notes requires comparable steps as
configuring the UMRA service. See Configuring the UMRA Console for use with Lotus Notes on page 37 for a
description how to do this.

3.9.3. Administration Requests database

The Administration Requests database in Lotus Notes (admin4.nsf) handles specific actions from the
Lotus Domino Administrator. Many management tasks can be accomplished using the Administration

Requests database. When an Administration Request document is submitted to the Administration

Request database, it is processed by the Administration Process. The contents of the Administration

Request document defines the exact actions executed.

Not all actions available in the Lotus Domino Administrator are implemented directly in UMRA.
However, the actions in the Lotus Domino Administrator that are generating a Administration Request

document, can be created manually with UMRA. These are a few actions that are not standard actions in
UMRA but can be created manually:

UMRA Help

Copyright © Tools4ever 1998 - 2012 48

 Move mail files to another server on page 48
 Create replica on page 51

To create a Administration Request document, the following actions are used in an UMRA project:

1. Get database
To get the admin4.nsf database. For the Database path property, specify admin4.nsf, to access the
Administration Requests database.

2. Create document
To create a new empty document in the database. For property Form name, specify AdminRequest.

3. Set item(s)
Set the appropriate items in the new document.

4. Sign/Unsign document
Finally, to sign the new document.

Move mail files to another server

This topic describes the fields of the Administration Request document to move the mailbox of a person
to another Lotus Notes Domino server.

Item name Item
type

Options Item
creation
flags

Value Example

FullName text Append if
exist

sign

names

authors

auto-
summary

The name of
the person
that issues the
request.

CN=Administrator/O=tools4ever

ProxyAction text Append if
exist

sign

protected

auto-
summary

The value
specifies the
action to
create a
replica and
must equal
45.

45

UMRA Help

Copyright © Tools4ever 1998 - 2012 49

ProxyAuthor text Append if
exist

sign

protected

auto-
summary

The name of
the person
that issues the
request.

CN=Administrator/O=tools4ever

ProxyDatabasePath text Append if
exist

sign

protected

auto-
summary

The path of
the mail file
you want to
move. The
path must be
relative to the
Domino
installation
directory

mail\jsmith

ProxyDestinationDatabasePath text Append if
exist

sign

protected

auto-
summary

The path
where you
want to move
the mail file
to. The path
must be
relative to the
Domino
installation
directory

mail\jsmith

ProxyDestinationServer text Append if
exist

sign

protected

auto-
summary

The name of
the server you
want to move
the mail file
to.

CN=Marketing/O=tools4ever

ProxyLinkDestinationToSCOS text Append if
exist

sign

protected

auto-
summary

 0

ProxyNameList text Append if
exist

sign

protected

auto-
summary

The name list
of the mail file
you want to
move.

CN=John Smith/O=Tools4ever

UMRA Help

Copyright © Tools4ever 1998 - 2012 50

ProxyOriginatingAuthor text Append if
exist

sign

names

authors

auto-
summary

The name of
the person
that issues the
request.

CN=Administrator/O=tools4ever

ProxyOriginatingOrganization text Append if
exist

sign

names

authors

auto-
summary

The name of
the
organization

tools4ever

ProxyOriginatingRequestUNID text Append if
exist

auto-
summary

Leave this
property
blank

ProxyOriginatingTimeDate date-
time

Append if
exist

sign

auto-
summary

The current
date-time
value

ProxyOverrideDefaultDataStore text Append if
exist

sign

protected

auto-
summary

 0

ProxyProcess text Append if
exist

sign

protected

auto-
summary

The name of
the task that
is processing
the
administration
request.

Adminp

ProxyServer text Append if
exist

sign

protected

auto-
summary

The name of
the server you
want to send
the request
to.

CN=Development/O=tools4ever

ProxySourceServer text Append if
exist

sign

protected

auto-
summary

The name of
the server you
want to send
the request
to.

CN=Development/O=tools4ever

UMRA Help

Copyright © Tools4ever 1998 - 2012 51

Type text Append if
exist

protected

auto-
summary

The title of
this
administration
process
request
document

AdminRequest

Create replica

This topic describes the fields of the Administration Request document to create a replica of a Lotus
Notes database.

Item name Item
type

Options Item
creation
flags

Value Example

FullName text Append if
exist

sign

names

authors

auto-
summary

The name of
the person
that issues the
request.

CN=Administrator/O=tools4ever

ProxyAction text Append if
exist

sign

protected

auto-
summary

The value
specifies the
action to
create a
replica and
must equal
45.

32

ProxyAuthor text Append if
exist

sign

protected

auto-
summary

The name of
the person
that issues the
request.

CN=Administrator/O=tools4ever

ProxyCopyAcl text Append if
exist

sign

protected

summary

You can copy
the Acl of the
source
database to
the replica.
Specify 1 to
do so, or 0 to
leave the Acl.

1

UMRA Help

Copyright © Tools4ever 1998 - 2012 52

ProxyCreateFullTextIndex text Append if
exist

sign

protected

summary

You can
create a Full
Text index
search on the
replica of the
database.
Specify 1 to
do so, or 0 for
no full text
index.

0

ProxyDatabasePath text Append if
exist

sign

names

summary

The location
of the replica
of the
database. The
path must be
relative to the
Domino
installation
directory

mail\replica\jsmith.nsf

ProxyDatabaseSourcePath text Append if
exist

sign

names

summary

The path to
the source
database. The
path must be
relative to the
Domino
installation
directory.

mail\jsmith.nsf

ProxyDestinationServer text Append if
exist

sign

names

summary

The name of
the server you
want to create
the replica
databases on.

CN=Marketing/O=tools4ever

ProxyNameList text Append if
exist

sign

names

summary

The name list
of database
you want to
create a
replica of.

John Smith

ProxyOriginatingAuthor text Append if
exist

sign

authors

summary

The name of
the person
that issues the
request.

CN=Administrator/O=tools4ever

UMRA Help

Copyright © Tools4ever 1998 - 2012 53

ProxyOriginatingOrganization text Append if
exist

sign

authors

summary

The name of
the
organization

tools4ever

ProxyOriginatingRequestUNID text Append if
exist

auto-
summary

Leave this
property
blank

ProxyOriginatingTimeDate date-
time

Append if
exist

sign

auto-
summary

The current
date-time
value

ProxyOverrideDefaultDataStore text Append if
exist

sign

protected

summary

 0

ProxyProcess text Append if
exist

sign

protected

auto-
summary

The name of
the task that
is processing
the
administration
request.

Adminp

ProxyReplicaId date-
time

Append if
exist

sign

names

summary

The current
date-time
value

ProxyServer text Append if
exist

sign

names

summary

The name of
the server you
want to send
the request
to.

CN=Development/O=tools4ever

ProxySourceServer text Append if
exist

sign

names

summary

The name of
the server you
want to send
the request
to.

CN=Development/O=tools4ever

Type text Append if
exist

protected

auto-
summary

The type of
this
administration
process
request
document

AdminRequest

UMRA Help

Copyright © Tools4ever 1998 - 2012 54

3.9.4. Lotus Notes example projects

UMRA is shipped with several example projects that focus on Lotus Notes functions. The example
projects can be found in subdirectory

 .\Example Projects\LotusNotes

of the UMRA Console application. When installed on C:\ with all settings equal to their default values,
the location is:

 C:\Program Files (x86)\Tools4ever\User Management Resource Administrator\Example
Projects\LotusNotes

The following Lotus Notes projects are available:

Create database replica

The project script creates and Administration Request to make a replica of a Lotus Notes database. The
Administration Request is described in topic Create replica on page 51.

Move to another server

The project script creates and Administration Request to move the mail database of an account to
another Lotus Notes Domino server. The administration request is described in topic Move mailfiles to

another server on page 48.

Request move to new certifier

Illustrates the usage of action Move person (advanced). The project script moves a person to another
certifier.

Update profile document

Illustrates the usage of action Update profile document. The project script sets the Owner field of the
CalendarProfile document of a mailbox database to a specified person.

Approve Mail file Deletion

UMRA Help

Copyright © Tools4ever 1998 - 2012 55

Shows how to automate the confirmation of the deletion of a mail file. The example project deletes a
person from the Lotus Notes Domino directory, including the mail file of the user. As a response, an
approval request to confirm the mail file deletion is generated by the Lotus Notes administration
process. Once the UMRA project has deleted the user from Lotus Notes, the project starts looking for
the approval request in the administration process database. This may take up to a few minutes. When
the approval request is found, the action Execute agent script on page 485 is used to approve the request.
(example project file: .\Example Projects\LotusNotes\LotusNotesApproveMailfileDeletion.xml)

Remove Roaming Profile

Shows how to setup a administration request to remove the roaming profile of a user account. If the
roaming profile files are replicated to other Domino servers, these files will be deleted as well. When the
administration request is processed, the administration process will create approval requests. To
complete the request, these requests need to be approved. (example project file: .\Example
Projects\LotusNotes\LotusNotesRemoveRoamingProfile.xml)

Lotus Notes ID Vault - Reset password

Starting with Lotus Notes Domino 8.5, it is possible to reset the password of Lotus Notes user account
using the so called ID Vault. The example project LotusNotesVault shows how to use UMRA to reset
password using the ID Vault.

ID Vault

The Lotus Notes ID Vault is available since Lotus Notes Domino 8.5. With the ID Vault it is possible to
reset the password of a user account in Lotus Notes. When the password is reset, the ID of the account
is updated in the ID Vault and is downloaded the next time the user logs on to Lotus Notes. With UMRA,
it is possible to use the ID Vault to reset the passwords of Lotus Notes user accounts. UMRA uses a
project that creates 2 Lotus Notes agents to accomplish this. This topic describes the example project
that uses the ID Vault.

Example project

The example project is stored in file LotusNotesVault.xml in the Lotus Notes example project directory.
To focus on the UMRA interaction with the Lotus Notes Vault, the project is implemented as a scheduled

UMRA Help

Copyright © Tools4ever 1998 - 2012 56

project for a specific user. In practice, the user account will not be fixed and can be obtained from a
form, database, file, etc.

Requirements

The following requirements apply in order to implement this or a similar project successfully:

1. The ID Vault must be operational and created with Domino 8.5 or higher. See IBM's documentation
on Domino server for more information;

2. The ID's of the user accounts for which it should be possible to reset the passwords must be stored
in the ID Vault. Normally, a policy is used to store the ID's in the vault;

3. The Lotus Notes used by the UMRA software to access Lotus Notes should be authorized to reset
the passwords. Since the software resets the passwords using an agent, the account must be a so
called Self-service password reset authority. Note also that the server on which the ID Vault
resides must have access as a Self-service password reset authority.

Project description

The project uses Lotus Notes sample database pwdresetsample.nsf. In this databse, 2 Lotus Notes
agents are created. The first agent (UmraResetPassword) resets the password of an account. Since this
agent must be executed on the server the second agent is used. (By default, a Lotus Notes agent is
executed in the Lotus Notes session environment). The second agent executes the first agent on a
specific server.

UMRA Help

Copyright © Tools4ever 1998 - 2012 57

The Lotus script code of the agents is straightforward. The first agent creates a session and resets the
password of the account specified by a variable:

Lotus script code of first agent, UmraResetPassword:

Option Public
Option Declare

Sub Initialize
Dim Session As New NotesSession
 Call
Session.ResetUserPassword("%DominoServer%","%Account%","%NewPassword%"
)
End Sub

In UMRA, the action to manage this agent only creates the agent. The agent is not executed and not
deleted. The NoteID of the note holding the agent is returned to be able to delete the agent later on.
The second agent accesses the first agent. Next, it executes the agent on the server.

UMRA Help

Copyright © Tools4ever 1998 - 2012 58

Lotus script code of second agent, UmraRunAgent:

Option Public

Dim db As NotesDatabase
Dim agent As NotesAgent

Sub Initialize
 Dim s As New NotesSession
 Set db = s.CurrentDatabase
 Set agent = db.GetAgent("UmraResetPassword")
 agent.RunOnServer
End Sub

The second agent is deleted as part of the action that creates and runs the agent. Finally, the second
agent is deleted with action Delete document.

3.10. Exchange 2007

UMRA Help

Copyright © Tools4ever 1998 - 2012 59

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or transmitted in any form or by any means
without the written permission of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or consequences resulting from
your actions or usage of the informational material contained in this user guide. Responsibility for the
use of any and all information contained in this user guide is strictly and solely the responsibility of that
of the user.

All trademarks used are properties of their respective owners.

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.10.1. Introduction Exchange 2007

The main purpose of managing an Exchange 2007 environment includes the management of mailboxes,
user accounts, mailbox databases, mailbox stores, Exchange servers and so on. UMRA supports all of
these management tasks but focuses on the management of Exchange 2007 mailboxes and user
accounts.

Starting with Exchange 2007, the Exchange environment is completely managed through Microsoft
Powershell. Hence, UMRA includes the support of Microsoft Powershell and allows end-users to execute
Powershell commandlets through a number of ways. For the end-user, the execution of Powershell
commandlets by using UMRA is transparent: a set of normal UMRA actions are available to manage
Exchange 2007 mailboxes and other Exchange 2007 resources. In the background, Powershell
commandlets are executed when an UMRA script is executed to manage Exchange 2007.

To support Exchange 2007, UMRA uses a special service to allow the execution of Powershell
commandlets: the Powershell Agent service. This service is part of UMRA and is required in order to
manage Exchange 2007 with UMRA. The Powershell Agent service must be installed on a computer that
runs both the .NET framework and the Exchange Management Console software. The computer can be a
32-bit of 64-bit machine.

3.10.2. Requirement UMRA Exchange 2007 support

UMRA supports a number of actions, dedicated to manage Exchange 2007 mailboxes and accounts.
These actions are available for any UMRA project, including forms, automation and form projects.

In order to successfully use these actions in UMRA project scripts, the following requirements apply:

1. A separate UMRA license is required to support the UMRA actions that require Powershell support.
This is the case for all UMRA Exchange 2007 actions.

2. The Powershell Agent service must be setup and configured. The configuration of UMRA to support
Exchange 2007 includes the setup and configuration of the Powershell Agent service. Once the
Powershell Agent service is setup, UMRA scripts with UMRA actions to manage Exchange 2007 can
be used. The Powershell Agent service must be configured on a machine that has the Exchange
2007 Management software installed

3. The UMRA application that executes the UMRA project scripts, must have a connection configured
with the Powershell Agent service. Note that for mass projects, the UMRA application is the UMRA
Console. For all other projects, the UMRA application is the UMRA Service.

For more information on how to setup the Powershell Agent service, see Powershell Agent service setup.
For more information on the available UMRA action to manage Exchange 2007 mailboxes, accounts and
resources, see the online help topics for each action.

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

3.10.3. Manage Active Directory with the UMRA Powershell Agent service

A number of UMRA dynamic actions require the Exchange 2007 Management Tools to be installed,
although these actions do not manage Exchange 2007 related resources. For these actions, it is not
necessary to have Exchange 2007 Server installed on any server, but the Exchange 2007 Management
Tools need to be installed on the computer that runs the UMRA Powershell Agent service. Examples of
these UMRA actions are: Get AD permissions (action folder: Powershell, Active Directory permissions)
and Get (nested) group memberships (action folder: Powershell, Group management). These actions
are implemented using cmdlets that are part of the Exchange 2007 snap-in
Microsoft.Exchange.Management.PowerShell.Admin. Therefore, the Exchange Management Tools need
to be installed on the computer that runs the UMRA Powershell Agent service in order to use these
actions. Note that not all cmdlets of this snap-in can be used if Exchange 2007 server is not installed. For
instance, the cmdlets to create a mail-enable user account requires Exchange 2007 Server to be
installed.

The described UMRA dynamic actions have the following characteristics:

1. The actions use cmdlets that are part of the Exchange 2007 Powershell snap-in that comes with the
Exchange 2007 Management Tools;

2. The cmdlets do not require Exchange 2007 Server to be installed in the network. Instead, the
cmdlets can be used to manage Active Directory resources;

3. To execute the Powershell scripts that use these cmdlets, the Exchange 2007 Management Tools
need to be installed on the computer that runs the UMRA Powershell Agent service.

The Exchange 2007 Management Tools are available for 32-bit and 64-bit platforms. When Exchange
2007 Server is installed (64-bit platform only), the tools are installed automatically. To install the tools
on a 32-bit platform, see Setting up the Exchange 2007 Management Tools on a 32-bit platform for more
information. To install the tools on a 64-bit platform without installing Exchange 2007 Server, a similar
procedure must be used.

3.10.4. Managing Exchange 2003 with the UMRA Powershell Agent service

With the UMRA Powershell Agent service, it is possible to manage a number of Exchange 2003 mailbox
settings, including Exchange 2003 mailbox permissions. Special configuration settings apply to support
this type of functionality.

Environment

This section describes the principle of the required environment to support the functions to manage
Exchange 2003 with UMRA and the Powershell Agent service. The environment runs Active Directory on

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

Windows 2003, and one or more Exchange 2003 servers. Note that there is no server running Exchange
2007. The following systems are part of the environment:

1. Domain controller: There must be at least a one domain controller to run Active Directory. The
domain controller must run Windows 2003 in native mode.

2. Exchange 2003: One or more servers run Exchange 2003 Server.

3. UMRA: The UMRA software (Console and Service) can be installed on any computer, except for the
Powershell Agent service.

4. UMRA Powershell Agent service: The Powershell Agent service is installed by using the UMRA
Console application. The service cannot be installed on a computer that runs Exchange 2003 server
but it can be installed on any other server that is part of the domain. On this computer, the
Exchange 2007 Management Tools must be installed. For a procedure to install the tools on a 32-
bit platform, see Setting up the Exchange 2007 Management Tools on a 32-bit platform.

Not all cmdlets can be used to manage Exchange 2003 mailboxes. Valid cmdlets are: Get-Mailbox, Get-
User, Add-MailboxPermission, Add-AdPermission, Set-Group. As a general rule, the cmdlets that access
Active Directory instead of the the Exchange 2007 server can be used to manage Exchange 2003
mailboxes.

3.10.5. Setting up the Exchange 2007 Management Tools on a 32-bit platform
How to setup the Exchange 2007 Management Tools on a 32-bit platform

The Exchange 2007 Management Tools are available both for 32-bit and 64-bit platforms. Exchange

2007 Server is available only for 64-bit platforms, but the Exchange 2007 Management Tools run on
both 32-bit and 64-bit platforms. This topic describes how to setup the 32-bit Exchange 2007

Management Tools on a 32-bit Windows 2003, Service Pack 2 platform. Note that the Exchange 2007

Management Tools can also be installed on Windows XP. For this platform, the procedure is similar.

1. Log on to the computer with domain administrative access. Make sure the domain administrator is
an administrator of the local computer as well.

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

2. If not installed, configure the Microsoft Internet Information Services Common Files using Control

Panel, Add or Remove Programs. Select item Application Server, click details, select Internet

Information Services (IIS), click details and check item Common Files. (If the item is already
checked, the Common Files are already installed.) Click OK and Next a number of times to confirm
the selection and start the installation.

Figure: IIS common files.

3. Verify the domain functional level. The level must be Windows 2000 native mode or above. To
raise the level, run Active Directory Users and Computer on a domain controller, right click the
domain and select option Raise Domain Functional Level.

4. Exchange 2003 only: Verify the operation mode of the Exchange Organization. In the Exchange
System Manager, right click on the organization and select menu option Properties. Check the
contents of the Operation Mode field.

5. Install the pre-requirements component: Microsoft .NET Framework Version 2.0. To download, visit
link http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-
aab15c5e04f5&displaylang=en

6. Install the pre-requirements component: Microsoft .NET Framework Version 2.0 hotfix. To
download, visit link
http://www.microsoft.com/technet/prodtechnol/exchange/Analyzer/729d1648-ff17-43f9-a1cf-
4285a82d4917.mspx?mfr=true

7. Install the pre-requirements component: Microsoft Management Console (MMC) 3.0. To download,
visit link http://www.microsoft.com/downloads/details.aspx?familyid=4C84F80B-908D-4B5D-
8AA8-27B962566D9F&displaylang=en

8. Install the pre-requirements component: Windows PowerShell. To download, visit link
http://www.microsoft.com/downloads/details.aspx?familyid=10EE29AF-7C3A-4057-8367-
C9C1DAB6E2BF&displaylang=en

9. Download the 32-bit Microsoft Exchange 2007 installation files from:
http://www.microsoft.com/downloads/details.aspx?FamilyId=444C259E-605F-4A82-96D5-
A2F448C9D4FF&displaylang=en

10. Extract the files and start the setup.

UMRA Help

Copyright © Tools4ever 1998 - 2012 5

11. Selection option Install Microsoft Exchange.

Figure: Exchange Server 2007 Init

12. Proceed with the wizard and when asked, selection the option Custom Exchange Server

Installation.

Figure: Exchange Server 2007 Installation type

UMRA Help

Copyright © Tools4ever 1998 - 2012 6

13. To install only the Management Tools, select the appropriate option.

Figure: Exchange Server 2007 server role selection.

14. First, some tests are performed. When ready, select option Install.

Figure: Exchange Server 2007 readiness checks

UMRA Help

Copyright © Tools4ever 1998 - 2012 7

15. The Exchange 2007 Management Tools are now installed.

Figure: Exchange Server 2007 completion

16. When read, click Finish and exit the application. To test the installation, select program All

Programs, Microsoft Exchange Server 2007, Exchange Management Shell or Exchange

Management Console.

3.10.6. Using the Exchange Web Services with UMRA

With the Exchange Web Services (EWS) in an Exchange 2007 environment, UMRA is able to connect to
Exchange and manage particular information on the Exchange Server. Actions in UMRA, for example 'Set
Out of Office info' and 'Get Out of Office info', are using the EWS. In order for these actions to work
properly, the following steps must be performed in UMRA and in the Exchange environment.

UMRA Help

Copyright © Tools4ever 1998 - 2012 8

 There must be an Exchange server with the Client Access role installed. See topic : Exchange 2007

Client Access Role on page 8

 The UMRA Powershell Agent must be configured for use with EWS. See topic: UMRA Powershell Agent

configuration on page 9

 A certificate must be imported in UMRA. See topic: Exchange Web Services certificate on page 9
 Access rights must be set on mailboxes. See topic: Access rights of mailboxes when using Out Of Office

actions on page 12.

Exchange 2007 Client Access Role

To use Dynamic actions with UMRA, there must be a connection with the Exchange server running the
Client Access role. By default, the Client Access role is always running on one or more Exchange servers
in your environment. There are two ways to get the name(s) of the Exchange server(s) running the Client
Access role:

1. Open the Exchange Management Console on the Exchange server, navigate to Server

Configuration and click Client Access. The servers mentioned are running the Client Access role.

Figure: Exchange Management Console - Client Access servers

UMRA Help

Copyright © Tools4ever 1998 - 2012 9

2. Open the Exchange Management Shell and type: Get-ClientAccessServer and press enter. The
Exchange servers mentioned are running the Client Access role.

Figure: Exchange Management Shell, Get-ClientAccessServer commandlet

If none of the Exchange servers have the Client Access role, it must be installed, otherwise the dynamic
actions using the Exchange Web Service will not run. Use the Microsoft Exchange 2007 installation disk
to install the Client Access role on a Exchange server. Choose the custom installation and deselect
everything except the Client Access role.

UMRA Powershell Agent configuration

In order for the dynamic actions to use the Exchang Web Services (EWS) the UMRA Powershell must
apply to the following rule(s):

 Powershell Agent must run on an Exchange Server with a Exchange Powershell snapin
(Microsoft.Exchange.Management.PowerShell.Admin). A computer with the Exchange
Management Shell or Exchange Management Console use the Exchange Powershell snapin.

Exchange Web Services certificate

When you connect to Exchange Web Services (EWS) you want to be sure you have a genuine connection
to that Exchange server. Therefor the Exchange server has protected EWS with a certificate. In order to
set up a connection you need to accept that certificate. Therefor UMRA needs to accept this certificate
as well. Use one of the following steps to import this certificate in UMRA:

1. Get the certificate from the Exchange server and save it on a storage device

UMRA Help

Copyright © Tools4ever 1998 - 2012 10

On the Exchange server running the Client Access rule, go to Start, Run and type inetmgr. Brows to
Web sites and search for the web site with the EWS folder.

Figure: IIS - Properties of the EWS folder.

Right click on the EWS folder and choose Properties. The following dialog will appear:

Figure: EWS Properties - Directory Security tab

UMRA Help

Copyright © Tools4ever 1998 - 2012 11

On the dialog, navigate to the Directory Security tab and choose View Certificate....

Figure: Certificate - Copy to File...

On the Certificate dialog, click the Details tab and choose Copy to File.... Store the file as a DER
encoded binary (.CER) file on your storage device and use it on the computer running UMRA.

2. Download the certificate from the Exchange Server, for example with Internet Explorer:

In Internet Explorer; Navigate in the menu to Tools - Internet Options - Content - Certificates. Look
for a certificate with the name of your exchange server running EWS. To find Exchange servers
running EWS go to: Exchange 2007 Client Access Role on page 8 . Click that certificate and press the
button 'Export...' At the file format dialog, choose 'DER encoded binary (.CER).

If the certificate is not yet installed, navigate to the following url:
"https://exchange_server/EWS/Services.wsdl". Replace exchange_server by the dns name of the
Exchange server running EWS. For example: netherlands.tools4ever.com. See Exchange 2007 Client

Access Role on page 8 to find the right Exchange server.

When you've typed in the URL, Internet explorer asks whether you want to "Continue to this
website (not recommended)" Click that link. Click 'View certificates' and choose to export the
certificate to a DER encoded binary (.CER) file.

Finally, import the downloaded certificate file with UMRA:

UMRA Help

Copyright © Tools4ever 1998 - 2012 12

Navigate to the Powershell Agent settings on the UMRA console (in the Menu to Tools - Options -

Powershell Agent) or, if you use the Powershell agent with the UMRA Service, on the UMRA Service
settings (in the Menu to UMRA Service - Service properties... - Powershell Agent)

Figure: Powershell Agent settings - Import Certificate

In this dialog, click the Import certificate button. Now browse to the location where you saved the .CER
file and click OK. The UMRA Log window should display an entry starting with "Certificate successfully
imported...".

Access rights of mailboxes when using Out Of Office actions

In order for UMRA to get and set Out Of Office settings of a mailbox, it will need permissions to access
that mailbox. In other words, the UmraPsSvcAccount user account needs access because Exchange 2007
with UMRA is managed with Powershell. But permissions of a mailbox are quite complex. The next
chapters will explain the permissions of a mailbox and how to grant read and write (get and set Out of
Office) access to the UmraPsSvcAccount user account.

Note: Usually the UmraPsSvcAccount is a member of 'Domain Admins', make sure this is the case in
your environment.

The error 'User is not mailbox owner' is because the UmraPsSvcAccount has not enough access and can
have three causes:

UMRA Help

Copyright © Tools4ever 1998 - 2012 13

1. Mailbox has never been used before and/or mail has never been sent to this mailbox. For more
information about this topic go to Mailbox has never been used on page 13.

2. The Exchange organization object forces a deny access for Domain Admins for all mailboxes in the
organization. For more information, read chapter Deny 'Receive As' access for 'Domain Admins' on

mailboxes on page 16.

3. Mailbox is in use but access rights are not propagated to Active Directory. SOAP uses attributes in
Active Directory to check the rights. For more information about this topic go to Access rights are not

propagated to Active Directory on page 14.

To learn more about the access rights on mailboxes, read Background information about access rights on

mailboxes on page 21.

Mailbox has never been used.

A mailbox can be in two different states. Before it has ever been used and after it has been used. Below
the explanation of the two stages. In order for UMRA to use Out Of Office, the mailbox must be in the
second state.

1. The mailbox has just been created:
When a mailbox has just been created, like the mailbox of John Smith in this example, it has
initially only granted access to 'NT AUTHORITY\SELF'. You can say the mailbox entry has been
created but the mailbox itself does not yet exist. Because only 'NT AUTHORITY\SELF' has access,
the Powershell Agent has no access. Check the permissions by opening the Exchange Management
Shell and type: Get-MailboxPermissions "John Smith". When a mailbox user never has logged on or
there has never been sent a mail to this mailbox, the permissions look like this:

Figure: Get-MailboxPermissions, mailbox user has never logged on and has no mail.

2. Mailbox user has logged on or mail has been sent:
When the mailbox user receives mail or logs on and configures Outlook, the mailbox itself will be
created and all the rights of the organization in Active Directory that apply for its descendents will
now apply for the mailbox as well.

UMRA Help

Copyright © Tools4ever 1998 - 2012 14

To simulate that a mailbox is being used, run the Get-MailboxFolderStatistics on the mailbox. It has
the same effect for the permissions as sending mail or logging on.

The mailbox of John Smith has now received an e-mail and after running the Get-
MailboxPermission commandlet the output will look like this:

Figure: Get-MailboxPermission, mailbox user has not configured Outlook or received mail.

So when the user has properly configured Outlook or someone has sent mail to that specific mailbox,
the rights of the UmraPsSvcAccount can be evaluated. If, by now, rights are set properly for the mailbox
and the UmraPsSvcAccount still can not get or set the Out of Office settings, go to chapter Access rights

are not propagated to Active Directory on page 14.

For more information about the states of mailboxes and it access rights, read Background information about

access rights on mailboxes on page 21.

Access rights are not propagated to Active Directory

The SOAP connection to the Exchange server to use the Exchange Web Services checks the rights of the
mailbox in Active Directory. For more information about the access rights of mailboxes read topic
Background information about access rights on mailboxes on page 21.

The inherited rights of the mailbox on Exchange are not always properly propagated to Active Directory.
To force propagation, "touch" the permissions of the mailbox in Exchange. First, to check if the Active
Directory security settings of the mailbox has not enough rights type:

$Mailbox = Get-Mailbox "John Smith" [press enter]

UMRA Help

Copyright © Tools4ever 1998 - 2012 15

$Mailbox.ExchangeSecurityDescriptor [press enter]. The output looks like this:

Figure: Display the Exchange Security Descriptor of a mailbox

To display a proper view of the name of the DiscretionaryAcl type the following:

$Mailbox.ExchangeSecurityDescriptor.DiscretionaryAcl | Select-Object @{Name="SecurityIdentifier";
Expression={ $_.SecurityIdentifier.Translate([System.Security.Principal.NTAccount]).value}},
IsInherited

Figure: List mailbox permissions of Active Directory's Exchange Security Descriptor

Now you can see there are no inherited rights yet on the Exchange Security descriptor. After "touching"
the permissions of the mailbox the rights will be propagated to the Active Directory Exchange Security
descriptor as well. The safest way to do that is to add a permission that is already there. That way the
permissions are still "edited" or "touched" but no changes are made. By this action the inherited
properties will be propagated to the Active Directory Exchange Security descriptor of the mailbox. After
"touching" the Powershell Agent user account has rights to view and edit the mailbox settings.

To "touch" the mailbox permissions for "John Smith" type:

Add-MailboxPermission "John Smith" -User "NT AUTHORITY\SELF" -AccessRights FullAccess

Figure: Add an existing mailbox permission to an account

UMRA Help

Copyright © Tools4ever 1998 - 2012 16

Note: To touch the permissions for all users within a specific OU type the following and replace OU
with the name of the OU you want to use;
Get-Mailbox -OrganizationalUnit "OU" | foreach {Add-mailboxpermission $_.DistinguishedName -
user "nt authority\self" -accessrights fullaccess}

Now check the permissions again by typing:

$Mailbox = Get-Mailbox "John Smith" [press enter]

$Mailbox.ExchangeSecurityDescriptor.DiscretionaryAcl | Select-Object @{Name="SecurityIdentifier";
Expression={ $_.SecurityIdentifier.Translate([System.Security.Principal.NTAccount]).value}},
IsInherited

The following results should appear:

Figure: List mailbox permissions of Active Directory's Exchange Security Descriptor

Deny 'Receive As' access for 'Domain Admins' on mailboxes
Now that the mailbox fully exists and rights on the mailbox are properly inherited, the
UmraPsSvcAcccount may still not have enough rights. In the end, the UmraPsSvcAgent (or Domain
Admins, or any other group which UmraPsSvcAccount is a member of, depending on the policies your
company maintains) needs an ‘Allow’ ‘Receive As’ right on the mailbox. Because, by default (check if this
applies to your company), the inherited rights of every created mailbox contains a ‘Deny’ ‘Receive As’
right for Domain Admins. For more information, read topic Background information about permissions on
mailboxes

There are two ways to give the UmraPsSvcAccount access to mailboxes.

1. Allow access on whole organization, for more information click: Allow access on the whole
organization on page 17.

2. Allow access per mailbox user, for more information click: Allow access per mailbox on page 19

Allow access on the whole organization is the fastest and easiest action to have the UmraPsSvcAgent
manage Out of Office. Obviously, by editing rights of the whole organization, you may issue some
security problems. The second option, Allow access per mailbox user, is much more secure cause only

UMRA Help

Copyright © Tools4ever 1998 - 2012 17

access to the specified mailbox will be given to the UmraPsSvcAccount. Of course you have to set the
rights on each and every mailbox you want to manage, which is much more work. Read the chapters
about the two options to choose which one suits your organization best.

Allow access on the whole organization

To prevent mailboxes to inherit the ‘Deny’ ‘Receive As’ right for ‘Domain Admins’ you must navigate to
the parent object that originally has set this right. Use the application AdsiEdit.msc from the Windows
Support Tools to navigate to this object, or get the object in Powershell by using the commandlet Get-
StorageGroup, get the distinguishedName of First organization.

Adsiedit:

Navigate to Configuration + 'Your Domain' - CN=Services -CN=Microsoft Exchange – CN=First
Organization. Right click the Organization object, usually called ‘First Organization’.

UMRA Help

Copyright © Tools4ever 1998 - 2012 18

Choose the tab ‘Security’ and click the Advanced button. Now locate the right with settings: Deny=True,
User=Domain Admins, Right=Receive As. Click that record and press the remove button:

Powershell:

Get the distinguishedName of the First Organization by using the following powershell commandlet:

$DistinguishedName = (Get-OrganizationConfig).distinguishedName

With the distinguishedName of your organization run the commandlet Get-ADPermissions

Figure: Get the AD permissions of the First Organization object.

UMRA Help

Copyright © Tools4ever 1998 - 2012 19

Notice the presence of the ‘Deny’ ‘Receive As’ for ‘Domain Admins’. To remove this right, us the Remove-
ADPermission commandlet.

Figure - Remove the Deny permission on First Organization

Note: All objects that have the ‘First Organization’ object as a parent do not inherit that right anymore.
Be aware of the consequences this can have in your organization

Allow access per mailbox user

To leave the organizations security intact and still give the UmraPsSvcAgent enough permissions, you
must explicitly set access for the UmraPsSvcAgent on each mailbox itself. Explicit rights override
inherited rights. To give the UmraPsSvcAccount rights on a mailbox, use the Exchange Management

Console or the Exchange Management Shell.

Exchange Management Console

UMRA Help

Copyright © Tools4ever 1998 - 2012 20

Navigate to the folder recipients. Right-click on the mailbox of which you want to add the permission to.
Choose Manage Full Access Permissions… Select ‘Domain Admins’, ‘UmraPsSvcAccount’ or every other
group the UmraPsSvcAccount is a member of and choose OK.

Figure: Add permissions to a mailbox with the Exchange Management Console

Exchange Management Shell

Use the Get-MailboxPermissions commandlet to see whether a mailbox already gives permission to the
UmraPsSvcAccount account. If this is not the case, use the Add-MailboxPermission commandlet to add
the new permission to the mailbox. To give the UmraPsSvcAccount permission to all mailboxes in an OU
that not already have the permission set, in this example the InternalAccounts OU, run the following
script:

foreach ($i in Get-Mailbox -OrganizationalUnit InternalAccounts)

{

 $Permission = Get-MailboxPermission $i | Where {$_.User -like "*UmraPsSvcAccount*"}

 if($permission -eq $null)

 {

 Add-MailboxPermission $i -User UmraPsSvcAccount -AccessRight ReadPermission

UMRA Help

Copyright © Tools4ever 1998 - 2012 21

 }else

 {

 Write-Output "Mailbox of $i already has granted permission to UmraPsSvcAccount."

 }

}

Note that whenever a new mailbox is created, you have to explicitly add permission for the
UmraPsSvcAccount on that mailbox. To avoid running Out of Office scripts that will partly fail because
half of the mailboxes do not give access to UMRA, make sure you check every mailbox its permissions,
before using Out Of Office.

Background information about access rights on mailboxes
About user accounts and mailboxes

A mailbox in Exchange consists of an user account in Active Directory and a StoreMailbox data object in
the Mailbox Database in Exchange. These two objects are linked to each other by corresponding
attributes, for example the properties of an user account in Active Directory that start with "msExch". The
two object together are called a Mailbox. It is important to be aware that there are two objects in order
to understand the permissions of a Mailbox.

Creating a Mailbox

When you create a mailbox with the Exchange Management Shell or Exchange Management Console,
two objects are created. One (the user account) in Active Directory and the StoreMailbox in the Mailbox
Database in Exchange. It is important to know that after creation, the StoreMailbox is not yet fully
provisioned. The object exists in Exchange, but the structure of the object is not yet available. To prove
this, run the commandlets Get-Mailbox and Get-MailboxStatistics on the mailbox.

Figure: Proof mailbox does not fully exist after creation

If a mailbox is not used, the object does not have to be fully created. The creation of the StoreMailbox
object will therefor be completed when used, so when the specific user configures Outlook with his
account or when someone has sent an email to his mailbox.

UMRA Help

Copyright © Tools4ever 1998 - 2012 22

About the permissions:

At this stage the StoreMailbox object does not have any permissions yet. However, when you use the
Get-MailboxPermissions commandlet, it shows one permisson for user 'NT AUTHORITY\SELF'. This
permission is read from the AD user object's property msExchMailboxSecurityDescriptor, because
the StoreMailbox does not fully exist yet.

Figure: The permissions of a mailbox when it has not been used yet.

The commandlet Get-MailboxPermissions uses the msExchMailboxSecurityDescriptor to list the
permissions before the mailbox fully exists, and after that it uses the permissions of the
StoreMailbox. To prove this you can empty the msExchMailboxSecurityDescriptor with Active
Directory attribute editor (for instance UMRA). Get-MailboxPermissions will now generate an error
because the object does not exist. To prove that after provisioning the mailbox Get-

MailboxPermissions refers to the permissions in the StoreMailbox, run Get-MailboxFolderStatistics

(therefor inherited rights are propagated to the StoreMailbox, and run Add-MailboxPermission to
add FullAccess to user 'NT AUTHORITY\SELF' this already exists, so the permissions will only be
touched and not edited, but the mxExchMailboxSecurityDescriptor is updated anyway.

If you empty the msExchMailboxSecurityDescriptor with LDAP again, the Get-MailboxPermissions

commandlet will now NOT generate an error but, as expected, list all the permissions. Now,
apparently, the Get-MailboxPermissions commandlet looks up the information on the
StoreMailbox!

Mailbox is fully provisioned

All mailboxes inherit their rights from the First Organization object. You can search for this object and
see its permissions when you have the Microsoft Support Tools installed and run adsiedit.msc or when
using the commandlet Get-OrganizationConfig. To look at the rights on this object, use the commandlet
Get-ADPermission.

UMRA Help

Copyright © Tools4ever 1998 - 2012 23

 AdsiEdit:

Figure: AdsiEdit and the First Organization object

To see the permissions of this object, click Properties and navigate to the Permissions tab

UMRA Help

Copyright © Tools4ever 1998 - 2012 24

 Powershell:

Figure: Get a list of the permissions set on the First Organization in an Exchange 2007 environment

When a mailbox just had been created, the the StoreMailbox does not yet fully exist. This is why, at first,
the only right on the mailbox is 'NT AUTHORITY\SELF'. The rights that a mailbox should inherit of First
Organization are not available yet. Use the Get-MailboxPermissons commandlet to see that only one
right will appear.

Figure: The permissions of a mailbox when it has not been used yet.

Now, when we use the mailbox, say, send an email to the mailbox or let the corresponding user account
configure Outlook, the inherited permissions of a mailbox will appear.

UMRA Help

Copyright © Tools4ever 1998 - 2012 25

Note: To simulate that a mailbox is in use, run the Get-MailboxFolderStatistics commandlet on the
mailbox.

Figure: The inherited permissions of a mailbox in use

Now the Get-MailboxPermissions commandlet looks up its information on the StoreMailbox and with
every update of the permissions, the msExchMailboxSecurityDescriptor is updated as well. But since
Get-MailboxFolderStatistics, sending an email or logging on with Outlook is not really an update of the
permissions of the StoreMailbox, the msExchMailboxSecurityDescriptor has still only the NT

AUTHORITY\SELF' right! To update the msExchMailboxSecurityDescriptor property, simulate adding a
permission by running the Add-MailboxPermission commandlet and adding an permission that already
exists, so no real changes are made. For example:

Add-MailboxPermission "Tom Watson" -User "NT AUTHORITY\SELF" -AccessRights FullAccess

3.11. Exchange 2010

UMRA Help

Copyright © Tools4ever 1998 - 2012 26

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or transmitted in any form or by any means
without the written permission of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or consequences resulting from
your actions or usage of the informational material contained in this user guide. Responsibility for the
use of any and all information contained in this user guide is strictly and solely the responsibility of that
of the user.

All trademarks used are properties of their respective owners.

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.11.1. Introduction Exchange 2010

In this and the following topics you can find general information how to use Exchange 2010 actions in
UMRA.

General

UMRA communicates (through the Tools4ever Powershell Service) by means of Remote Powershell
with the Exchange environment. The UMRA actions are as close as possible to the individual Powershell
commands available in the Exchange 2010 Management Shell.

Additional Requirements For Exchange2010

 The Tools4ever Powershell Agent Service must be installed on a computer that has the "Windows
Management FrameWork Core" installed. This is allowed to be a different computer than the one
that runs the UMRA service.

 Scripting must be enabled in the powershell environment on the computer that runs the PS Agent
service. To do so, open a powershell command prompt and issue the command
"SetExecutionpolicy Remotesigned"

 The computer on which the Powershel Agent Service is installed must be able to connect by
remote powershell to your Exchange2010 environment.

Resources

The Windows Management Framework Core can be found here:
http://support.microsoft.com/kb/968929

For all detailed information about Exchange2010 and Powershell, see http://technet.microsoft.com/en-
us/library/bb124558.aspx

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

3.11.2. Accessing Exchange 2010 functionality from an UMRA project

How to Access Exchange2010 functionality from within an UMRA script

To access 2010 functionality from within a UMRA script perform the following script actions in order:

 Setup a new Powershell Agent Service Session with the with the UMRA script action "Setup
Powershell Agent Service Session".

This action generates a clean Powershell runtime environment within the Tools4ever Powershell
Service. It returns the ID of the Powershell Agent service session that is to be used as input
parameter for all Exchange actions.

 Connect this environment to an Exchange 2010 host by means of the UMRA script action "Setup
Exchange Session (Exchange 2010)".

 This action creates a Remote Powershell connection (PSSession) to the Exchange Powershell
module on the Exchange server. The "Connection URI" parameter specifies the exact module to
load. For a regular Exchange2010 server this is "http://<Exchange 2010 server name (dns format)
>/Powershell.

 Next use any sequence of Exchange2010 and other UMRA script actions as required. If any of the
other actions also uses Powershell functionality, make sure that they use a different Powershell
Agent service session.

 When finished using exchange2010, use "Close Exchange Session (exchange 2010)" to disconnect
the Powershell session from exchange.
Do not omit this action, it is required to release used resources.

Note that this action is generally used immediately before closing the hosting Powershell Agent
session.

 Next use the script action "Release Powershell Agent service session", to close the powershell
environment.

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

Note that generally only one Exchange session to a single Exchange 2010 host is required, and the entire
forest can be managed from that connection. If more exchange 2010 hosts should be connected for any
reason, a separate Powershell Agent Service Session should be used for each connection.

Also note that the same Powershell Agent Session can be used in different sequential umra projects,
without the need to close the session in each individual project.

How to connect to other providers than Microsoft Exchange2010 server

In addition to a genuine Microsoft Exchange 2010 server, there are a several other applications that
support management by remote powershell. If these remote powershell environments (modules)
expose the same powershell command-lets and parameters (or a relevant subset thereof) as Exchange
2010 server, then they too can be accessed by the UMRA Exchange 2010 actions.

To connect to such an environment, change the Connection URI in the "Setup Exchange Session"
command to the powershell module provided by the application.

Note that if an access denied error is logged that refers to a specific powershell parameter, this often
means that the particular parameter is not exposed by the remote powershell module. Often setting the
associated UMRA action property to "not specified" alleviates this issue.

Outlook Live

An example of such an application is Outlook Live. If you have administration rights in your Outlook
Live environment, you can use the "Setup Exchange session" to connect to your Outlook Live domain.

Use "outlooklive" as value for the Connection URI,(or specify https://ps.outlook.com/powershell
directly) and specify the correct username and Password of your administrative Outlook Live account.

After a successful connection it is possible to use the exchange 2010 actions. Note that only a subset of
the actions are supported by Outlook Live. Generally only those actions are supported that directly
relate to accounts and mailboxes (like "create user and mailbox", and "Edit mailbox" etc.).

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

3.12. Office 365

UMRA Help

Copyright © Tools4ever 1998 - 2012 5

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or transmitted in any form or by any means
without the written permission of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or consequences resulting from
your actions or usage of the informational material contained in this user guide. Responsibility for the
use of any and all information contained in this user guide is strictly and solely the responsibility of that
of the user.

All trademarks used are properties of their respective owners.

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

3.12.1. Introduction Office 365

In this and the following topics you can find general information how to use Office 365 actions in
UMRA.

General

UMRA communicates (through the Tools4ever Powershell Service) with the Office 365 environment.
The UMRA actions are as close as possible to the individual Powershell commands available in the Office
365 MS Online module.

Additional Requirements For Office 365

 The Tools4ever Powershell Agent Service must be installed on a Windows 2008 R2 or Windows 7
computer.

 The computer on which the Powershel Agent Service is installed must be able to connect the Office
365 environment.

 The Office 365 cmdlets.

Resources

For all detailed information about how to install the Office 365 cmdlets, see
http://onlinehelp.microsoft.com/office365-enterprises/hh124998.aspx

3.12.2. Office 365 Users

Licensing users
When adding users, they are not licensed within Office 365 by default.

Use the License assignment property in the Office 365 Create user action or use the Office 365 Edit

user license action. Licenses can be obtained with the Office 365 List account SKUs action. This action

C H A P T E R

UMRA Help

Copyright © Tools4ever 1998 - 2012 2

produces a table with all licenses. The AccountSkuId column contains the information to be used when
editing a user license. This is the fourth column (so it is index is 3, because the index start at column 0.)

Check for existence
Use the Office 365 Get user exists action to check if a user exists. Do not use the Office 365 List users
action with the Object id or User principal name property to check if user exists, because it will throw an
error when a non existing user principal name or object id are specified.

3.13. Powershell Agent service
This document describes the Powershell Agent Service. The Powershell Agent Service is part of the
UMRA software and enables Powershell support for UMRA projects.

Concept

The Powershell Agent Service is a piece of software that can execute Powershell command lets and
scripts. The Powershell Agent Service has an interface that communicates with the UMRA software.
Both the UMRA Console and UMRA Service application can send Powershell scripts to the agent service.
The agent service checks the access rights of the caller and executes the Powershell script if access is
granted. The data that is generated by Powershell can be returned to UMRA.

The Powershell Agent Service is a service application: it runs always as a separate process and the
service has no graphical user interface. The Powershell Agent Service heavily uses the Microsoft .NET
framework. Therefore, some additional requirements apply for the computer that runs the agent
service.

In UMRA, additional UMRA actions are available that deal with Powershell. When an UMRA project
contains these types of actions, Powershell scripts are sent to the Powershell Agent Service when UMRA
executes the project. For each action, UMRA sends a single Powershell script to the service. The
conversion from an UMRA action to a Powershell script is well defined according to a set of rules. For
each UMRA action that uses Powershell functionality, an UMRA dynamic action file exists. This file (XML)
defines how the Powershell script must be composed and depends on the UMRA action properties. In
other words: the dynamic action file specifies both the UMRA action and the Powershell script and how
these to items are related.

3.13.1. Powershell Agent service

To support Powershell, UMRA uses Tools4ever's Powershell Agent service. The Powershell Agent service
is able to execute Powershell scripts. Different scripts can be used for example to create, manage and
delete mailboxes and other Exchange resources. The Powershell Agent service operates as follows:

1. An application (UMRA) sends a Powershell script to the Powershell Agent service;

2. The Powershell Agent service checks the access rights of the account that offers the script;

UMRA Help

Copyright © Tools4ever 1998 - 2012 3

3. If access is granted, the Powershell Agent service sets up the Powershell runtime environment or
uses an existing Powershell Agent service session;

4. The Powershell Agent executes the script.

5. Result objects generated by the Powershell script can be captured and send back to the calling
application.

3.13.2. UMRA - Powershell Agent service

To operate with the Powershell Agent service, UMRA communicates with the Powershell Agent service.
When an UMRA project script is executed, one or more UMRA actions may contain Powershell
(Exchange 2007) functionality. For these actions, UMRA generates a Powershell script. The script is then
send to the Powershell Agent service. The Powershell Agent service executes the Powershell script and
returns any result back to UMRA.

3.13.3. UMRA action - Powershell script conversion

A number of actions in UMRA deal with Powershell. For instance, all the actions to manage Exchange
2007 mailboxes. For these actions, UMRA generates a Powershell script. For each of these actions, a
single Powershell script is generated. The content of the Powershell script is determined by the action
itself and the specification of the UMRA properties. With this information, UMRA converts the UMRA
action specification into a Powershell script.

3.13.4. UMRA dynamic actions

A number of actions in UMRA deal with Powershell. For instance, all the actions to manage Exchange
2007 mailboxes. For these actions, UMRA can generate a Powershell script. The contents of the
Powershell script is determined by the UMRA action and the UMRA action property values. The
conversion is straightforward and according to a number of rules. The exact conversion is described in a
document that is available for each action. This document has an XML format. The XML-document
contains the complete specification of the UMRA action, including descriptions, properties, property
dependencies, the Powershell script 'template' and the conversion to generate the script.

To add a new action that uses Powershell to UMRA, a new XML-document must be created. With such
document, describing the UMRA action in detail, UMRA can be extended with the new action. To add
the new action, no new version of UMRA is required. Instead, the XML document must be imported to
UMRA. These type of actions are referred to a UMRA dynamic actions.

3.13.5. Installation

The Powershell Agent service is a special piece of software that is used to execute Powershell
commandlets. Technically, the Powershell Agent service is a Powershell host that is able to execute
Powershell commandlets like the Windows Powershell command-line environment and the Exchange
Powershell Console application.

UMRA Help

Copyright © Tools4ever 1998 - 2012 4

The Powershell Agent service is part of the UMRA software and shipped as part of the UMRA software.
The Powershell Agent service is completely installed and managed from within the UMRA Console
application. To install and manage the Powershell Agent service, the UMRA Console application must be
installed first.

Powershell Agent service setup - Requirements

The following requirements apply to setup the Powershell Agent service:

1. The Powershell Agent service can be installed on 32-bit and 64-bit machines. The Powershell Agent
service is installed from the UMRA Console application. The application will detect automatically if
the target computer is 32- or 64-bit based.

2. In order to manage Active Directory / Exchange 2007, there must be at least one domain controller
running Active Directory on Windows 2003 or Windows 2008 (in a network with only Windows
2000 domain controllers, the service will not be able to manage Active Directory).

3. In order to manage Exchange 2007, the Microsoft Exchange 2007 Management software must be
installed on the computer that is going to run the Powershell Agent service. The Microsoft
Exchange 2007 Management software is part of the Microsoft Exchange 2007 software. The
software is available for both 32-bit and 64-bit computers. As part of the installation of the
Microsoft Exchange 2007 Management software, a number of other software components are
installed and configured, for instance the .NET framework. Note that the Microsoft Exchange 2007
Management tools software is not part of the UMRA software. For more information to install the
Microsoft Exchange 2007 Management software on a 32-bit platform, see Setting up the Exchange

2007 Management Tools on a 32-bit platform for more information.
In case the Powershell Agent service is installed to manage other systems then Exchange 2007,
for instance SAP, the Microsoft Exchange 2007 Management software does not need to be
installed on the computer. Instead, Windows Powershell software and the .NET Framework must
be installed separately in this case. This software is available at no charge from Microsoft's web-
site.

4. In order to manage Exchange 2007, the Powershell Agent service computer must be a member of
the Active Directory domain of the Exchange server.

5. The UMRA Console application must be installed on a computer (any other computer of the
domain) to install the Powershell Agent service.

Powershell Agent service setup - Procedure

To setup the Powershell Agent service, perform the following steps:

1. Logon to the computer that has the UMRA Console application installed with administrative
account. The account must have sufficient access to install a service on the computer that is going
to run the Powershell Agent service. By default, an account that is a member of the Administrators

or Domain Admins group normally has sufficient access rights;

2. Start the UMRA Console application.

UMRA Help

Copyright © Tools4ever 1998 - 2012 5

3. Select menu option Tools, Options and select the window Powershell Agent. The following dialog
will appear:

Figure: Manage Powershell Agent service dialog.

For more information about the Manage Powershell Agent service dialog, go to Powershell Agent

connection settings on page 5.

Click button Manage Powershell Agent. A wizard is shown to install the Powershell Agent service.
Go to Powershell Agent service wizard - Manage on page 8 to read about the steps of the Powershell
Agent service installation wizard.

Powershell Agent connection settings

To successfully execute UMRA actions with Powershell functionality, the UMRA application must be
connected to the Powershell Agent service. The UMRA application is either the UMRA Service or the
UMRA Console application. For mass projects, the UMRA application is the UMRA Console. For all other
UMRA projects, the UMRA application is the UMRA Service.

For both the UMRA Console and UMRA Service application, the Powershell Agent service connection
needs to be configured with the Powershell Agent connection settings dialog. Use the following
instructions to get to the Powershell Agent connection settings.

UMRA Service: From the UMRA Console application, connect to the UMRA Service and select
menu option UMRA Service, Service properties.... Select window Powershell Agent.

UMRA Help

Copyright © Tools4ever 1998 - 2012 6

UMRA Console: Select menu option Tools, Options... Select windows Powershell Agent.

Figure: Powershell Agent connection settings dialog.

Use the Manage Powershell Agent button to install, update or delete the Powershell Agent service. For
more information about the Manage Powershell Agent wizard, go to Powershell Agent service wizard -

Manage on page 8.

Enable the Powershell Agent connection settings by checking the Enable Powershell Agent check box.
UMRA will now use these connection settings to connect to the Powershell Agent service. If there are
no machine and port number specified yet, click the Edit connection button and enter the connection
settings.

Note that you must specify a machine name that is already running the Powershell Agent service and
that you must enter the correct port number.

By choosing OK or Apply, this dialog will check these settings and the UMRA log will show information of
the settings that are applied for the Powershell Agent service.

If the Powershell Agent connection settings are configured on the UMRA Service, these settings can be
copied to the UMRA Console by clicking the Copy from service button and vice versa. To definitely copy
the settings, confirm the following dialog:

Figure: Confirm copying the Powershell Agent service connection settings

UMRA Help

Copyright © Tools4ever 1998 - 2012 7

Edit the existing setting by clicking the Edit connection button. A dialog will appear to edit the
connection settings. For more information about this dialog, go to Edit connection settings on page 7.

If only the UMRA Service executes project scripts with Powershell functionality, there is no need to
setup the Powershell connection settings for the UMRA Console.

Powershell Agent service - Edit connection settings

Change the Powershell Agent connection settings with this dialog. To browse for a machine name, click
the browse button. Otherwise, specify the machine name that runs the Powershell Agent service.

In the Port edit box, enter the port number which the Powershell Agent service is using.

Figure: Edit the Powershell Agent service connection settings

Click OK to apply the new settings.

UMRA Help

Copyright © Tools4ever 1998 - 2012 8

Powershell Agent service wizard - Manage

Use this wizard to install the Powershell Agent service on a computer, update the Powershell Agent
service or delete the Powershell Agent service.

Figure: Welcome to this wizard to manage the Powershell Agent service

Choose Install or upgrade the Powershell Agent service if the Powershell Agent service is not installed
already or needs an update. Choose Delete the Powershell Agent service if you want to delete the
Powershell Agent service. Click Next.

Powershell Agent service wizard - Specify server

Specify a server for the Powershell Agent service wizard to run on. If the Powershell Agent service
already runs on that server, the Manage Powershell Agent service wizard will update the service. For
more information about updating, go to Powershell Agent service wizard - Update Powershell Agent service on
page 12.

UMRA Help

Copyright © Tools4ever 1998 - 2012 9

Note that the server must meet the PowerShell Agent service installation requirements. For more
information about installation requirements, go to PowerShell Agent service setup - Requirements on page
4.

Figure: Specify the name of the server to install the PowerShell Agent service on.

Click the Use local computer to get the name of the local computer. Click the browse button to open a
Select computer dialog to browse for another server. Click Next.

Powershell Agent service wizard - Specify port number

Specify the port number for the Powershell Agent service.

Make sure the port specified is not already in use.

UMRA Help

Copyright © Tools4ever 1998 - 2012 10

Figure: Specify the port for the Powershell Agent service

Powershell Agent service wizard - Specify service directory

Specify the Agent service directory on the target computer. The directory must be specified as a path,
including the logical disk of the target computer. The logical disk must exist. The directory is created if it
does not exist. By default, the wizard determines and shows the default directory.

Note that the server must meet the PowerShell Agent service installation requirements. For more
information about installation requirements, go to PowerShell Agent service setup - Requirements on page
4.

Powershell Agent service wizard - Specify account

Specify a user account with this dialog. This user account will be used by the Powershell Agent service. If
the account does not exist it will be created with the specified password. If the account does not exist,
the correct password must be specified in order for the Powershell Agent service to be able to log on
with that account.

Figure: Specify the Powershell Agent service account

The Account name field displays the account that the Powershell Agent service will use. The Password
field and the Confirm password field are used to create the account, if it does not exist already.

Use the browse button to search a specific account. Click Next.

UMRA Help

Copyright © Tools4ever 1998 - 2012 11

Powershell Agent service wizard - Specify account group

Specify the group of which the Powershell Agent service account must be a member of. If the user
account will be created, it will be a member of this group. If the user account already exists, but is not a
member of the specified group, the wizard will add the user to this group.

Figure: Specify the security group for the service account

Use the browse button to browse to the group. Click Next to continue.

UMRA Help

Copyright © Tools4ever 1998 - 2012 12

Powershell Agent service wizard - Specify user account group

Specify the group that the user account, which is accessing the PowerShell Agent service, must be a
member of. When using UMRA Console mass projects, the account is the logged on user. With UMRA
Automation and Form projects, this user is the UMRA Service account.

Figure: Specify the PowerShell Agent service access group

Use the browse button to browse to the group. Click Finish to install the PowerShell Agent service.

Powershell Agent service wizard - Update Powershell Agent service

When the PowerShell Agent service is already installed on the specified server, the following dialog will
appear:

UMRA Help

Copyright © Tools4ever 1998 - 2012 13

Figure: Update the PowerShell Agent service

The PowerShell Agent service currently installed on the specified machine runs an older version than the
one available with this UMRA version. Therefore, this wizard will stop the currently running PowerShell
Agent service when you click the Finish button. Then the wizard will update the PowerShell Agent
service and start the service again.

Note that the PowerShell Agent service needs to run the same version number as the version number
the UMRA Console is running.

UMRA Help

Copyright © Tools4ever 1998 - 2012 14

Powershell Agent service wizard - Delete all files

When the Powershell Agent service is deleted, some files, in the Powershell Agent service directory will
remain. This includes log files and configuration files. If these files also need to be removed, select the
Delete all files found in the Powershell Agent service directory and the directory itself check box. As the
check box says, the wizard will now remove the entire Powershell Agent service install directory.

Figure: Option to delete the Powershell Agent service installation directory

Manual installation of the Powershell Agent service

The Powershell Agent service is best installed using the UMRA Console application. If it is not possible to
install the service using the UMRA Console, the following procedure can be used to install the
Powershell Agent service. In this procedure the UMRA Powershell Agent service is installed on a
computer running Windows XP (32-bit) that is not a member of a domain. When running Windows 2003
or a 64-bit OS , a similar procedure applies.

1. Prerequisite: .NET Frame 2.0
The .NET Framework 2.0 must be installed on the computer. When the latest updates are applied
to the XP machine, this is automatically the case. the .NET Framework 2.0 is available from the
Microsoft web-site.

2. Prerequisite: Windows Powershell 1.0
The computer must have Powershell 1.0 installed. Windows Powershell 1.0 is available from the
Microsoft web-site, both for 32- and 64-bit systems.

3. Prerequisite: UMRA Console
Install the UMRA Console application on the computer.

4. Program directory
Create a directory on the computer that is used by the Powershell Agent service. Default:
C:\Program Files\Tools4ever\PowerShellAgent.

UMRA Help

Copyright © Tools4ever 1998 - 2012 15

5. Create subdirectories
In the new directory, create subdirectories Log, SnapIns and PowershellAgentLib. On a 32-bit
system, create sub-directory SAP in directory SnapIns.

6. Setup subdirectory Microsoft.VC80.CRT
Locate the UMRA Console directory and navigate to subdirectory SvcSetup. Default: C:\Program

Files\Tools4ever\User Management Resource Administrator\SvcSetup. The directory contains
subdirectory amd64 for 64-bit systems and x86 for 32-bit systems. Copy the contents of the
appropriate directory to the program directory created in step 4. For both cases, the name of the
directory is Microsoft.VC80.CRT.

7. Setup subdirectory PowershellAgentLib
From the SvcSetup directory, copy file PowershellAgentLib.xmllib to subdirectory
PowershellAgentLib.

8. Setup subdirectory SnapIns (32-bit systems only)
On 32-bit systems, copy the contents of SvcSetup subdirectory SnapIns\SAP to SnapIns\SAP.

9. Copy Powershell Agent service binary file
From the SvcSetup directory, copy file T4ePowerShellAgentX64.exe (64-bit systems) or file
T4ePowershellAgentW32.exe (32-bit systems) to the program directory created in step 4.

10. With a editor, like notepad, create a text file, PsAgentSettings.xml in the program directory. The
xml file should contain the following contents:

<AgentConfiguration>
 <ExecAccessGroup>Administrators</ExecAccessGroup>
</AgentConfiguration>

Members of the specified group are granted access rights to configure the Powershell Agent
service.

11. Service account
On XP, start Control Panel, Administrative Tools, Computer Management. Select Local Users and

Groups. Right click Users and select menu option New User... Specify the name and attributes for
the account. Remember the password and check the option Password never expires.

UMRA Help

Copyright © Tools4ever 1998 - 2012 16

12. Administrative group membership
Right click the new account from the list of accounts and select menu option properties. Select tab
Member Of and add the new account to the group Administrators.

13. User right assignment - Log on as a service
On XP, start Control Panel, Administrative Tools, Local Security Policy. In the Security Settings
tree, select User Rights Assignment. In the list on the right side, select policy Log on as a service.
Select menu option Properties, Add User or Group and add the UMRA Powershell Agent service
account created in step 5.

UMRA Help

Copyright © Tools4ever 1998 - 2012 17

14. Create the Powershell Agent service
Start Powershell and use commandlet New-Service to create the service. Specify the commandlet
parameters according to the following table:

Parameter Description Example

-name The name of the service, must
be T4ePowershellAgent

T4ePowershellAgent

-
binaryPathName

The name, including the path,
of the service executable.
Note that the name differs for
32-bit and 64-bit systems.

C:\Program
Files\Tools4ever\PowerShellAgent\T4ePowershellAgentW32.exe

or

C:\Program
Files\Tools4ever\PowerShellAgent\T4ePowershellAgentX64.exe

-displayName Tools4ever's Powershell
Agent service

Tools4ever's Powershell Agent service

-startupType Automatic Automatic

-credential The name and password of
the UMRA Powershell Agent
service account, as created in
step 11.

UmraPsAccount

BigSecret0673

UMRA Help

Copyright © Tools4ever 1998 - 2012 18

When the service is not installed by specifying single command line, the New-Service commandlet will
create the service when the -name and -binaryPathName are specified. Next, use Control Panel,
Administrative Tools, Services to further configure the service. The service display name is not
important but you must specify the account created in step 11, using tab Log On for the service. Do no
start the service yet.

15. Setup the registry

Setup the required registry keys of the Powershell Agent service. The only required key is
ExecAccessGroup. Refer to topic Registry settings for more information.

The service is now installed. Use Control Panel, Administrative Tools, Services to start the service.

3.13.6. Configuration and settings

The Powershell Agent Service uses a number of settings and configuration items to function. These are
described in topics of this chapter.

Access and Security

To access the Powershell Agent Service, users must be a member of a group. This group is specified
when the service is setup. When a user accesses the Powershell Agent Service, the service checks if the
users is a member of this security group. If this is the case, access is granted and the requested
Powershell script is processed and executed by the agent service. If the user account is not a member of
the group, access is denied and the requested Powershell script is not executed.

To modify the group when the service is already setup, you will need to update the registry and restart
the service. See registry key ExecAccessGroup in Registry settings for more information.

The Powershell Agent Service is either access by the UMRA Console of UMRA Service application. With
the UMRA Console application, the user account that accesses the Powershell Agent Service is the user
that runs the UMRA Console application. For the UMRA Service application, the user account accessing
the Powershell Agent Service is the service account of the UMRA Service.

Licensing

To execute a Powershell script through the Powershell Agent Service, a separate UMRA license is
required. Without the correct license, the UMRA software will not execute an action that uses
Powershell functions. Since Exchange 2007 action use Powershell functions, this is also true for the
UMRA Exchange 2007 actions.

UMRA Help

Copyright © Tools4ever 1998 - 2012 19

Contact your UMRA reseller to obtain a license that support Exchange 2007 and Powershell.

Log information

The Powershell Agent Service writes log information to a cyclic log file. The file is located in the Log

subdirectory of the service program directory. The default location is

C:\Program Files\Tools4ever\PowerShellAgent\Log.

The log file contains general progress information and all errors that occur.

The log file name have the format:

 [log directory][log file label][log cycle sequence number].txt

By default, the log files are a set of 10 files with cycle numbers 000, 001, ... , 009 and label T4ePsLog.
Each file has a maximum size of 5MB. When file is full, the next file is generated. When all files are full,
the first file is emptied. The resulting files are: T4ePsLog000.txt, T4ePsLog001.txt, ... , T4ePsLog009.txt.
To change the log file settings, you need to update the log related registry settings.

Powershell snap-ins

Windows PowerShell snap-ins provide a mechanism for registering sets of cmdlets and providers with
the shell, thus extending the functionality of the shell. If a PowerShell script uses a cmdlet that is
registered in a specific snap-in, the snap-in needs to be registered (installed) on the machine that
executes the PowerShell script, e.g. the computer that runs the PowerShell Agent service. If the snap-in
is not registered, PowerShell will no be able to execute the cmdlet. In most cases, groups of cmdlets
with related functionality are assembled in the same snap-in.

Example: by default, the cmdlets that deal with Exchange 2007 are not available by default in
PowerShell. Instead, the cmdlets are defined in the snap-in

 Microsoft.Exchange.Management.PowerShell.Admin

To execute scripts that use cmdlets to manage Exchange 2007, this snap-in needs to be installed on the
computer that runs the PowerShell Agent service. The snap-in is installed as part of the installation
procedure of Exchange server 2007, or the Exchange 2007 Management tools.

To execute PowerShell scripts that require a certain snap-in to be installed with UMRA, the XML-file
specification of the dynamic action must specify the snap-in in the configuration section of the XML-file.
See Configuration section (on page 27) for more information.

UMRA Help

Copyright © Tools4ever 1998 - 2012 20

Registry settings

The Powershell Agent Service uses several registry settings for security, logging settings etc. These
settings are set to the default values automatically when the service is installed. If changed later
manually, the agent service must be restarted for the new settings to take effect.

The Powershell Agent Service uses the following registry settings:

Key HKLM\SYSTEM\CurrentControlSet\Services\T4ePowershellAgent\Config

Name ExecAccessGroup

Type Text

Initialization Powershell Agent Service installation

Example Domain Admins

Description The user who accesses the Powershell Agent Service in order to execute a Powershell script must
be a member of this group. If not, access is denied and no Powershell script is executed.

Key HKLM\SYSTEM\CurrentControlSet\Services\T4ePowershellAgent\Config

Name SessionTimeToLive

Type DWORD

Initialization Manual (default value, equal to value used when not specified: 240)

Example 330

Description The time interval in minutes that specifies the maximum idle time of a Powershell Agent service
session on page 78. When a Powershell Agent service session remains idle for a longer period, it is
automatically released. The idle interval is interrupted when the session is used by an UMRA client,
for instance when a dynamic action is executed in the context of the session. When the idle
interval is interrupted, the idle time is reset to zero. The default value is 240 minutes (4 hours).
when the setting is updated, the Powershell Agent service needs to be restarted to make the
setting effective. The value used is written to the log when the service is started.

Key HKLM\SYSTEM\CurrentControlSet\Services\T4ePowershellAgent\Config

Name Updated

UMRA Help

Copyright © Tools4ever 1998 - 2012 21

Type DWORD

Initialization Powershell Agent Service installation

Example 0 or 1

Description Internal use only: When the service reads a value of 0 during startup, the service reads registry
initialization values from file PsAgentSetting.xml. Next, the value is set to 1.

 Key HKLM\SYSTEM\CurrentControlSet\Services\T4ePowershellAgent\Log

Name BaseDirectory

Type Text

Initialization Manual

Example D:\UMRA\PsAgentLog

Description The base directory of the cyclic log file sequence of the Powershell Agent Service. If not specified,
the service sets this value to the subdirectory Log in the service program directory.

 Key HKLM\SYSTEM\CurrentControlSet\Services\T4ePowershellAgent\Log

Name FileLabel

Type Text

Initialization Manual

Example T4ePsLog

Description The name of a single log file, without the directory part, cycle number and file extension. If not
specified,

 Key HKLM\SYSTEM\CurrentControlSet\Services\T4ePowershellAgent\Log

Name CycleCount

Type DWORD

Initialization Manual

Example 10

Description The number of files contained in a full log file cycle. When all logfiles are filled, the first file (cycle 0)
is removed and recreated.

UMRA Help

Copyright © Tools4ever 1998 - 2012 22

 Key HKLM\SYSTEM\CurrentControlSet\Services\T4ePowershellAgent\Log

Name CycleKBytes

Type DWORD

Initialization Manual

Example 5120

Description The size of a single log file in KBytes.

3.13.7. UMRA dynamic actions

All UMRA actions that use Powershell are dynamic actions. The action is called dynamic since it is not
part of the native UMRA software code. Instead, an XML-file specifies the action. This file is imported
into the UMRA dynamic action library. This document describes the format of the XML-file, the dynamic
actions library and an example.

XML file specification

The XML file that specifies an UMRA dynamic Powershell action can be divdided into the following
sections:

1. Basic section: Specifies of some default characteristics of the action;

2. Properties section: The UMRA action properties;

3. Script section: The specification of the Powershell script and how the script depends on the UMRA
properties.

To create such a file, you can use any editor, including notepad. Some of the more advanced editor are
better equipped to create XML files and show for instance if the file contents is well-formed. This
document describes these parts in detail. An example of a complete XML file is shown below.

<?xml version="1.0" encoding="UTF-16"?>
<UmraDynamicAction version="1" type="Powershell">
 <General>
 <Name>Restart a service</Name>
 <Description>Restart a particular service on the current
computer.</Description>
 <ActionTreeLabels>Powershell, Example actions</ActionTreeLabels>
 <ActionImage>17</ActionImage>
 <Version>101</Version>
 </General>
 <ActionProperties>

UMRA Help

Copyright © Tools4ever 1998 - 2012 23

 <ActionProperty>
 <DisplayName>Service name</DisplayName>
 <Name>ServiceName</Name>
 <Description>The name of the service to restart.</Description>
 <ValueType>Text</ValueType>
 </ActionProperty>
 </ActionProperties>
 <Script>
 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement>%ServiceName%</Replacement>
 </ActionProperty>
 <Contents>
 Restart-Service %ServiceName%
 </Contents>
 </ScriptPhrase>
 </Script>
</UmraDynamicAction>

Basic section

The basic section includes the following xml elements in the dynamic action specification file:

1. Declaration

2. General

3. Configuration

Declaration

The XML file that specifies an UMRA dynamic action, should start as follows:

 <?xml version="1.0" encoding="UTF-16"?>

This declaration includes the UTF-16 encoding declaration. Do not use another encoding method. For
UMRA dynamic XML files, no XML schema, XML Schema Definition (XSD) or Document Type Definition
(DTD) is available.

Next, the UmraDynamicAction element specifies the type of dynamic action: Powershell.

 <UmraDynamicAction version="1" type="Powershell">

UMRA Help

Copyright © Tools4ever 1998 - 2012 24

The element UmraDynamicAction encloses the entiry dynamic action specification, including the
General, ActionProperties and Script sections.

General section

The general section specifies a number of properties of the UMRA dynamic Powershell action.

Element: General

Parent element: UmraDynamicAction

Mandatory: Yes

Attributes:

Description: The outer element of the general section of the UMRA Powershell dynamic action specification.

The General element contains the following child elements:

Element: Name

Parent element: General

Mandatory: Yes

Attributes: -

Description: The name of the dynamic action. The name identifies the action and should be unique. If a new
dynamic action is imported with the same name as an action that already exists, the existing
action is overwritten with respect to the version and signature information.

Element: Description

Parent element: General

Mandatory: No

Attributes: -

Description: The description of the dynamic action. The description is shown when the user positions the
mouse on top of the action in the UMRA action tree. The description should describe the action
in general, not all of the properties.

UMRA Help

Copyright © Tools4ever 1998 - 2012 25

Element: ActionTreeLabels

Parent element: General

Mandatory: Yes

Attributes: -

Description: The specification of the folder of the action in the UMRA action tree. You can position the
action in any folder, also in a new folder. The folder is specified as a comma separated string.
Start with the parent folder, the child folder etc. If a folder does not already exist, it is created
automatically. Example: To position the action in folder Test of parent folder My actions,
specify: My actions, Test.

Element: ActionTreePosition

Parent element: General

Mandatory: No

Attributes: -

Description: The relative position in the UMRA action tree. If a folder in the UMRA action tree contains
multiple actions, the actions are sorted based on this number. Values can range from 0 to
1000000. To allow new actions added later between existing actions, it is recommended to use
a step value of 100 or 1000 between subsequent actions (e.g: 1000, 2000, 3000 etc)

Element: ActionImage

Parent element: General

Mandatory: No

Attributes: -

Description: The index of the image to be associated with the action. The available images correspond with
the images used for rows in UMRA form tables. Subtract 1 from the index shown in the figure
below.

UMRA Help

Copyright © Tools4ever 1998 - 2012 26

Figure: The possible images of a dynamic action. Subtract 1 from the number shown to obtain the correct index.

Element: Obsolete

Parent element: General

Mandatory: No

Attributes: -

Description: If set to a non-zero value (for example 'Yes' or 1) the action is obsolete and not shown in the
UMRA actions tree. If the element is omitted or set to a value of 0 or 'No', the action is not
obsolete and shown in the UMRA actions tree. Even if the action is obsolete, it is still executed
if it is contained in an UMRA script that was created earlier.

Element: Version

Parent element: General

Mandatory: Yes

Attributes: -

Description: The version number of this action. The version number is used to allow upgrades of the same
action (e.g. the action with the same name). Possible values range from 1 to 100000. Normally,
an action starts with a version number of 1. Each time you update the XML file, the version
number should be incremented.

An UMRA dynamic action is upgraded by changing the contents of the XML file and than
reloading the file. The reload operation only has effect if the version number of the action
exceeds the version number of the same action to be upgraded. See Upgrading dynamic action
on page 63 for more information.

UMRA Help

Copyright © Tools4ever 1998 - 2012 27

Element: HelpId

Parent element: General

Mandatory: No

Attributes: -

Description: A number used by UMRA dynamic actions that are created by Tools4ever. The number refers
to the online help file.

Element: Signature

Parent element: General

Mandatory: No

Attributes: -

Description: A text string representing the signature of the action. If the signature is present, the action
cannot be upgraded then by authorized UMRA personnel. This is to protect the 'official' UMRA
dynamic actions from accidental changes. See Signature of dynamic actions (see "Signature of
UMRA dynamic actions" on page 63) for more information. If a signature is present, do not
updated the file since you will not be able to reload and upgrade the file.

Configuration section

The configuration section specifies the configuration settings that deal with either the UMRA software,
the Powershell Agent Service or both. The element is defined as follows:

Element: Configuration

Parent element: UmraDynamicAction

Mandatory: No

Attributes:

Description: The outer element of the configuration section of the UMRA Powershell dynamic action
specification. If the specification does not contain any configuration items, the default values
apply and the element can be omitted.

UMRA Help

Copyright © Tools4ever 1998 - 2012 28

The Configuration element can contain the following child elements:

Element: PowershellSnapIn

Parent element: Configuration

Mandatory: Depends on cmdlets used in script.

Multivalue: Possible, for each snap-in, a separate element must exist.

Attributes: -

Description: The name of the snap-in. The snap-in is loaded at run-time by the Powershell Agent Service. A
snap-in contains the code of cmdlets. If the snap-in is not specified, the cmdlets of the snap-in
cannot be used in a Powershell script. Example: All Exchange 2007 specific cmdlets are
specified in snap-in Microsoft.Exchange.Management.PowerShell.Admin. See Powershell
snap-in (see "Powershell snap-ins" on page 19) for more information.

To specify multiple snap-ins, create multiple PowershellSnapIn XML-elements.

Element: PowershellAgentLibrary

Parent element: Configuration

Mandatory: Depends on Powershell calls made to library in script.

Multivalue: Possible, for each library, a separate element must exist.

Attributes: -

Description: The name of the library to include. The library is maintained by the Powershell Agent Service.
At runtime, the content of the library is loaded into the runspace of the Powershell Agent
service thread that services the call.

To specify multiple libraries, create multiple PowershellAgentLibrary XML-elements.

Element: ErrorHandling

Parent element: Configuration

Mandatory: No

Attributes: propagate

UMRA Help

Copyright © Tools4ever 1998 - 2012 29

Description: The element has no contents, but only specifies the propagate attribute. The attribute is
either Yes or No. The default value (not specified) is Yes. When set to Yes, the UMRA action
will generate an error when an error occurs when the Powershell Agent service executes the
script. Thus, the error that occurs at the Powershell Agent service side, propagates to UMRA
and activates a defined error handler. If set to No, UMRA ignores any error that occurs at the
Powershell Agent service side.

Element: Session

Parent element: Configuration

Mandatory: No

Attributes: required

Description: The element has no contents, but only specifies the required attribute. The attribute is either
Yes or No. The default value (not specified) is No. When set to Yes, the UMRA action will
execute in the context of a Powershell runspace. To identify the runspace, the action specifies
property SessionID. The session is initialized with dynamic action Setup Powershell Agent
service session.

Properties section

All the properties of the UMRA dynamic actions are specified in the xml specification file. The xml-
element ActionProperties contains all properties as child elements.

Properties specification

ActionProperties

The ActionProperties section specifies the properties of the UMRA dynamic action. The element is
defined as follows:

ActionProperties

Element: ActionProperties

UMRA Help

Copyright © Tools4ever 1998 - 2012 30

Parent element: UmraDynamicAction

Mandatory: No, but normally, an UMRA dynamic Powershell action has properties.

Attributes:

Description: The outer element of all UMRA Powershell dynamic action properties. For each property, the
element contains a child element ActionProperty.

The ActionProperties element contain a child element ActionPropery for each UMRA Powershell
dynamic action property:

ActionProperty

Element: ActionProperty

Parent element: ActionProperties

Mandatory: Yes, for each property

Attributes: -

Description: The base element for each UMRA Powershell dynamic action property. The element contains a
number of child elements that completely define the property.

The ActionProperty element exists for each UMRA Powershell dynamic action property. It specifies the
complete action property in a number of child elements:

Name

Element: Name

Parent element: ActionProperty

Mandatory: Yes

Attributes: -

Description: The name of the UMRA Powershell dynamic action property. The name defines the property.
Hence, each property in the same action should have a unique name. The name is not shown in
UMRA (instead the DisplayName) is shown. The name is used in the script section of the XML-
file specification.

It is recommend to use a simple name with no spaces for this element. Example:
ExchangeServer instead of Exchange server.

UMRA Help

Copyright © Tools4ever 1998 - 2012 31

DisplayName

Element: DisplayName

Parent element: ActionProperty

Mandatory: No

Attributes: -

Description: The display name of the UMRA Powershell dynamic action property. The name is shown in
UMRA. If not specified, the value is set equal to the value of the element Name.

It is recommend to use a user-friendly name for this property. Example: Exchange server
instead of ExchangeServer.

Description

Element: Description

Parent element: ActionProperty

Mandatory: No

Attributes: -

Description: The description of the UMRA Powershell dynamic action property. The description is shown in
UMRA when the property is specified. To format the text shown by moving to the next line, use
the escape sequence \n in the text. Example: First line\nNext line.

ValueType

Element: ValueType

Parent element: ActionProperty

Mandatory: No

Attributes: Optionally: the attribute encrypted="Yes" can be used. In this case, the input value must be
text and it must be specified in UMRA using an encrypted variable. See Encrypted properties for
more information.

UMRA Help

Copyright © Tools4ever 1998 - 2012 32

Description: The type of the property value. If not specified, the default value Text is used. The type is used
to check the UMRA action input. When UMRA executes the action, the determines the value of
the property. The type of the value found should correspond (or allow conversion) with the
specified type. Possible values are:

Text (also: String)

Numeric (also: Number, Numerical, Int, Integer)

LongInteger (64-bit integer, very large number)

Boolean (also: Bool, Flag)

Date-Time (also: Date, Time, DateTime)

TextList (also: TextArray)

Table

DefaultValue

Element: DefaultValue

Parent element: ActionProperty

Mandatory: No

Attributes: type

When specified, the type of the default value. If not specified, the same value as the value of
element ValueType is used.

Description: If specified, the default value of the property. The default value is is generated when the action
is added to an UMRA script. If the default value is a variable name, the type attribute should be
set to text, while the type of the value (property ValueType) can be another type, for
example, date-time or table.

Direction

Element: Direction

Parent element: ActionProperty

Mandatory: No

Attributes: -

UMRA Help

Copyright © Tools4ever 1998 - 2012 33

Description: Type direction (input, output or both) of the property. If not specified, the default value in is
used. If a property is specified as an input property, a value can be specified for the property
before the action is executed. The value affects the action executed, e.g. results in a different
Powershell script. Output properties have no value when the action is executed. Instead, they
get a value upon action execution. Possible values are:

In

Out

InOut (also: In-Out, In Out, Out In, Dual, Bidirectional, Both)

OutputVariable

Element: OutputVariable

Parent element: ActionProperty

Mandatory: No

Attributes: -

Description: If the Direction element is either Out or InOut, a default output variable name can be
specified. Example: %UserTable%.

Mandatory

Element: Mandatory

Parent element: ActionProperty

Mandatory: No

Attributes: -

Description: A value specifying if the property must be specified for the action. Possible value: Yes or No. If
not specified, No is assumed. A value of Yes requires the property value to be specified. If not,
action execution will fail. The property is used to check the input of the action before UMRA
generates and executes the Powershell script.

MandatoryProps

Element: MandatoryProps

Parent element: ActionProperty

Mandatory: No

Attributes: -

UMRA Help

Copyright © Tools4ever 1998 - 2012 34

Description: The names (comma separated) of other properties that need to be specified if this property is
specified. The property is used to check the input of the action before UMRA generates and
executes the Powershell script.

MandatoryAbsentProps

Element: MandatoryAbsentProps

Parent element: ActionProperty

Mandatory: No

Attributes: -

Description: The names (comma separated) of other properties that should not be specified if this property
is specified. The property is used to check the input of the action before UMRA generates and
executes the Powershell script.

ReturnData

Element: ReturnData

Parent element: ActionProperty

Mandatory: No, but needs to be specified if the Direction element is Out or InOut

Attributes: -

Description: The outer element of how an output action property should be defined.

PowershellVariable

Element: PowershellVariable

Parent element: ReturnData

Mandatory:

Attributes: -

Description: The name of the powershell variable that will be used in the powershell script (in a script
phrase). The contents of this Powershell variable will be transferred to the UMRA variable
specified in this ActionProperty.

DataSpec

UMRA Help

Copyright © Tools4ever 1998 - 2012 35

Element: DataSpec

Parent element: ReturnData

Mandatory:

Attributes: dimension

Description: This data specification element has no content, only the dimension attribute needs a value.
The possible values are: value or table. It specifies what kind of data will be returned to this
action property.

Member

Element: Member

Parent element: DataSpec

Mandatory:

Attributes: type

Description: The content of this element must be the name of the property in Powershell. Its attribute must
specify what type of UMRA variable will get the data.

Series of properties

PropertiesSeriesSet section

The PropertySeriesSet section specifies what properties of the action must be used in combination with
each other. So, when the dynamic action is loaded in UMRA and is used in a Forms, Automation or Mass
project, the user fills in the properties that are needed to execute the project successfully. To check
whether properties, which are dependent of each other, are filled in correctly, these sets must be
specified. With these sets, UMRA checks on run-time whether the user has correctly filled in the right
properties. Otherwise, the missing parameters will be mentioned in the log.

UMRA Help

Copyright © Tools4ever 1998 - 2012 36

For example, there are two ways of specifying a mailbox for the remove-mailbox commandlet. The first
option is to identify the mailbox with the -Identity parameter. The second option is to identify the
mailbox with the -StoreMailboxIdentity and the -DatabaseName parameter. Obviously, it is not allowed
to use, for example, the -Identity parameter in combination with the -StoreMailboxIdentity parameter,
vice versa, and also all other combinations with the -DatabaseName parameter. To avoid such conflicts
in dynamic actions, the PropertySeriesSet is introduced. Use these tags to specify which properties
should be specified together. Check the Example section below for a PropertySeriesSet example. The
exact name of properties you want to specify as a serie are previously specified in the dynamic action at
the ActionProperties section in the Name element.

Example 1:

For the remove-mailbox commandlet action, as mentioned above, the PropertySeriesSet should be
specified as follows:

 <PropertySeriesSet>
 <PropertySeries>
 <PropertySerie>Identity</PropertySerie>
 <PropertySerie>Database, StoreMailboxIdentity</PropertySerie>
 </PropertySeries>
 </PropertySeriesSet>

Example 2:

 <PropertySeriesSet>
 <PropertySeries>
 <DependentPropertyName>User</DependentPropertyName>
 <PropertySerie>OrganizationalUnit, UserName</PropertySerie>
 <PropertySerie>DistinguishedName</PropertySerie>
 </PropertySeries>
 </PropertySeriesSet>

PropertySeriesSet

Element: PropertySeriesSet

Parent element: UmraDynamicAction

Mandatory: No

Attributes:

UMRA Help

Copyright © Tools4ever 1998 - 2012 37

Description: The outer element of all PropertySeries. For each serie of properties that exclude each other,
the element contains a child element PropertySeries. Sometimes a dynamic action has
multiple series, therefore a ProperySeriesSet can have more than one PropertySeries.

The PropertySeriesSet element contains a child element PropertySeries. This element specifies a group
of series of which at least one serie must be complete.

PropertySeries

Element: PropertySeries

Parent element: PropertySeriesSet

Mandatory: Yes, for each PropertySeriesSet

Attributes: -

Description: The base element for each serie of properties. This element has mainly 2, sometimes more,
child elements. Within the PropertySeries element, UMRA checks its child elements, and at
least one child element must have valid (specified) properties. So, in case of the remove-
mailbox commandlet, this PropertySeries element has two child elements. One child with the
Identity parameter specified in it, and one element with the StoreMailboxIdentity parameter
and the DatabaseName parameter in it. UMRA will now check whether the Identity parameter
is filled, or if both the StoreMailboxIdentity and DatabaseName parameters are filled. To avoid
the possibility of having two or more valid series, specify the <MandatoryAbsentProps>
element in the ActionProperties section.

The PropertySerie element exists for each PropertySeries. It specifies the properties that should be used
in combination with each other.

PropertySerie

Element: PropertySerie

Parent element: PropertySeries

Mandatory: Yes, for each PropertySeries

Attributes: -

UMRA Help

Copyright © Tools4ever 1998 - 2012 38

Description: Use this element to link properties specified in the ActionProperties section with each so they
will form a serie. Use commas to specify multiple values. For example:
<PropertySerie>StoreMailboxIdentity, DatabaseName</PropertySerie>. The values for this
element are previously specified at the ActionProperties section in the Name element.

DependentPropertyName

Element: DependentPropertyName

Parent element: PropertySeries

Mandatory: No

Attributes: -

Description: Use this element to make a serie dependent of a property. The PropertySeries element still
has the rule that one serie must be filled in completely, but if a PropertySeries element
contains a DependentPropertyName, the series will only be checked if the propertyname in
the DependentPropertyName element is specified. So, in case of the second example above,
the DistinguishedName must be specified, or the OrganinzationalUnit in combination with the
UserName. But, in this case, that will only be checked when the User parameter is specified.
Specify one property in this element.

Output specification

The Powershell Agent service offers functionality to return data back to UMRA. Therefore it must send
the script to Powershell with the right variables defined in it. The variables defined in the Powershell
script will have a connection with the variables in UMRA. Therefore the output variable in UMRA can be
filled with the variables in the Powershell script that is sent to the Powershell Agent service. In the XML
of the dynamic action you can exactly specify which output variable in UMRA will correspond with which
variable you will define in a script phrase.

The following paragraphs will explain how to specify an output variable in XML.

Single value output data

To return data that consists of a single value, use the following procedure.

1. An action property defines the return data variable:

 <ActionProperty>
 <Name>CurrentDateTime</Name>
 <Direction>Out</Direction>

UMRA Help

Copyright © Tools4ever 1998 - 2012 39

 .
 <ReturnData>
 <PowershellVariable type="value">DateTime</PowershellVariable>
 </ReturnData>
 .
 </ActionProperty>

In this example, the element <Direction> specifies that the action property is an output property, e.g.
when the action is executed by UMRA, an output variable specified for property is filled with the result
data. The result data is copied from the Powershell variable $DateTime. Note the $-sign: the
specification does not contain the $-character, but in a Powershell script, variables are denoted with the
$-character. The Powershell script defined in the action should produce the variable $DateTime. The
value of this variable is copied and returned back to UMRA.

2. The script section defines the variable:

 <Script>

 <ScriptPhrase>
 <Contents>
 $DateTime=get-date
 </Contents>
 </ScriptPhrase>

 </Script>

When the script is executed, the Powershell $DateTime variable is filled and returned to UMRA. In
UMRA, the output variable specified for property CurrentDateTime is filled with the result value.

Table value output data

This topic explains how to return a table generated by the Powershell script back to UMRA. It is more
complex to return a table compared to a single value, but the principle is the same: An action property
contains the specification of a Powershell variable that is generated by the Powershell script. For a table,
the Powershell variable is an array of objects of the same type. Each element of the array results in a
row in the table. Different members of each array element make up the columns of the final table.

Example:

 <ActionProperty>
 <Name>UserMailboxSimple</Name>

UMRA Help

Copyright © Tools4ever 1998 - 2012 40

 .
 <Direction>Out</Direction>
 <OutputVariable>%MailboxTable%</OutputVariable>
 .
 <ReturnData>
 <PowershellVariable
type="object">UserMailbox</PowershellVariable>
 <DataSpec dimension="table">
 <Member type="Text">Name</Member>
 <Member type="Text">SamAccountName</Member>
 <Member type="Text">DistinguishedName</Member>
 </DataSpec>
 </ReturnData>
 </ActionProperty>

In this example, the UMRA property UserMailboxSimple can have an output table variable
%MailboxTable% specified. The Powershell script generates the variable $UserMailbox. The script
section is as follows (simplified):

 <Script>

 <ScriptPhrase>
 <Contents>
 $UserMailbox=get-mailbox
 </Contents>
 </ScriptPhrase>

 </Script>

When executed, the Powershell variable $UserMailbox holds an array with mailboxes. Each mailbox is an
object of the same type, representing a mailbox. The mailbox objects all have the same members, as
defined by Exchange. To setup the output table, the members that must be returned are specified in the
property. Each member corresponds with a column of the table. In this example, the members
(columns) Name, SamAccountName, and DistinguishedName are returned. To find the possible
members, add the Get-Member cmdlet in Powershell: get-mailbox | get-member.

The following table illustrate the conversion from a Powershell variable to a UMRA variable:

Powershell array with 2 mailbox objects:

UMRA Help

Copyright © Tools4ever 1998 - 2012 41

$UserMailbox

Result table in UMRA with 2 rows:

%MailboxTable%

ReturnData element specification

This topic describes the specification of the ReturnData element.

ReturnData
The ReturnData element is always the child element of an ActionProperty

Example: The ReturnData and PowershellVariable elements:

 <ActionProperty>
 <Name>CurrentDateTime</Name>
 <Direction>Out</Direction>
 .
 <ReturnData ErrorIfNotExist="No">
 <PowershellVariable type="value">DateTime</PowershellVariable>
 </ReturnData>
 .
 </ActionProperty>

PowershellVariable
The element specifies the name of the Powershell variable as generated by the script. The attribute type
can have two values:

UMRA Help

Copyright © Tools4ever 1998 - 2012 42

1. "value": The Powershell variable holds a single value, no DataSpec section must be specified.

2. "object": The Powershell variable holds an array of objects. For the objects, the members to be
returned are specified in the DataSpec section. This is the default value, e.g. if the attribute is not
specified, the value type="object" is assumed.

Example: The DataSpec elements:

 <ActionProperty>
 <Name>UserMailboxSimple</Name>
 .
 <Direction>Out</Direction>
 <OutputVariable>%MailboxTable%</OutputVariable>
 .
 <ReturnData ErrorIfNotExist="No">
 <PowershellVariable
type="object">UserMailbox</PowershellVariable>
 <DataSpec dimension="table">
 <Member type="Text">Name</Member>
 <Member type="Text">SamAccountName</Member>
 <Member type="Text">DistinguishedName</Member>
 </DataSpec>
 </ReturnData>
 </ActionProperty>

DataSpec
The element specifies all the members of the objects that must be returned to UMRA. Each member fills
up a column in the result table. The elements supports attribute dimension, which can take one of two
possible values:

1. "table": The result is an UMRA table. The DataSpec section should contain one ore more Member

elements.

2. "value": The result is a single UMRA value. The DataSpec section should contain one Member

element. The Powershell variable should contain a single object.

Example: The DataSpec element with attribute dimension="value"

 <ActionProperty>
 <Name>Owner</Name>
 .
 <Direction>Out</Direction>
 <OutputVariable>%Owner%</OutputVariable>

UMRA Help

Copyright © Tools4ever 1998 - 2012 43

 .
 <ReturnData ErrorIfNotExist="No">
 <PowershellVariable
type="object">SecurityDescriptor</PowershellVariable>
 <DataSpec dimension="value">
 <Member type="Text">Owner</Member>
 </DataSpec>
 </ReturnData>
 </ActionProperty>

The example shown above shows the usage of attribute dimension="value" of Powershell variable
$SecurityDescriptor. The corresponding Powershell script contains something like:

 $SecurityDescriptor=Get-Acl

The Powershell variable contains a number of members, including the owner of the file or directory. This
value is obtained from the object and returned in UMRA variable %Owner%.

Member
The element specifies the name of the object member. The element supports the attribute type that
specifies the UMRA data to be returned. Possible values are: "Text", "String", "Numeric", "Number",
"Numerical", "Int", "Integer", "Boolean", "Bool", "Flag", "Date", "Time", "DateTime", "Date-Time". When
received by UMRA, the value is converted to the specified type. If not specified, a value of "Text" is
assumed.

Attribute ErrorIfNotExist of element ReturnData
The attribute specifies the error handling. The value of the attribute is either "Yes" or "No". The default
value is "No". If not specified, the default value applies. If set to "Yes" the UMRA error handler is
activated if no data for the specified UMRA variable is returned from the Powershell Agent service. For a
singular value, this is the case if no return data is found for the specified variable. For a tabular value,
this is the case if the table is empty, e.g. contains no rows.

UMRA Help

Copyright © Tools4ever 1998 - 2012 44

Script section

The Script section specifies the script of the UMRA Powershell dynamic action. In the XML specification
file, the script is split up in a number of pieces, called script phrases. Each script phrase, represent a part
of the Powershell script. The script element is defined as follows:

Element: Script

Parent element: UmraDynamicAction

Mandatory: No, but normally, an UMRA dynamic Powershell action contains a script. If not, the action
doesn't do anything.

Attributes:

Description: The outer element of the UMRA Powershell dynamic action script.

The Script element contains one or more ScriptPhrase elements that define the Powershell script. The
order of the child script phrases elements define the order in which they appear in the final Powershell
script.

Element: ScriptPhrase

Parent element: Script

Mandatory: Yes, for each scriptphrase, an element should exist.

Attributes: -

Description: The scriptphrase contains a piece of the final Powershell script.

Each script phrase, defines a piece of the Powershell script. The script phrases can contain a number of
attribute element that define the type of the script phrase and the dependencies on UMRA action
properties. Two major script phrase types exist:

1. Simple script phrase: A script phrase of which the contents does not depend on the value of any of
the action properties. The script phrase only contains a script phrase contents section.

2. Action property script phrase: A script phrase of which the content does depend on one or more
action properties. The script phrase contains a list with dependent action properties and a script
phrase contents section.

The following example shows a script section with one simple script phrase and one action property

script phrase.

UMRA Help

Copyright © Tools4ever 1998 - 2012 45

 <Script>

 <!-- a simple script phrase -->
 <ScriptPhrase>
 <Contents>
 Restart-Service Spooler
 </Contents>
 </ScriptPhrase>

 <!-- an Action property script phrase -->
 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement>%ServiceName%</Replacement>
 </ActionProperty>
 <Contents>
 Restart-Service %ServiceName%
 </Contents>
 </ScriptPhrase>

 </Script>

The script first restarts the Spooler service and then restarts the service specified by UMRA action
property ServiceName.

The following XML specification file shows a full Powershell dynamic action specification, including the
script section.

<?xml version="1.0" encoding="UTF-16"?>
<UmraDynamicAction version="1" type="Powershell">
 <General>
 <Name>Restart a service</Name>
 <Description>Restart a particular service on the current
computer.</Description>
 <ActionTreeLabels>Powershell, Example actions</ActionTreeLabels>
 <ActionImage>17</ActionImage>
 <Version>101</Version>

UMRA Help

Copyright © Tools4ever 1998 - 2012 46

 </General>
 <ActionProperties>
 <ActionProperty>
 <DisplayName>Service name</DisplayName>
 <Name>ServiceName</Name>
 <Description>The name of the service to restart.</Description>
 <ValueType>Text</ValueType>
 </ActionProperty>
 </ActionProperties>
 <Script>
 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement>%ServiceName%</Replacement>
 </ActionProperty>
 <Contents>
 Restart-Service %ServiceName%
 </Contents>
 </ScriptPhrase>
 </Script>
</UmraDynamicAction>

Simple script phrase

Simple script phrases only contain a script phrase contents section. The contents of the simple script
phrase does not depend on any of the action properties.

Element: ScriptPhrase

Parent element: Script

Mandatory: No

Attributes:

Description: The partial Powershell script content. The contents is copied to the final Powershell script.

The following example show a script section with a simple script phrase.

 <Script>

UMRA Help

Copyright © Tools4ever 1998 - 2012 47

 <ScriptPhrase>
 <Contents>
 Restart-Service Spooler
 </Contents>
 </ScriptPhrase>

 </Script>

When UMRA executes the action, the following Powershell script is generated:

 Restart-Service Spooler

Action Property script phrase

An Action Property script phrase contains a list with dependent action properties and a script phrase
contents section. The list with dependent action properties specify how the Powershell script depends
on the UMRA properties.

Element: ScriptPhrase

Parent element: Script

Mandatory: No

Attributes: -

Description: The partial Powershell script content. The contents can contain words (variables) that are
replaced by the contents of UMRA property values.

The presence of a single ActionProperty child element in the ScriptPhrase element makes the script
phrase a Action Property script phrase.

Element: ActionProperty

Parent element: ScriptPhrase

Mandatory: If the script phrase contents depends on the value of an action property, an ActionProperty
element should exist for this action property.

Attributes: -

UMRA Help

Copyright © Tools4ever 1998 - 2012 48

Description: The element defines the dependence between the script phrase contents and the action
property.

The following example shows a script section with an action property script phrase.

 <Script>

 <!-- an Action property script phrase -->
 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement>%ServiceName%</Replacement>
 </ActionProperty>
 <Contents>
 Restart-Service %ServiceName%
 </Contents>
 </ScriptPhrase>

 </Script>

At runtime, the value of UMRA property ServiceName replaces the word %ServiceName% of the
Contents specification. In this example, the script phrase depends only on a single property:
ServiceName.

The part of the Powershell script that is generated by an Action Property script phrase, can depend on
the action properties in several ways:

1. Conditional inclusion: The contents of the script phrase is included in the final Powershell script
only if certain conditions are met. Example: if some UMRA flag property is set, a cmdlet parameter
is added to the Powershell script;

2. Value dependent: The contents of the script phrase depends on the value of the action properties.
At run-time the value of the specified action properties replace specific parts of the script phrase
contents. The value dependence can be straightforward as shown in the previous example, but also
more complicated, for instance to repeat a certain Powershell script part to support multi-value
UMRA properties.

Any combination of the above dependencies is possible.

The ActionProperty always contains the following child element:.

UMRA Help

Copyright © Tools4ever 1998 - 2012 49

Element: Name

Parent element: ActionProperty

Mandatory: Yes

Attributes: -

Description: The name of the action property on which the script phrase depends. The value should
correspond with the name of one of the action properties defined earlier in XML specification
file.

Next, the ActionProperty element can contain the element Condition (see "Conditional Action Property
script phrase" on page 49) and/or Replacement. See the topics

 Conditional Action Property Script Phrase (on page 49) and

 Value Dependent Action Property script phrase

for more information.

Conditional Action Property script phrase

The setup a conditional action property script phrase, add one or more Condition elements to the
ActionProperty element.

Element: Condition

Parent element: ActionProperty

Mandatory: No

UMRA Help

Copyright © Tools4ever 1998 - 2012 50

Attributes: Criterion

The type of condition that determines if the script phrase contents must be included in the
Powershell script. Possible values:

 IfNotEmptyOnly: Only include the script phrase contents if the action property is
specified and not empty, e.g. contains an non zero value.

 IfEmptyOnly: Only include the script phrase contents if the action property is not
specified or contains an empty or no value.

 IfTrueOnly: Only include the script phrase contents if the action property value is
specified as a boolean true value.

 IfFalseOnly: Only include the script phrase contents if the action property is
specified as a boolean false value.

 IfSpecifiedOnly: [obsolete]

 IfNotSpecifiedOnly: [obsolete]

Description: The element allows the conditional inclusion of the script phrase contents in the final
Powershell script. For instance to include the property for a cmdlet specification only if a
certain UMRA property is specified.

The following example shows how to use a conditional action property script phrase. The Powershell
cmdlet Restart-Service can also restart dependent service. The parameter -force is used for this purpose.
So, to restart a service and all of its dependent service, the Powershell script is:

 Restart-Service [name of service] -force

To start only the service itself, the cmdlet must be specified without the -force parameter:

 Restart-Service [name of service]

To use one and the same action to support both script variants, the UMRA action can include a property,
RestartDependentServices, that indicates if the -force parameter must be part of the Powershell script
line. In an UMRA project, at runtime, this property can have one of three values:

1. Yes - true: Use the -force parameter;

2. No - false: Do not use the -force parameter;

3. Not specified: Do not use the -force parameter.

UMRA Help

Copyright © Tools4ever 1998 - 2012 51

So the condition to include the -force parameter is specified by using criterion IfTrueOnly in a
conditional script phrase.

 <Script>

 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement>%ServiceName%</Replacement>
 </ActionProperty>
 <Contents>
 Restart-Service %ServiceName%
 </Contents>
 </ScriptPhrase>

 <ScriptPhrase>
 <ActionProperty>
 <Name>RestartDependentServices</Name>
 <Condition Criterion=IfTrueOnly />
 </ActionProperty>
 <Contents>
 -force
 </Contents>
 </ScriptPhrase>

 </Script>

Value Dependent Action Property script phrase

The contents of a value dependent script phrase depends on the value of related action properties. At
run-time the value of the action properties replace specific parts of the script phrase contents. The value
dependence can be straightforward, but also more complicated, for instance to repeat a certain
Powershell script part to support multi-value UMRA properties.

UMRA Help

Copyright © Tools4ever 1998 - 2012 52

The following example shows a simple script phrase of which the contents depend on action property
ServiceName. At run-time, the %ServiceName% parameter of the Contents element is replaced by the
actual value of UMRA action property ServiceName.

 <Script>

 <!-- an Action property script phrase -->
 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement>%ServiceName%</Replacement>
 </ActionProperty>
 <Contents>
 Restart-Service %ServiceName%
 </Contents>
 </ScriptPhrase>

 </Script>

A value dependent Action Property script phrase always contains a Replacement element:

Element: Replacement

Parent
element:

ActionProperty

Mandatory: No

UMRA Help

Copyright © Tools4ever 1998 - 2012 53

Attributes: type

The type of the replacement determines how the script phrase contents depends on the action
property. Possible values are:

simple: the UMRA property value replaces a part in the script phrase contents.
See Simple Value Dependent Action property script phrase for more information.

multivalue: the UMRA property contains multiple values (0 or more). The script
phrase contents must be repeated in the Powershell script, replacing some part of
the contents with the current value. See Multi-value Dependent Action Property
script phrase for more information.

boolean: the UMRA action property results in a boolean value, the Powershell
script parameter is either $true or $false. See Boolean Value Dependent Action
Property script phrase for more information.

[additonal type dependent properties, see related topics]

QuoteFormat

Always / Default / None (simple and multivalue replacement types only). See QuoteFormat of a
Value Dependent Action Property script phrase for more information.

VariableConversion

All/Default/None (simple and multivalue replacement types only). See Variable Conversion of a
Value Dependent Action Property script phrase for more information.

Description: The element contents is the Powershell script contents in which some parts are replaced with
UMRA property values.

Simple Value Dependent Action Property script phrase

In a Simple Value Dependent Action property script phrase, the value of the UMRA property replaces
the text in the contents element that is specified in the Replacement element.

In the following example, the value of UMRA property ServiceName replaces the text %ServiceName%
found in the Contents element.

UMRA Help

Copyright © Tools4ever 1998 - 2012 54

 <Script>

 <!-- an Action property script phrase -->
 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement type="simple">%ServiceName%</Replacement>
 </ActionProperty>
 <Contents>
 Restart-Service %ServiceName%
 </Contents>
 </ScriptPhrase>

 </Script>

So if ServiceName has a value of Spooler, the resulting Powershell script is:

 Restart-Service Spooler

If the type attribute is not specified for the Replacement element, it is assumed that the action property
script phrase is of the simple type. Note that the contents of the Replacement element does not need to
correspond with the UMRA property name of variable name. The following example produces exactly
the same result:

 <Script>

 <!-- an Action property script phrase -->
 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement>%TheNameOfTheServiceToRestart%</Replacement>
 </ActionProperty>
 <Contents>
 Restart-Service %TheNameOfTheServiceToRestart%
 </Contents>
 </ScriptPhrase>

 </Script>

UMRA Help

Copyright © Tools4ever 1998 - 2012 55

Multi-value Dependent Action Property script phrase

In a Multi-value Dependent Action Property script phrase, the UMRA property is a multi-value property.
This UMRA property is either a UMRA text-list or an UMRA table. When UMRA produces the Powershell
script, the script phrase contents is repeated for each value of the multi-value property.

The following example shows how to use a multi-value dependent action property script phrase. The
script phrase is used to set a number of e-mail addresses for a mailbox. The e-mail addresses originate
from the multi-value property EmailAddresses. This property is either an UMRA table or text-list.

For each value, the contents of the Contents element is repeated in the resulting Powershell script. In
former script phrases, the Powershell variable $Mailbox is set to the mailbox of for instance a user
account. The property EmailAddresses of the mailbox object contains a list with the current e-mail
addresses of the user account. The script phrase first checks if the current e-mail address is contained in
the list. If not, it is added.

<ScriptPhrase>

 <ActionProperty>
 <Name>EmailAddresses</Name>
 <Replacement type="multivalue">%EmailAddress%</Replacement>
 </ActionProperty>

 <Contents StartWithNewLine="Yes">
 if(!$Mailbox.EmailAddresses.Contains(%EmailAddress%))
{$Mailbox.EmailAddresses.Add(%EmailAddress%)}
 </Contents>

</ScriptPhrase>

In case the multi-value property contains the values smtp:john@tools4ever.co.uk and
smtp:john.tools4ever.com, the resulting Powershell script part is as follows:

 if(!$Mailbox.EmailAddresses.Contains(smtp:john@tools4ever.co.uk))
 {$Mailbox.EmailAddresses.Add(smtp:john@tools4ever.co.uk)

 if(!$Mailbox.EmailAddresses.Contains(smtp:john@tools4ever.com)) {
$Mailbox.EmailAddresses.Add(smtp:john@tools4ever.com)

UMRA Help

Copyright © Tools4ever 1998 - 2012 56

In case the UMRA property is a table, the attribute column is used to refer to the column that contain
the target values. If not specified, a default value of 0 is assumed. Example:

 <Replacement type="multivalue"
column="4">%EmailAddress%</Replacement>

Boolean Value Dependent Action Property script phrase

The replace text of an Boolean Value Dependent Action Property script phrase is either $true or $false.
The $true and $false values are well-known values in Powershell and used to set cmdlet switch
parameters. Example: to force a user account to reset the password the next time the user logs on, the
Set-User cmdlet can be used. For this purpose, the syntax is as follows:

 Set-User [name of user] -ResetPasswordOnNextLogon $true

or

 Set-User [name of user] -ResetPasswordOnNextLogon $false

(Note: This cmdlet uses the Exchange 2007 Powershell snap-in. See Powershell snap-in (see "Powershell
snap-ins" on page 19) for more information). The corresponding UMRA dynamic Powershell action,
contains a properties for the user account (UserName) and a flag (ResetPasswordFlag) if the switch
must be set or reset.

The corresponding script is as follows:

<Script>
 <ScriptPhrase>
 <ActionProperty>
 <Name>UserName</Name>
 <Replacement>%UserName%</Replacement>
 </ActionProperty>

UMRA Help

Copyright © Tools4ever 1998 - 2012 57

 <Contents>
 Set-User %UserName%
 </Contents>
 </ScriptPhrase>

 <ScriptPhrase>
 <ActionProperty>
 <Name>ResetPasswordFlag</Name>
 <Replacement type="boolean">%ResetPasswordSwitch%</Replacement>
 </ActionProperty>
 <Contents>
 -ResetPasswordOnNextLogon %ResetPasswordSwitch%
 </Contents>
 </ScriptPhrase>
</Script>

QuoteFormat of a Value Dependent Action Property script phrase

Powershell requires to enclose text parameters with quotes in certain cases. For instance, when the text
parameter contains white space. It is not a good idea, to always enclose text parameter values with
quotes: To delete object members, Powershell uses the null-value $null that should not be enclosed in
quotes.

The required flexibility is supported by UMRA with the QuoteFormat attribute of the Replacement

element. The QuoteFormat can take three values, as shown in the following table:

QuoteFormat
mode

Description

Default Always enclose the replaced text with quotes, except when the value equals $null.
This is the default mode. If the attribute is not specified, this mode is effective.

Always Always enclose the replaced value with quotes, regardless of the contents of the
replace text.

UMRA Help

Copyright © Tools4ever 1998 - 2012 58

None Never enclose the replaced value with quotes.

Powershell supports two types of quotes: single quotes (') and double quotes ("). UMRA always uses
double quotes.

Example: When setting e-mail addresses of an Exchange 2007 mailbox, multiple values can be specified
with a single comma separated string. The total string should not be enclosed with quotes. In that case,
Powershell reads the parameter as a single value. To prevent UMRA from generating a script with
quotes, the following script phrase is used:

<ScriptPhrase>
 <ActionProperty>
 <Name>EmailAddresses</Name>
 <Condition Criterion="IfNotEmptyOnly"/>
 <Replacement QuoteFormat="none">%EmailAddresses%</Replacement>
 </ActionProperty>
 <Contents>
 -EmailAddresses %EmailAddresses%
 </Contents>
</ScriptPhrase>

Variable Conversion of a Value Dependent Action Property script phrase

With Powershell, cmdlet parameters can contain variable names. For instance, the parameter value

 User$IdNumber

is interpreted as

 User$IdNumber

or as

 User76893

if $IdNumber is a Powershell variable that equals 76893.

UMRA Help

Copyright © Tools4ever 1998 - 2012 59

In Powershell, variable names are always preceded by the $-character. By escaping the $-character with
the `-character ($ -> `$), the subsequent text is not interpreted as a variable name. The required
flexibility is supported by UMRA with the VariableConversion attribute of the Replacement element.
The VariableConversion can take three values, as shown in the following table:

VariableConversion Example Description

Default abc$null -> abc$null -> abc

abc$def -> abc`$def -> abc$def

The $-character is escaped by the `-character if
the name is not null. This is the default behaviour
that is also effective when the attribute is not
specified.

All abc$null -> abc$null -> abc

abc$def -> abc$def -> abcDEF

The $-character is never escaped, e.g. all variables
names are interpreted as variable name and as
such replaced by Powershell.

None abc$null -> abc`$null ->
abc$null

abc$def -> abc`$def -> abc$def

The $-character is always escaped. All potential
variable names are converted to text preceded by
the $-character.

Note: In the table, the variable $def is supposed to have a value of DEF in Powershell. The examples
show sequences of 3 values (value1 -> value2 -> value3):

1. The initial value used by UMRA to be replaced in the script phrase to generate the Powershell
script);

2. The updated value by UMRA as stored in the Powershell script;

3. The value as interpreted by Powershell.

Script phrase contents

An Action Property script phrase always contains a contents element. The contents element specifies
the text to be inserted into the Powershell script. The element can contain parts (variable names) that
are replaced by property values at run-time.

UMRA Help

Copyright © Tools4ever 1998 - 2012 60

Element: Contents

Parent element: ScriptPhrase

Mandatory: No, but if not specified, the script phrase does not result in anything.

Attributes: StartWithNewLine

Indicates if the text converted to the Powershell script should always start on a new line.
Possible value: Yes/No. The default value (not specified) is No.

StartWithBlank

Indicates if the text converted to the Powershell script should always be preceded by a blank or
start on a new line. Possible value: Yes/No. The default value (not specified) is Yes.

Type

The resulting Powershell script text can be encrypted. Possible values: Plain / Encrypted. The
default value (not specified) is Plain. When Encrypted is specified, the text is encrypted and
as such shown in log-files and send to the Powershell service. Note that all data that is
exchanged between the UMRA software and the Powershell Agent service is encrypted.

Description: The partial Powershell script content. The contents can contain words (variables) that are
replaced by the contents of UMRA property values.

Session section

The Session section specifies the session maintained by the Powershell Agent service to execute the
action.

Element: Session

Parent element: UmraDynamicAction

Mandatory: No, not all dynamic actions require a session. If a dynamic action uses a session, an the session
section is not specified, all default values apply.

Attributes:

Description: The outer element of the UMRA Powershell dynamic action session specification.

The Session element specifies the variables that must be deleted from the Powershell runspace when
the action is completed. Even if action execution fails, these variables are removed.

UMRA Help

Copyright © Tools4ever 1998 - 2012 61

Element: VariablesCleanup

Parent element: Session

Mandatory: No

Attributes: -

Description: A comma-separated list with all Powershell variables that are removed when the action is
completed. Each variable must be specified without the $-character. Example: Connection,
MailEnvelope

Encrypted properties

It is possible to encrypt the value of properties, so that the actual value can not be seen in log files,
UMRA scripts and so on. For instance, when a dynamic action is used to log on to some system, a
password might be required. The value of the password should not be shown in the UMRA projects or
log files.

To do so, the UMRA project must use encrypted variables and both the Properties and Script sections
must use some specific settings:

1. In the UMRA project, the data to encrypt must be specified using an encrypted variable;

2. In the properties section of the dynamic action specification file, the ValueType element must have
the attribute encrypted="Yes";

3. In the script section of the dynamic action specification file, the Contents element must have the
attribute Type="Encrypted".

In such a situation, the data to protect is an UMRA action property that corresponds with a property of
the dynamic action. This dynamic action property is used in a script phrase.

UMRA project - encrypted variable
In the UMRA project, the value to protect must be specified using encrypted variables. This can be
accomplished using UMRA action Set encrypted variable or Encrypt text. Both actions produce a variable
that holds encrypted text. This variable must be specified for the target property of the dynamic action.

Properties section dynamic action
Only text properties can be encrypted. For these properties, the ValueType specification must include an
additional attribute: encrypted="Yes".

UMRA Help

Copyright © Tools4ever 1998 - 2012 62

 <ActionProperty>
 <Name>Name</Name>
 <ValueType encrypted="Yes">Text</ValueType>
 <Direction>In</Direction>
 </ActionProperty>

In UMRA, the property is specified using an encrypted variable. By specifying the encryption attribute,
the value is recognized as being encrypted.

Script section dynamic action
The Contents element of the ScriptPhrase must contain the attribute Type="Encrypted". This will cause
the contents of the script phrase to be encrypted before it is sned to the Powershell Agent service.

 <ScriptPhrase>
 <ActionProperty>
 <Name>Name</Name>
 <Replacement>%Name%</Replacement>
 </ActionProperty>
 <Contents Type="Encrypted">
 $ACL=Get-ACL %Name%
 </Contents>
 </ScriptPhrase>

If this attribute is omitted, the actual value is shown in the UMRA log file.

Dynamic actions library

UMRA maintains a internal library with dynamic actions, including the Powershell dynamic actions. Both
the UMRA Console and UMRA Service application maintain a copy of this library. The library contains the
complete specifications for all dynamic actions that can be used in UMRA projects. When UMRA loads a
project that contains dynamic actions, the actions in the project are updated with the most up-to-date
versions of the dynamic action, as defined in the library.

UMRA automatically synchronizes the contents of the libraries so that both the UMRA Console and
UMRA Service have an equal contents. When an dynamic action is imported into UMRA, the libraries are
updated. Also, when a dynamic action is upgraded, the action is upgraded in the library.

The dynamic action library is located in file DynActions.dat in the Config directory of both the UMRA
Console and UMRA Service application. If the library is deleted and the UMRA application is restarted, it
is automatically recreated.

UMRA Help

Copyright © Tools4ever 1998 - 2012 63

Dynamic actions can only be imported and upgraded with the UMRA Console application. At the UMRA
Console application, dynamic actions files must be located in directory DynamicActions in the UMRA
Console program directory.

Upgrading UMRA dynamic actions

To upgrade an existing (Powershell) dynamic action, use the following procedure.

1. Increment the version of the dynamic action. The version is found in the XML specification file,
element Version in the General section. See General section of the XML specification file for more
information. To version number of a dynamic action that is part of an UMRA script is also shown in
the log file. When UMRA executes the dynamic action, a log message is written that shows the
version number of the action.

2. Make all changes to the XML specification file.

3. In the UMRA Console application, select the action in the action tree. Right click on the action and
select menu option Reload dynamic action. The dynamic action is now reloaded and upgraded.
Results of the reload operation are shown in the UMRA log. If the UMRA Console is connected to
the UMRA Service, the action is also upgraded in the UMRA Service dynamic actions library.

Signature of UMRA dynamic actions

To prevent accidental changes in dynamic action files, dynamic actions can be protected with a so called
signature. The signature is an encrypted value that is calculated from the content of the dynamic action.
If the contents of the XML specification file is changed, the signature no longer corresponds with the
dynamic action specification. In this case, import and reload operations will fail, e.g. the action is marked
as invalid and cannot be imported into UMRA.

To check if a dynamic action contains a signature, check for a signature element in the general section of
the XML specification file. If found, the dynamic action is signed.

The signature has the following format:

<General>
 .
 .
 .<Signature>Tools4ever:q5GpN2STbiHcQNZINHZoDAs</Signature>
 ..
 ..
</General>

The name that is part of the signature (Tools4ever) is the owner of the dynamic action file. With a
special procedure, the owner can sign an updated version of the XML specification file.

UMRA Help

Copyright © Tools4ever 1998 - 2012 64

If you want to update an UMRA dynamic action that is signed, use the following procedure:

1. Make a copy of the XML specification file in the UMRA DynamicActions subdirectory. Make sure
the file contains a name you will recognize later;

2. Give the action a unique name, e.g. change the Name element in the General section. The new
name should be unique. It is recommended to use a file name for the XML specification file that
(partially) corresponds with the new name of the action;

3. Remove the Signature element from the General section in the new XML specification file;

4. Save the XML specification file;

5. Import (see "UMRA dynamic action example: Import the dynamic action" on page 70) the new XML
file with the UMRA Console application. The new action contains no signature and can be updated
and modified later.

Remove a dynamic action

Once a new dynamic action is added, it is stored in the dynamic actions library. A dynamic action is not
removed by removing the xml specification file. Instead, use the following procedure:

1. Stop the UMRA Service.

2. Close UMRA Console application.

3. Go to the location where the UMRA Console application is installed. By default this is "C:\Program
Files\Tools4ever\User Management Resource Administrator".

4. From the folder DynamicActions, remove the dynamic action specification file. This is an xml file
with extension .xml.

5. From the folder Config, remove the file DynActions.dat. (The dynamic action library will rebuild
automatically when the UMRA Console application is restarted.)

6. Go the UMRA Service directory. By default, this is "C:\Program Files\UmraService" on the server on
which the UMRA Service is installed.

7. From the folder Config, remove the file DynActions.dat. (The dynamic action library will rebuild
automatically when the UMRA Service application is restarted.)

8. Start the UMRA Service.

9. Start the UMRA Console application.

Note: UMRA projects that contain dynamic actions that are removed will remain intact. The actions are
stored in the script of the project and will execute as before.

UMRA Help

Copyright © Tools4ever 1998 - 2012 65

Example

This chapter describes a complete example to create and use a new UMRA dynamic action. The dynamic
action performs a simple task with Powershell, e.g. restarts a particular service on the current computer.
The example shows how to create a new UMRA dynamic action to execute the requested Powershell
script.

To restart the printer spooler service on the current computer, the following Powershell script can be
used:

 Restart-Service Spooler

The commandlet Restart-Service is part of the default set of Powershell commandlets. The Exchange
2007 management tools don't need to be installed to use this commandlet. The name of service to be
restarted is Spooler. This is the print spooler service. Note: the name Print Spooler is the display name.
The name Spooler is the (real) service name. Use the name of another service to restart that particular
service.

The corresponding UMRA action of this Powershell script is an action to restart a particular service. The
name of the action is for instance Restart service. One of the properties of the action is the name of the
service.

UMRA dynamic action example: Goal

The goal of this example is to add an dynamic action to UMRA to restart a particular service on the
current computer. The action is always the same: restart the service. The name of the service to restart
is a parameter of the action.

This is an important aspect: it determines the behaviour of the UMRA action. The action always restarts
the service. But it does not always restart the same service. The service is a parameter of the action.
With UMRA, any Powershell script can be executed. The exact behaviour of the UMRA action is up to
the designer of the action: all options can be implemented. In this particular case, for instance the
following UMRA dynamic actions are possible:

UMRA Action Parameters Description

UMRA Help

Copyright © Tools4ever 1998 - 2012 66

Restart service Name of service Restart the particular service

Restart spooler
service

[none] Restart the spooler service. The action does not allow to
restart another service.

Manage service Action, Name of
service

Start, restart or stop a particular service. Both the type of
the action and the target service are parameters of the
UMRA dynamic action.

It is up to the designer of the UMRA dynamic action to determine the functionality of the action and the
parameters of the action. In this example, we will design the action to always restart a service. The
name of the service is a parameter of the action. As an exercise, you can later implement the other
dynamic actions.

UMRA dynamic action example: XML file

The UMRA dynamic action to restart a particular service on the local computer is defined in an XML-file:

<?xml version="1.0" encoding="UTF-16"?>
<UmraDynamicAction version="1" type="Powershell">
 <General>
 <Name>Restart a service</Name>
 <Description>Restart a particular service on the current
computer.</Description>
 <ActionTreeLabels>Powershell, Example actions</ActionTreeLabels>
 <ActionImage>17</ActionImage>
 <Version>101</Version>
 </General>
 <ActionProperties>
 <ActionProperty>
 <DisplayName>Service name</DisplayName>
 <Name>ServiceName</Name>
 <Description>The name of the service to restart.</Description>
 <ValueType>Text</ValueType>
 </ActionProperty>
 </ActionProperties>
 <Script>
 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement>%ServiceName%</Replacement>

UMRA Help

Copyright © Tools4ever 1998 - 2012 67

 </ActionProperty>
 <Contents>
 Restart-Service %ServiceName%
 </Contents>
 </ScriptPhrase>
 </Script>
</UmraDynamicAction>

The XML-file completely defines the UMRA action and the Powershell script. The Powershell Agent
Service will execute the Powershell script when the UMRA software executes a project that contains the
action: When UMRA executes the action, the Powershell script is composed and send to the Powershell
Agent Service with the request to execute the script.

The XML-file contains four main parts:

1. General section: The section defines the name of the UMRA action, the description and the
position in the action tree and version information.

2. Configuration section: A number of configuration settings;

3. ActionProperties section: All the UMRA properties of the action. The properties show up in UMRA
when the action is configured.

4. PropertiesSeriesSet: The relationships between

5. Script section: The specification of the Powershell script. When UMRA executes the action as part
of a project, the script is composed according to this specification and sent to the Powershell Agent
Service.

The next topics deals with the different sections. For the example, no special configuration settings
apply. Hence, the configuration section is not specified for the example.

UMRA dynamic action example: XML file - general section

The general section of the UMRA dynamic action file defines the general settings of the UMRA action.

The XML file start with the declaration of the file:

 <?xml version="1.0" encoding="UTF-16"?>

Next, the action element is opened. In this case, the dynamic action type is Powershell, e.g. the dynamic
action is a Powershell action. The complete action specification is contained the element
UmraDynamicAction.

UMRA Help

Copyright © Tools4ever 1998 - 2012 68

<UmraDynamicAction version="1" type="Powershell">

The General element specifies the name and description of the service. The name of the action is the
name as shown in the UMRA action tree and UMRA projects.

 <General>
 <Name>Restart a service</Name>
 <Description>Restart a particular service on the current
computer.</Description>
 <ActionTreeLabels>Powershell, Example actions</ActionTreeLabels>
 <ActionImage>17</ActionImage>
 <Version>101</Version>
 </General>

The ActionTreeLabels element defines the position in tree. The element contents is a comma separated
list. Each entry corresponds with a folder of the UMRA action tree. If the folder does not exist, it is
created automatically when the action is loaded.

The ActionImage element specified the image shown for the action. The Version element is used to
upgrade the action if the specification in the XML-file is updated.

UMRA dynamic action example: XML file - ActionProperties section

The ActionProperties section of the XML-file specifies all of the properties of the UMRA action.

 <ActionProperties>
 <ActionProperty>
 <DisplayName>Service name</DisplayName>
 <Name>ServiceName</Name>
 <Description>The name of the service to restart.</Description>
 <ValueType>Text</ValueType>
 </ActionProperty>
 </ActionProperties>

All properties are contained in the element ActionProperties. For each property, a child element
ActionProperty exists. The ActionProperty element, supports a number of child element. In this

UMRA Help

Copyright © Tools4ever 1998 - 2012 69

example, only the most important child elements are specified. For all other possible element, the
default values apply:

1. DisplayName: The display name of the property. This is the name shown in UMRA. It is a user-
friendly name and it can contain spaces etc.

2. Name: The name of the property. This name is used in other sections of this XML-file. The name is
used to refer to this property.

3. Description: The description of the property.

4. ValueType: The UMRA value type of this property. Most properties have text values.

When an UMRA project contains the dynamic action, the properties list of UMRA shows the properties
that are specified in this section. To add another property, a new element ActionProperty must be
added as a child element to the element ActionProperties. In this example, the action only has a single
property.

UMRA dynamic action example: XML file - Script section

The script section of the XML-file specifies the Powershell script. The specification includes the
dependencies of the script and the UMRA action properties.

 <Script>
 <ScriptPhrase>
 <ActionProperty>
 <Name>ServiceName</Name>
 <Replacement>%ServiceName%</Replacement>
 </ActionProperty>
 <Contents>
 Restart-Service %ServiceName%
 </Contents>
 </ScriptPhrase>
 </Script>

The script is made up from a number of ScriptPhrases, each with its own specification. Each script
phrase results in a part of the final Powershell script that is sent to the Powershell Agent Service. The
contents of single script phrase strongly can depend on the content of UMRA property values. The script
of the example only contains a single script phrase. This script phrase depends on a single property:
ServiceName. This name refers to the UMRA action property specified in the ActionProperties section.
The ActionProperty specifies a replacement-type script phrase: At runtime, the actual value of UMRA
action property ServiceName replaces the occurence of %ServiceName% in the script phase contents
specification.

UMRA Help

Copyright © Tools4ever 1998 - 2012 70

The contents of the script phrase is

 Restart-Service %ServiceName%

So at runtime, the actual value of property ServiceName replaces the word %ServiceName%. In case
the value of the property equals Spooler, the final Powershell script equals:

 Restart-Service Spooler

This script restarts the spooler service of the local computer.

UMRA dynamic action example: Import the dynamic action

To import the action in UMRA, create the XML file and store the file to the UMRA program subdirectory
DynamicActions. By default, this is directory:

 C:\Program Files\Tools4ever\User Management Resource Administrator\DynamicActions

Note that the file must have a unique name and that the name of the action, as specified in the general
section must be unique. The name of the action identifies the action in UMRA.

Start the UMRA Console application and select option Tools, Import dynamic action. This brings up a
dialog showing the UMRA dynamic action files that are not already imported into to UMRA dynamic
action library.

Figure: Import dynamic action(s)

When you select the file and click OK, the file is imported into the UMRA library with dynamic actions.
The log reflects the status of the import procedure. (When the UMRA Console is started, and the file is

UMRA Help

Copyright © Tools4ever 1998 - 2012 71

already located in the directory, it is imported automatically.) When the action is imported, it is added
to the tree with action items as shown in the following figure.

[screenshot]

The new action can now be used in UMRA projects.

If there are no new dynamic actions available in the DynamicActions folder the following message will
appear:

Figure: All dynamic actions are already available in the UMRA action tree

UMRA dynamic action example: Using the dynamic action

In this example, the new UMRA dynamic action is used in a simple form project. To do so, connect to the
UMRA Service and start and setup a new form project. The form only needs a single button that initiates
the execution of the project script. Don't forget to setup the project security. Note that when the
connection with the UMRA Service is setup, the UMRA dynamic action libraries maintained by the
UMRA Console and UMRA Service application are synchronized. Add the new action to the script of the
project.

[screenshot of project]

In this example, the action Restart a service, only has a single property: Service name. You can specify
any valid service name for the value property. To restart the Print Spooler service, specify Spooler.

[screenshot with properties]

Before you run the project, confirm that the UMRA Service is connected to the Powershell Agent Service (see
"Powershell Agent connection settings" on page 5). If this is not the case, project execution will fail. Now
run the script in the UMRA Console preview window. The UMRA Service will execute the action. To
execute a Powershell action, UMRA performs the following steps:

1. Create the Powershell script as determined by the action specification and UMRA property values;

2. Send the Powershell script to the Powershell Agent Service;

3. Process any returned results.

The procedure results in the following log:

UMRA Help

Copyright © Tools4ever 1998 - 2012 72

Starting User Management Resource Administrator log session, build
1419 at 08:26:16 01/23/2008
08:26:16 01/23/2008 Submit form to UMRA service on computer 'ZEUS'.
08:26:16 01/23/2008 Executing form submit procedure, UMRA build 1419,
account: 'TOOLS4EVER162\J. Vriens', form project: 'Form' ('31-
72861d28-e496-4492-8a18-d15faf6d29ea').
08:26:16 01/23/2008 Variable 1:
%UmraFormSubmitAccount%=TOOLS4EVER162\J. Vriens
08:26:16 01/23/2008 Variable 2: %UmraClientComputerName%=ZEUS
08:26:16 01/23/2008 Variable 3: %NowDay%=23
08:26:16 01/23/2008 Variable 4: %NowMonth%=01
08:26:16 01/23/2008 Variable 5: %NowYear%=2008
08:26:16 01/23/2008 Variable 6: %NowHour%=08
08:26:16 01/23/2008 Variable 7: %NowMinute%=26
08:26:16 01/23/2008 Variable 8: %NowSecond%=16
08:26:16 01/23/2008 Execution UMRA Powershell action 'Restart a
service', version '101' ...
08:26:16 01/23/2008 Line 01: Restart-Service "Spooler"
08:26:19 01/23/2008 T4ePowerShell session 1002: Successfully created
Windows PowerShell execution environment.
08:26:19 01/23/2008 T4ePowerShell session 1002: Setting up and
executing PowerShell pipeline commands...
08:26:21 01/23/2008 T4ePowerShell session 1002: W9: Waiting for
service 'Print Spooler (Spooler)' to finish starting...
08:26:22 01/23/2008 T4ePowerShell session 1002: Pipeline invocation
result object 0
08:26:22 01/23/2008 T4ePowerShell session 1002: Finished setting up
and executing PowerShell pipeline commands.
08:26:22 01/23/2008 Form message:
'01/23/2008,08:26:16,"TOOLS4EVER162\J. Vriens","Form submit",OK,Form'
End of session

The log includes the Powershell script (Restart-Service "Spooler") and all logging information produced
by the Powershell Agent service (all lines starting with T4ePowerShell session...).

3.13.8. Manage Active Directory with the UMRA Powershell Agent service

A number of UMRA dynamic actions require the Exchange 2007 Management Tools to be installed,
although these actions do not manage Exchange 2007 related resources. For these actions, it is not

UMRA Help

Copyright © Tools4ever 1998 - 2012 73

necessary to have Exchange 2007 Server installed on any server, but the Exchange 2007 Management
Tools need to be installed on the computer that runs the UMRA Powershell Agent service. Examples of
these UMRA actions are: Get AD permissions (action folder: Powershell, Active Directory permissions)
and Get (nested) group memberships (action folder: Powershell, Group management). These actions
are implemented using cmdlets that are part of the Exchange 2007 snap-in
Microsoft.Exchange.Management.PowerShell.Admin. Therefore, the Exchange Management Tools need
to be installed on the computer that runs the UMRA Powershell Agent service in order to use these
actions. Note that not all cmdlets of this snap-in can be used if Exchange 2007 server is not installed. For
instance, the cmdlets to create a mail-enable user account requires Exchange 2007 Server to be
installed.

The described UMRA dynamic actions have the following characteristics:

1. The actions use cmdlets that are part of the Exchange 2007 Powershell snap-in that comes with the
Exchange 2007 Management Tools;

2. The cmdlets do not require Exchange 2007 Server to be installed in the network. Instead, the
cmdlets can be used to manage Active Directory resources;

3. To execute the Powershell scripts that use these cmdlets, the Exchange 2007 Management Tools
need to be installed on the computer that runs the UMRA Powershell Agent service.

The Exchange 2007 Management Tools are available for 32-bit and 64-bit platforms. When Exchange
2007 Server is installed (64-bit platform only), the tools are installed automatically. To install the tools
on a 32-bit platform, see Setting up the Exchange 2007 Management Tools on a 32-bit platform for more
information. To install the tools on a 64-bit platform without installing Exchange 2007 Server, a similar
procedure must be used.

3.13.9. Managing Exchange 2003 with the UMRA Powershell Agent service

With the UMRA Powershell Agent service, it is possible to manage a number of Exchange 2003 mailbox
settings, including Exchange 2003 mailbox permissions. Special configuration settings apply to support
this type of functionality.

Environment

This section describes the principle of the required environment to support the functions to manage
Exchange 2003 with UMRA and the Powershell Agent service. The environment runs Active Directory on
Windows 2003, and one or more Exchange 2003 servers. Note that there is no server running Exchange
2007. The following systems are part of the environment:

1. Domain controller: There must be at least a one domain controller to run Active Directory. The
domain controller must run Windows 2003 in native mode.

UMRA Help

Copyright © Tools4ever 1998 - 2012 74

2. Exchange 2003: One or more servers run Exchange 2003 Server.

3. UMRA: The UMRA software (Console and Service) can be installed on any computer, except for the
Powershell Agent service.

4. UMRA Powershell Agent service: The Powershell Agent service is installed by using the UMRA
Console application. The service cannot be installed on a computer that runs Exchange 2003 server
but it can be installed on any other server that is part of the domain. On this computer, the
Exchange 2007 Management Tools must be installed. For a procedure to install the tools on a 32-
bit platform, see Setting up the Exchange 2007 Management Tools on a 32-bit platform.

Not all cmdlets can be used to manage Exchange 2003 mailboxes. Valid cmdlets are: Get-Mailbox, Get-
User, Add-MailboxPermission, Add-AdPermission, Set-Group. As a general rule, the cmdlets that access
Active Directory instead of the the Exchange 2007 server can be used to manage Exchange 2003
mailboxes.

3.13.10. Setting up the Exchange 2007 Management Tools on a 32-bit platform
How to setup the Exchange 2007 Management Tools on a 32-bit platform

The Exchange 2007 Management Tools are available both for 32-bit and 64-bit platforms. Exchange

2007 Server is available only for 64-bit platforms, but the Exchange 2007 Management Tools run on
both 32-bit and 64-bit platforms. This topic describes how to setup the 32-bit Exchange 2007

Management Tools on a 32-bit Windows 2003, Service Pack 2 platform. Note that the Exchange 2007

Management Tools can also be installed on Windows XP. For this platform, the procedure is similar.

1. Log on to the computer with domain administrative access. Make sure the domain administrator is
an administrator of the local computer as well.

UMRA Help

Copyright © Tools4ever 1998 - 2012 75

2. If not installed, configure the Microsoft Internet Information Services Common Files using Control

Panel, Add or Remove Programs. Select item Application Server, click details, select Internet

Information Services (IIS), click details and check item Common Files. (If the item is already
checked, the Common Files are already installed.) Click OK and Next a number of times to confirm
the selection and start the installation.

Figure: IIS common files.

3. Verify the domain functional level. The level must be Windows 2000 native mode or above. To
raise the level, run Active Directory Users and Computer on a domain controller, right click the
domain and select option Raise Domain Functional Level.

4. Exchange 2003 only: Verify the operation mode of the Exchange Organization. In the Exchange
System Manager, right click on the organization and select menu option Properties. Check the
contents of the Operation Mode field.

5. Install the pre-requirements component: Microsoft .NET Framework Version 2.0. To download, visit
link http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-
aab15c5e04f5&displaylang=en

6. Install the pre-requirements component: Microsoft .NET Framework Version 2.0 hotfix. To
download, visit link
http://www.microsoft.com/technet/prodtechnol/exchange/Analyzer/729d1648-ff17-43f9-a1cf-
4285a82d4917.mspx?mfr=true

7. Install the pre-requirements component: Microsoft Management Console (MMC) 3.0. To download,
visit link http://www.microsoft.com/downloads/details.aspx?familyid=4C84F80B-908D-4B5D-
8AA8-27B962566D9F&displaylang=en

8. Install the pre-requirements component: Windows PowerShell. To download, visit link
http://www.microsoft.com/downloads/details.aspx?familyid=10EE29AF-7C3A-4057-8367-
C9C1DAB6E2BF&displaylang=en

9. Download the 32-bit Microsoft Exchange 2007 installation files from:
http://www.microsoft.com/downloads/details.aspx?FamilyId=444C259E-605F-4A82-96D5-
A2F448C9D4FF&displaylang=en

10. Extract the files and start the setup.

UMRA Help

Copyright © Tools4ever 1998 - 2012 76

11. Selection option Install Microsoft Exchange.

Figure: Exchange Server 2007 Init

12. Proceed with the wizard and when asked, selection the option Custom Exchange Server

Installation.

Figure: Exchange Server 2007 Installation type

UMRA Help

Copyright © Tools4ever 1998 - 2012 77

13. To install only the Management Tools, select the appropriate option.

Figure: Exchange Server 2007 server role selection.

14. First, some tests are performed. When ready, select option Install.

Figure: Exchange Server 2007 readiness checks

UMRA Help

Copyright © Tools4ever 1998 - 2012 78

15. The Exchange 2007 Management Tools are now installed.

Figure: Exchange Server 2007 completion

16. When read, click Finish and exit the application. To test the installation, select program All

Programs, Microsoft Exchange Server 2007, Exchange Management Shell or Exchange

Management Console.

3.13.11. Powershell Agent service session

A Powershell script is always executed in a runspace. The runspace provides the communications
between the Windows PowerShell runtime and the Powershell Agent service host application. The
runspace also holds a list with Powershell variables. The Powershell Agent service is able to create and
terminate runspaces. When a runspace is terminated, all runspace variables are lost. Sometimes it is
convenient to run consecutive Powershell scripts using the same runspace. Specially when variables
created in one Powershell script are used by the next script.

Example: In a SOAP environment, the SOAP methods supported by a web-service can be made available
through a so call proxy object. The proxy object can be created using a Powershell script and stored in a
Powershell runspace variable. A Powershell script can then use the methods of the proxy to execute
SOAP calls. It is very inefficient to re-create the proxy each time a SOAP call is made. It is more efficient
is to create the proxy object once and use it in all subsequent scripts. In this case, all scripts must be

UMRA Help

Copyright © Tools4ever 1998 - 2012 79

executed in the same runspace. The first script creates the proxy object variable and consecutive scripts
running in the same runspace use the variable.

The Powershell Agent service can execute scripts in 2 ways:

1. Script execution without a session: For each script, a runspace is created. The script is executed in
the context of the runspace and finally the the runspace is deleted. This is the most simple
approach. Powershell variables only exist as long as the script is executed.

2. Script execution with a session: First, a session is created. The session contains the runspace and
an identifier (Session ID) that is used to refer to the session. Next, a number of Powershell scripts
can be executed using the the same runspace. Each script refers to the session to identify the
correct session. Finally, the session is released, thereby removing the Powershell runspace. In this
scenario, additional actions are used to setup and release the Powershell session.

With UMRA, dynamic actions are used to execute Powershell scripts. The configuration section of the
dynamic action specifies if an existing Powershell Agent service session must be used. In this case, the
dynamic action has a property Session ID that refers to the session.

The following section describes the principle of operation of both methods:

Script execution without a session:

1. The dynamic action specified that no session is used. This is the default specification.

2. When the action is executed, the Powershell Agent service creates a runspace that exists for the
duration of the script. When the script is completed, the runspace is destroyed, including all
Powershell variables that are created and used during script execution.

Script execution with a session:

1. A Powershell Agent service session is created with UMRA action Setup Powershell Agent service

session (action folder: Powershell, Agent service session). The action returns a reference value,
Session ID, to be used in subsequent dynamic actions that use the session.

2. A Powershell script that uses the session is executed. The configuration section of the dynamic
action specifies that a session is used:

 ...
 <Configuration>
 <Session required="Yes"/>
 </Configuration>
 ...

The action contains an mandatory property, Session ID, that refers to the session:

 ...

UMRA Help

Copyright © Tools4ever 1998 - 2012 80

 <ActionProperty>
 <DisplayName>Session ID</DisplayName>
 <Name>SessionID</Name>
 <Description>This parameter identifies the Powershell Agent
service session.</Description>
 <ValueType>Numeric</ValueType>
 <DefaultValue
type="text">%PowershellAgentSessionId%</DefaultValue>
 <Direction>in</Direction>
 <Mandatory>Yes</Mandatory>
 </ActionProperty>
 ...
In UMRA, the session ID is stored in variable %PowershellAgentSessionId%.

3. Step 2 is repeated a number of times, all actions using the existing Powershell Agent service
session. (This is not mandatory: another Powershell action can be executed that uses its own
session).

4. The Powershell Agent service session is released with UMRA action Release Powershell Agent

service session (action folder: Powershell, Agent service session). The input of the action is the

Session ID that refers to the existing session. When the Powershell Agent service session is idle for
a long period, the session is released automatically. The default maximum idle interval time is 4
hours (240 minutes). To configure this time, see Registry settings, key SessionTimeToLive, for more
information.

For more information on the Powershell Agent service session, see the following topics:

Powershell Agent service session on page 78

Script Action: Setup Powershell Agent service session

Script Action: Release Powershell Agent service session on page 606

Configuration section on page 27

3.13.12. UMRA Sessions

UMRA Sessions are used to store variables, even when projects are
finished. Further, the session is used to identify the UMRA client. In
UMRA, a project maintains a variable list. The main parent project can
access and execute other child projects, passing the variable list. Child
projects are initiated with UMRA actions like the For-Each and Execute

script action. When the parent project terminates, the variable list is
destroyed.

In certain circumstances it is efficient to share variables between distinct
UMRA (parent) project executions, e.g. to store one or more variables,
even when a parent project is completed. This is for instance true in the
following situation:

1. Projects are initiated from the UMRA Forms client or the UMRA
COM object (using ASP or ASPX);

2. The projects use the Powershell Agent service to execute
Powershell actions that use a Powershell Agent service session.

The necessity to store UMRA variables in this environment is described
below, using an example. In this example, a number of UMRA Forms are
used to manage an environment that is accessed using SOAP. The SOAP
proxy object is created and stored at the Powershell Agent service. Each
form initiates some SOAP oriented transaction. The SOAP call is made
using a SOAP proxy object that exposes the methods that are supported
by the web-service at the remote site. The SOAP object is maintained by
the Powershell Agent service and stored as a Powershell variable in a
Powershell Agent service session on page 78. So between the UMRA Service
and the Powershell Agent service, a session exists. This allows the UMRA
Service to execute Powershell scripts that use objects (e.g. the SOAP
proxy) that exist in the Powershell runspace, part of the session.

If now different forms are submitted, each form will initiate a new
UMRA project, that starts with a new variable list. In order to be able to
use an existing Powershell session, the variable that is used to refer to
the session should be stored beyond the UMRA project boundary. If this
is not the case, it is not possible to use an existing Powershell Agent
service session in different UMRA parent projects. To support this
mechanisme UMRA supports sessions. The UMRA session is maintained
at the UMRA Service (UMRA Console for mass projects). Depending on

C H A P T E R 1

 Chapter 1 UMRA User

the type of UMRA project execution, a session remains active even if a
parent project is terminated. A session contains a variable list, that can
store variables, for instance the session id of a Powershell Agent service
session.

UMRA project
execution

Session starts
when...

Session ends
when...

Session control

UMRA Forms The UMRA Forms
client starts. As
long as the
application runs,
the same session
remains active.
Different forms
share the same
session. If two
instances of the
UMRA Forms
application are
started on the
same computer,
two sessions exist.

The UMRA Forms
client terminates.

Transparent,
automatic.

UMRA COM
object
(ASP,ASPX)

The UMRA COM
object is created.

Programmatic
control.

Using COM
methods:
GetConnectionString,
RestoreConnection,
ReleaseConnection
on page 6

UMRA
Command line
interface

The UMRA
Command line
interface starts.

The UMRA
Command line
interface
terminates.

Transparent,
automatic

UMRA Mass The UMRA
Console
application starts.

The UMRA Console
application
terminates.

Transparent,
automatic

UMRA
Scheduled
automation
project

Just before the
parent project is
started.

The parent project
is completed.

Transparent,
automatic.

 Chapter 1 UMRA User

Each UMRA session contains a variable list. Only persistent variables can
be stored in the list (e.g. text, boolean, numerical and table values).
UMRA supports several actions to manage the variables in the session
variable list: Script Action: Get session variable on page 566, Script Action: Set

session variable, Script Action: Check session variable, Script Action: Delete

session variable.

Note: When a session maintained by the UMRA Service is not used for
more than 24 hours, the service will automatically release the session.

3.13.13. Configuring a secure web-site with IIS

The UMRA Powershell Agent service is often used to implement a
connector with a system that supports SOAP. In such a scenario, the
UMRA Console or UMRA Service application execute scripts that contain
dynamic actions that are executed by the UMRA Powershell Agent
service. The agent service communicates with a webservice, often
running on top of IIS. This topic describes how to setup the webservice
in a secure manner, and how to obtain and configure certificates in this
scenario. The image below shows the different systems. Note that in
practice, all software components can also run on one and the same
computer.

 Chapter 1 UMRA User

In this procedure example, it is assumed that the operating system of
the computer that hosts the webservice is Windows Server 2003. For
different operating systems, like Windows XP, Windows Vista, or
Windows Server 2008, a similar procedure applies.

Step 1: Obtain a certificate

To setup the secure environment, a valid certificate is required. From
this certificate, you need the private key and the certificate as well. You
can obtain such a certificate from a certification authority like VeriSign,
or ask Tools4ever for such a certificate. To generate the certificate, you
need to provide the certification authority with specific information:

 Chapter 1 UMRA User

1. Name: The DNS name of the computer that runs IIS. Example:
saturn.tools4ever.com. Note that this name must be correct, if not,
the communications that rely on the certificate will fail;

2. E-mail: The email adress of the person that should be contacted for
the certificate information. Example: jsmith@tools4ever.com

3. Company: The name of the organization requesting the certificate;
4. Department
5. City
6. State
7. Country/Region
When requesting the certificate from a well-known certification
authority like VeriSign, you will obtain only the certificate. When
obtained from Tools4ever, you will receive the certificate and the
Tools4everCA root certificate.

Step 2 - Windows Server 2003: Install the certificate in the IIS website

The certificate, including it's private key needs to be installed on the
website that hosts the webservice. This topic describes the procedure
for a computer running Windows Server 2003.

1. Logon to the computer that runs IIS with administrative access;

2. Start Internet Information Services Manager and select the
website;

3. Select properties and goto tab Directory Security;

 Chapter 1 UMRA User

4. Click on Server Certificate and proceed with the Web Server

Certificate Wizard.

5. When asked for the Server Certificate, select option Import a

certificate from a .pfx file. This is the format used by Tools4ever to
provide you with a certificate, including it's private key.

6. Specify the name of the certificate file and check option: Mark cert

as exportable.

7. Check the data shown for the certificate and click Next:

 Chapter 1 UMRA User

8. Finish the wizard. The IIS website can now use the configured
certificate.

9. To disable non-secure communications, click option Edit... in step
3, check option Require secure channel (SSL), click OK and
complete the open dialog windows.

 Chapter 1 UMRA User

10. The IIS web-site is now configured to run in a secure way only.

Step 2 - Windows XP: Install the certificate in the IIS website

The certificate, including it's private key needs to be installed on the
website that hosts the webservice. This topic describes the procedure
for a computer running Windows XP.

1. Logon to the computer that runs IIS with administrative access;

2. To install the certificate, it must be stored in the local computer
store of the machine. This requires the following steps: Select
menu option Start, Run and enter MMC. The Microsoft
Management Console is started;

3. Select menu option Start, Add/Remove Snap-in. Click Add in the
dialog shown;

 Chapter 1 UMRA User

4. Select snap-in Certificates. Click Add;

 Chapter 1 UMRA User

5. Select the option to manage certificates for Computer account;

This image cannot currently be displayed.

 Chapter 1 UMRA User

6. In the next dialog, select Local computer and press Finish;

7. In dialog Add Standalone Snap-In, click Close;

8. In dialog Add/Remove Snap-In, click OK;

9. To import the certificate, expand the tree on the left and right click
on Personal. Select menu option All tasks, Import...

 Chapter 1 UMRA User

10. The Certificate Import Wizard is started. Select the certificate file
and proceed with the wizard. Specify the option: Mark this key as
exportable...

 Chapter 1 UMRA User

11. When selecting the store, select option Automatically select the

certificate store based on the type of certificate.

12. Complete the wizard. When done, press F5 to update the tree
showing the certificate stores. The certificate should now be
shown:

 Chapter 1 UMRA User

13. Start Internet Information Services Manager and select Default

Web Site. Right click on Default Web Site and select menu option
Properties;

14. Select tab Directory Security and click on Server Certificate

 Chapter 1 UMRA User

15. The Web Server Certificate Wizard is shown. Proceed with the
wizard and select the option to Assign an existing certificate. The
list with available certificates should show the just installed
certificates:

 Chapter 1 UMRA User

16. Select the certificate and complete the wizard.

17. To disable non-secure communications, click option Edit... in step
14, check option Require secure channel (SSL), click OK and
complete the open dialog windows.

 Chapter 1 UMRA User

18. The IIS web-site is now configured to run in a secure way only.

Step 3: Install the Certification Authority root certificate on the UMRA
Powershell Agent service computer
This step is only required if the certificate is obtained from Tools4ever
and the Tools4ever root certificate Tools4everCA is not already installed
on the computer that runs the UMRA Powershell Agent service.

When the communication between the IIS Web-Service and the
Powershell Agent service is initialized, the Powershell Agent service
must trust the certificate offered by the web-service. This is the case if
the certification authority that generated the certificate is trusted.
Therefore, this root certificate must be installed.

1. Start Internet Explorer on the computer that runs the Powershell
Agent service;

 Chapter 1 UMRA User

2. Select menu option Tools, Internet Options... and select tab
Content;

3. Click button Certificates;

4. Click button Import. The Certificate Import Wizard is started;

5. With the wizard, import the Tools4everCA root certificate
(Tools4everRoot.cer);

6. When asked, select option Automatically select the certificate
store based on the type of certificate

7. Complete the wizard.

The computer will now trust all applications that communicate using
certificates generated by the certification authority of the just installed
certificate

 Chapter 1 UMRA User

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or
transmitted in any form or by any means without the written permission
of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or
consequences resulting from your actions or usage of the informational
material contained in this user guide. Responsibility for the use of any
and all information contained in this user guide is strictly and solely the
responsibility of that of the user.

All trademarks used are properties of their respective owners.

 Chapter 1 UMRA User

3.14. UMRA Google Module
To support Google Apps, the UMRA Google module consists of a number
of dedicated UMRA Google actions and a It is possible to fulfill all
required Google tasks with the greatest performance Google allows.
Also UMRA will minimize the network traffic between UMRA and
Google.

3.14.1. Google - Requirements

To support Google Apps with UMRA, the following requirements apply:

1. To run UMRA projects that use UMRA Google actions, an UMRA
license is required.

2. The following Google Apps accounts are supported: Google Apps
Premier, Google Apps Educational

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or
transmitted in any form or by any means without the written permission
of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or
consequences resulting from your actions or usage of the informational
material contained in this user guide. Responsibility for the use of any
and all information contained in this user guide is strictly and solely the
responsibility of that of the user.

All trademarks used are properties of their respective owners.

 Chapter 1 UMRA User

3. The provisioning API must be enabled in the Google account.

Note: In a previous version, Google support was provided by using the
UMRA Powershell Agent service. This is no longer required.

3.14.2. Google - Action: Google Setup Connection
Google Session ID

Over 30 UMRA Google actions are available to access Google Apps. All of
these actions use property Google Session ID. This property identifies
the connection to a specific Google Apps domain and is generated with
UMRA Google action Google Setup connection. By default, the Google

Setup connection action stores the Google Session ID in output variable
%GoogleSessionId%, which is the default value of property Google

Session ID for all other UMRA Google actions.

Accessing multiple Google domains

When multiple google domains are accessed by UMRA, multiple Google

Session ID's are used. There is no need to store the Google Session ID's
in a (session) variable list. Each time a Google Session ID is required, the
action Google Setup connection should be used instead. This action
requires no performance from Google Apps domain or network

resources when called multiple times. Internally, UMRA will keep track
of the actual connections to Google Apps domains. When Google Setup

connection is called, UMRA will re-use existing connections.

Closing Connections

For every time the Google Setup connection is executed, the Google

Close connection action must be executed, even if the Google Setup

connection generated an error.

Cache

 Chapter 1 UMRA User

When one of the 2 caches is enabled in the Google Setup connection the
cache is filled and loaded into memory. The cache is shared between all
the connections to the same domain, even if those are different scripts.
All those scripts will now read and write to and from the cache.

As soon as the Google Close connection action is called with the Google

Session ID of the Google Setup connection which enabled a cache. The
changes in that cache will calculated and written to google. If no other
script is using the cache, it will be removed from memory. If another
script is still using the cache, the cache will continue to be used.

Provisioning Cache

When enabled the Google Setup connection action will load all the user
and group accounts into the cache. All user/group actions will now use
the cache. The action Google Change password will always written
directly to Google, even if there is a cache in place. If the user is still only
in the cache and not yet created in Google, the password is only written
to the cache.

When the script is only for writing a single change (as with UMRA forms)
it can be delaying to enable and load the cache and it should not be
enabled for that script.

Also when only contact actions are used in the script, the cache should
be disabled.

For password synchronization scripts the cache should be disabled.

Contacts Cache

When enabled the Google Setup connection action will load all the
contacts into the cache. When the script will not use contacts actions,
the cache should not be enabled, else it should, even for UMRA form
projects.

 Chapter 1 UMRA User

3.14.3. Google - Connections

Not every Google setup connection results in an actual connection to
Google. All the google requests (if they come from the cache or are
directed by an Google action) are stored in a queue. The Google engine
will execute them in order. If the queue fills up, UMRA will start to
execute them in a separate task. While this task is busy, UMRA will
execute the next request again in separate task and will look if there are
more requests. Up to 10 task can run simultaneously. Every task
represents an actual connection to the Google domain. When the
number of simultaneous connections to Google is limited in the registry,
this also limits the maximum number of task.

3.14.4. Google - Registry settings

For analysis and debugging purposes, UMRA supports specific registry
settings that affect the operations of Google related functionality. By
default, these settings should not be specified. In this case, the default
settings automatically apply. In specific circumstances, one can changes
these settings to manage the Google operations at a more detailed level.
Once changed, the UMRA software, either the UMRA Console or UMRA
Service application, must be restarted in order for these registry settings
to take effect.

Registry key

For the UMRA software, the following registry key must be used:

UMRA Service, 32-bit OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Tools4ever\UmraSvc\Config

 Chapter 1 UMRA User

UMRA Service, 64-bit OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Tools4ever\UmraS
vc\Config

UMRA Console, 32-bit OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Tools4ever\UmraConsole\Config

UMRA Console, 64-bit OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Tools4ever\UmraC
onsole\Config

Registry values

Name Type Default
value

Description

 Chapter 1 UMRA User

GoogleFileLoggingMode REG_DWORD 0 Specification of
the logging
mode used by
the UMRA
Google engine.

0: Default
setting, only
errors and main
progress
information is
logged

1: Each internal
UMRA Google
connection will
use it's own set
of cyclic log files.
The log
information
includes detailed
progress
information and
error
information.

GoogleFileLoggingCycleCount REG_DWORD 2 The number of
log files of a
single set of
cyclic log files.

GoogleFileLoggingCycleSizeMb REG_DWORD 5 The size in MB of
a single file of
the set of cyclic
log files.

 Chapter 1 UMRA User

GoogleMaxTotalConnections REG_DWORD 10 Specification of
the maximum
number of
simultaneous
connections to
Google.

 Chapter 1 UMRA User

3.15. UMRA SAP module
To support SAP, the UMRA SAP module consists of a number of
dedicated UMRA SAP actions and a mechanism to control the
connections going to SAP systems. It is possible to fulfill all required SAP
tasks and to tune the performance of the connections between UMRA
and the SAP host systems.

3.15.1. SAP - Requirements

To support SAP with UMRA, the following requirements apply:

1. To run UMRA projects that use UMRA SAP actions, a separate
UMRA license is required. The license enables the UMRA SAP
actions.

2. The following SAP systems are supported: SAP NetWeaver 6.20,

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or
transmitted in any form or by any means without the written permission
of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or
consequences resulting from your actions or usage of the informational
material contained in this user guide. Responsibility for the use of any
and all information contained in this user guide is strictly and solely the
responsibility of that of the user.

All trademarks used are properties of their respective owners.

 Chapter 1 UMRA User

7.00, 7.10; SAP - R/3 Enterprise (4.7), mySAP 2004 (ECC 5.0);

Note: In a previous version, SAP support was provided by using the
UMRA Powershell Agent service. This is no longer required.

3.15.2. SAP - Action: SAP Setup connection
SAP Session ID

Over 30 UMRA SAP actions are available to access SAP systems. All of
these actions use property SAP Session ID. This property identifies the
connection to a specific SAP host system and is generated with UMRA
SAP action SAP Setup connection. By default, the SAP Setup connection
action stores the SAP Session ID in output variable %SapSessionId%,
which is the default value of property SAP Session ID for all other UMRA
SAP actions.

Accessing multiple SAP hosts

When multiple SAP host systems are accessed by UMRA, multiple SAP

Session ID's are used. There is no need to store the SAP Session ID's in
a (session) variable list. Each time a SAP Session ID is required, the
action SAP Setup connection should be used instead. This action
requires no performance from SAP systems or network resources when

called multiple times. Internally, UMRA will keep track of the actual
connections to SAP host systems. When SAP Setup connection is called,
UMRA will re-use existing connections.

3.15.3. SAP - Connections

To prevent errors and performance problems, the number of
connections to SAP host systems should be managed carefully.
Depending on the exact configuration, hardware in the system, activity
of SAP and other processes, a maximum number of connections to a SAP
host system applies. As a general rule, one can say that in a safe scenario
no more than 5 UMRA connections should be used to access the same
SAP host at the same time and no more than 30 UMRA connections
should access all SAP hosts at the same time together.

 Chapter 1 UMRA User

If only one UMRA project is active, only a single SAP host system is
accessed at the same time. But because the UMRA software can run
multiple projects at the same time and SAP connections should be re-
used to improve performance, multiple projects can access multiple SAP
host systems in practice. In order not to exceed the connection
limitations, UMRA contains a sophisticated queuing mechanism that will
delay all UMRA projects when these limits are to be exceeded. So even if
100 UMRA projects accessing SAP hosts are started at the same time,
the connection limitations are not violated. In this case, the execution
time of the UMRA projects will increase since projects are delayed.

The connection limits are maintained by the UMRA Service and UMRA
Console application and can be changed from their default values. Select
menu options UMRA Service, Service properties, SAP for the UMRA
Service and Tools, Options, SAP for the UMRA Console application to
specify these limits.

3.15.4. SAP - UMRA SAP child process

With UMRA, the SAP host systems are accessed using a separate
process, the UMRA SAP child process. When running, these processes
show up in the task manager. The processes have the name
UMsapCmd.exe and multiple of these process can exist at the same
time. Note that these processes are completely managed by the UMRA
software and are required to access SAP systems.

3.15.5. SAP - SAP Generic function module

A special UMRA action is available to support SAP RFC / BAPI function
modules that are not available through the other UMRA SAP actions.
With this action, any SAP function module can be implemented with
UMRA. To support the SAP function module, the function module name
and all import and export parameters must be specified. All this
information is available from the BAPI Explorer that can be accessed for
instance with the SAP NetWeaver client.

UMRA action
In UMRA, the action is available from the action tree: SAP, General, SAP

Generic function module. For this action, the following fields must be
specified:

 Chapter 1 UMRA User

SAP Session ID variable
A variable that identifies the session that connects UMRA with SAP. The
variable is the result of action SAP Setup connection.

Function module
The name of the SAP function module. Example
BAPI_USER_EXISTENCE_CHECK

Input parameters
Specify all input parameters for the function module. For each input
parameter, specify the parameter name as used in SAP and the type and
value. All parameter values can be specified using UMRA variables but
the Text and Numeric parameter values can also be specified directly.
The input types Date, Structure and Table must be specified using an
UMRA variable. The Date value must be specified using an UMRA date-
time variable. The Structure type value must be specified using an
UMRA table variable holding a table with a single row. The table column
names must correspond with the structure fields. Only the fields with
input values need to be specified as table columns. Other fields can be
omitted. The Table type value must be specified with an UMRA table. In
SAP, a table is an array of equal typed structures. The UMRA table
columns must correspond with the SAP structure fields. Only the fields
with input values need to be specified.

Output parameters
Specify all required output parameters using output variable names. For
each output parameter, specify the correct type: Text, Numeric, Date,

Structure or Table. For Structure and Table output parameters, UMRA
will generate an UMRA table. The UMRA table for the SAP structure type
will hold only a single row. The structure field names correspond with
the UMRA table column. In case not all structure fields or table columns
need to be exported from SAP, an existing empty UMRA table variable
can be specified. The UMRA table should contain one or more specified
columns but no rows. In this case, only the fields or columns for which
an corresponding UMRA table column exists are exported from SAP.

Error handling - Check RETURN structure or table for errors. When
found, raise an UMRA action error event.
Many SAP function modules use the RETURN structure or table to export
results. The RETURN structure or table can contain error information in
case something goes wrong. In such scenarios, the execution of the SAP
function module is successful, but nevertheless, an error has occurred. If

 Chapter 1 UMRA User

you want UMRA to recognize such an error as if the UMRA action failed,
check this option. When the option is checked, UMRA will analyze the
RESULT parameter and raise an error event when the RETURN
parameter contains an error. In this case, it is required that the RETURN
parameter is specified as one of the output parameters.

3.15.6. SAP - Example projects

UMRA contains a number of example projects that show how to use the
UMRA SAP actions that can be used in UMRA projects. The example
projects can be found in the following location:

 [UMRA Console program dir]\Example Projects\SAP

By default, the location path is:

 C:\Program Files\Tools4ever\User Management Resource
Administrator\Example Projects\SAP

3.15.7. SAP - Registry settings

For analysis and debugging purposes, UMRA supports specific registry
settings that affect the operations of SAP related functionality. By
default, these settings should not be specified. In this case, the default
settings automatically apply. In specific circumstances, one can changes
these settings to manage the SAP operations at a more detailed level.
Once changed, the UMRA software, either the UMRA Console or UMRA
Service application, must be restarted in order for these registry settings
to take effect.

Registry key

For the UMRA software, the following registry key must be used:

 Chapter 1 UMRA User

UMRA Service, 32-bit OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Tools4ever\UmraSvc\Config

UMRA Service, 64-bit OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Tools4ever\UmraS
vc\Config

UMRA Console, 32-bit OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Tools4ever\UmraConsole\Config

UMRA Console, 64-bit OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Tools4ever\UmraC
onsole\Config

Registry values

Name Type Default
value

Description

 Chapter 1 UMRA User

SapFileLoggingMode REG_DWORD 0 Specification of the
logging mode used by
the UMRA SAP child
process.

0: Default setting,
only errors and main
progress information
is logged

1: Each UMRA SAP
child process will use
it's own set of cyclic
log files. The contents
of this file is also
returned to UMRA
and shown in the
UMRA log file. The
log information
includes detailed
progress information
and error
information.

SapFileLoggingCycleCount REG_DWORD 2 The number of log
files of a single set of
cyclic log files.

SapFileLoggingCycleSize REG_DWORD 1 The size in MB of a
single file of the set
of cyclic log files.

 Chapter 1 UMRA User

SapProcessMode REG_DWORD 0 Specification of the
SAP process mode.

0: Normal setting

1: No SAP access: No
SAP systems are
accessed. This setting
should be used for
debugging purposes
only.

SapJobDelayMin REG_DWORD 0 Specification of the
minimum SAP
process delay in
seconds. Each time
when UMRA
activates the UMRA
SAP child process, the
child process will wait
for at least the
specified number of
seconds.

SapJobDelayVar REG_DWORD 0 Specification of the
maximum variation
of the SAP process
delay in seconds.
Each time when
UMRA activates the
UMRA SAP child
process, a random
value between 0 and
the specified number
is generated. The
effective delay equals
the value of
SapJobDelayMin and
the generated value.

 Chapter 1 UMRA User

3.16. AFAS Online
By default AFAS will not return data to UMRA. To enable this, certain
GetConnectors must be imported into the AFAS GetConnector console.
These can be found in the User Management Resource

Administrator\Dynamic Actions folder and have a .gcn file extension. It
is recommended to have the AFAS system administrator import these
files into their AFAS environment.

3.17. Setup connection

To make a connection to AFAS Online a user must be available in the
AFAS Authorization tool and the connector option must be enabled. The
following variables must be entered

 AFAS Username – The username of the user created in the
authorization tool

 AFAS Password – the password of the user created in the
authorization tool

 AFAS Environment – The name of the customers AFAS
environment. Which by default has the following layout
“OXXXXXAA” where X is a numeric value.

3.18. AFAS get employees
is action returns all employees divided in two different tables. One for
active and one for inactieve employees. The difference of active and
inactive employees is determined by their employment end date (if
entered).

By default this action only returns the active employees of that moment.
This can be changed by entering a date/time variable in the active
reference date. This will return all current active employees and all
employees that will enter service between the current date and the
reference date.

 Chapter 1 UMRA User

3.19. AFAS get employees contract
This action returns an table with active contracts of all employees. There
following variables can be entered/modified to change the outcome.

 Active reference date – Return all active contracts of the given
date/time variable.

 Active only – By default this is yes, by changing this variable to no
all contracts are returned. Including past or future contracts.

3.20. AFAS Get organigram
This action returns a table with the organization organogram. Not all
profit users will have the organogram entered in AFAS Online. So this is
only relevant for customers who use this data to determine managers
for example.

3.21. AFAS Export Date
This action allows you to receive data by a custom created
“getConnector”. The following variables can be entered/modified to
change the outcome.

 Chapter 1 UMRA User

 Connector name – The name of the AFAS getConnector. For
example “umra_get_employees”.

 Filter XML – The Filter XML can be determined by starting the
GetConnector item in the Profit interface and enter the filter
details. Click the Filter XML button to view the generated filter
XML. Copy the xml code into this field.

 Include meta data – This option will return the meta data as
specified in profit.

 Export as XML – Choose to export data as comma seperated file or
as XML. Default is “No”;

 Output options – Choose how data is formatted and separated;
 File name – A variable where the data must be stored. The filename

is optional. If not specified the action will determine an unique
filename in the temporary directory of the Powershell Agent
Service account and create the file. The output variable will be
filled with this filename. Alternatively a a location path such as
“c:\program files\umraservice\afasdata.csv” can be entered;

3.22. AFAS Update employee
This action allows UMRA to write data back to AFAS Online. One of the
following input fields are mandatory.

 Employee ID – The employee of the user that must be modified;
 BSN – The social security id of the user that must modified;
 Employee Code – The employeecode of the user that must

modified (can me different from the employeeID).
 UMRA can update the following fields

 Work phone
 Private phone

 Work mobile
 Private mobile
 Work e-mail

 Private e-mail

If fields are left empty they will not be overwritten.

 Chapter 1 UMRA User

3.23. Password Synchonization Manager

 Chapter 1 UMRA User

3.23.1. Goal

The UMRA Password Synchronization Manager (PSM) is a piece of
software that detects password changes of Windows Active Directory
domain accounts. In conjunction with an UMRA service, it allows for the
propagation of new or modified passwords to other domains or systems.

3.23.2. Installing UMRA PSM for the first time

This section will provide a step by step description of installing and
configuring the PSM software for first use in your network.

Prerequisites

1. In order to start with UMRA PSM, there must exist an operational
UMRA console on your local computer, with a live connection to
the UMRA service in your network.

Copyright © 1998 - 2011, Tools4ever B.V.

All rights reserved.

No part of the contents of this user guide may be reproduced or
transmitted in any form or by any means without the written permission
of Tools4ever.

DISCLAIMER - Tools4ever will not be held responsible for the outcome or
consequences resulting from your actions or usage of the informational
material contained in this user guide. Responsibility for the use of any
and all information contained in this user guide is strictly and solely the
responsibility of that of the user.

All trademarks used are properties of their respective owners.

 Chapter 1 UMRA User

2. You must be logged in at the UMRA console with an account with
full administrative rights to the domains for which you want to use
UMRA PSM.

3. The UMRA Service must have the correct license installed that
allows the use of the PSM module.

Overview

The UMRA PSM software consists of three distinct parts:

1. A Notification package that is installed on each domain controller
on the domain. This package is notified automatically by Windows
on each password modification against the domain controller. The
package contacts a UMRA service to report all changes.

2. An extension to the UMRA service, which listens to the Notification
events, and will execute a specified UMRA project in response, that
may synchronize the passwords to other systems, or perform
various other network related actions.

3. A general management module in the UMRA Console that is used
to install, configure and monitor the PSM software.

Installation is performed in two main steps.

1. Installation of the Notification package on each domain controller
in the domain.

2. Configuration of the UMRA service to act on Password change
notifications.

Installation of the Notification Package

In order to install the Notification package on each domain controller,
perform the following steps:

1. Log in at your pc with an account with domain administrative
rights.

2. Start the UMRA console.

 Chapter 1 UMRA User

3. Verify that the console is connected to the UMRA service.

4. Choose the menu command Tools, Password Synchronization
Manager, Installation - Upgrade.
The following window will show:

In order to guarantee that all password changes in a domain are
caught, the PSM package must be installed on each domain
controller. Choose the first option, and select Next.

5. In the following screen, you are prompted for the domain name.
Enter the full DNS domain name of the domain, and press Next.

6. The network will be searched for all domain controllers, and the
following screen will be shown.

 Chapter 1 UMRA User

Next select Install/Upgrade to actually install the PSM package on
the domain controllers.

7. The results of the installation are shown; optionally you can look in
the UMRA console log for details.

Select close to go to the main PSM overview window.

8.

Select close to exit the setup.

9. Reboot all domain controllers in the domain.

10. After the reboot, go to Tools, Password Synchronization Manager,

Installation - Upgrade to view the current status.

 Chapter 1 UMRA User

If not all servers have entirely completed reboot, some servers may
show as unavailable or report access denied. Wait until they are
operational again, and select the refresh button do update the
status in the overview.

11. When all domain controllers are listed as running, the PSM package
is operational.

Note, that the status "running" means that the package is installed
correctly, and loaded successfully by Windows, and is configured to
contact the UMRA service when a password set or change event
occurs. It does not imply success or failure of any particular
notification. By default, the package will log its operations in the file
UmraPsm.log, located in the system32 directory of the domain
controller.

12. The installation of the package is now complete, select close to exit.
Next step is to configure the UMRA service to act on received
notifications.

Configuration of the Umra Service

The UMRA service will execute a specific project for each password
change notification it receives from the PSM package.

1. Create a new empty project that must be executed. The required
project is a standard automation project, it can be created by
means of File,New, Automation Project.

2. Select Tools, Password Synchronization Manager, Configuration
and specify the just created project as the project that must be
executed.

 Chapter 1 UMRA User

The specified project will be executed on a notification from the
PSM package.
If the enable flag is switched off, the service only will acknowledge
in the log (when the appropriate loglevel is enabled), that a PSM
notification has been received by the service, but no project will be
executed.

3. Within this project you must specify the script actions to execute as
in any other project. The domain name, account name and new
password value received from the PSM package are available in
script variables at the start of the script. They can be used in the
script actions, for instance to update the password in other
systems.

A full overview of those script variables that have a value at the
start of the script is listed in UMRA PSM Script variables on page 127.
The project log file is located in the log directory of the UMRA
service, and called UmraPsm1.txt.

Warning: Take care with actions that create accounts or update
passwords in one of the domains for which PSM is active, as such
actions may themselves cause a new password change event
notification. Always use a one way synchronization (system A to
system B), and make sure that there is no synchronization active in
the other direction (system B to system A).

3.23.3. Miscellaneous UMRA PSM topics

Managing UMRA PSM

1. To view and manage the installation of the UMRA PSM Notification
packages , select Tools, Password Synchronization Manager,

 Chapter 1 UMRA User

Installation - Upgrade. Next press F1 to get help on the available
options.

2. To specify the UMRA automation project that should be executed
on a received notification event , select Tools, Password
Synchronization Manager, Configuration.

3. To specify the Actions that UMRA should take on a password reset
notification, modify the specified automation project. The project is
called once for each individual password change. see UMRA PSM

Script variables on page 127 for the available special variables that
have a value when the project is called.

Viewing the current status of PSM Packages

To get an overview of the current status of the PSM Packages installed
on the domain controllers in your domain select the menu command
Tools, Password Synchronization Manager, Installation - Upgrade. This
will display an overview like the image below.

The PSM packages must have the single status Running on all domain
controllers that are online, in order to intercept all change password
events for the specific domain.

See UMRA PSM installation status on page 126 for the possible states listed.

Note, that the status "running" means that the package is installed
correctly, and loaded successfully by Windows, and is configured to
contact the UMRA service when a password set or change event occurs.
It does not imply success or failure of any particular notification. By

 Chapter 1 UMRA User

default, the package will log its operations in the file UmraPsm.log,
located in the system32 directory of the domain controller.

UMRA PSM Package installation status

The PSM Notification packages must have the single status Running on
all domain controllers that are online, in order to intercept all change
password events for the specific domain.

A combination of some of the following states is possible:

Running

The package is installed correctly, and loaded successfully by Windows,
and it is configured to contact the UMRA service when a password set or
change event occurs.It does not imply success or failure of any particular
notification.

Upgrade required

The installed version of the Package is lower than the version that ships
with your current version of UMRA. To ensure proper operation the
package on the domain controller should be upgraded.

Reboot required

A reboot of the domain controller is required to complete Installation or
deletion.

Notification switched off

The package on the specific domain controller is explicitly configured not
to send any notification to the UMRA service.

Installed

The PSM package is installed, but not (yet) running.

Not installed

The PSM package is not installed on the domain controller.

Computer not available

The specific domain controller does not respond, it may be offline.

Access Denied

 Chapter 1 UMRA User

The UMRA console does not have sufficient rights to connect to the
domain controller, or the domain controller is not completely online yet
after a reboot.

Unknown

The state is not yet determined.

Error

General error retrieving the status.

UMRA PSM script variables

When the UMRA service is notified by the PSM package of a password
change, the designated UMRA automation project will start.

Several special UMRA script variables are set by the service. Their values
may be utilized by the script of the Umra project to determine the
actions to perform.

Here is a list of all special script variables present at the start of the
UMRA project started through a PSM change password notification.

Password related variables

Variable Name (with
example value)

Explanation

%PsmDomain%=BIRDS2 The (NETBIOS) name of the domain of both the
domain controller and the account to change.

%PsmComputer%=EAGLE2003 The (NETBIOS) computer name of the domain
controller at which the password was modified.

%PsmAccount%=polymem The SAM Account Name of the account of
which the password was changed.

%PsmPassword%=!testjng1234 The new value of the password.

%PsmAccountRid%=3319 The RID (relative ID) of the account.

 Chapter 1 UMRA User

Umra PSM package variables

The variables below contain statistical information on the PSM package
on the particular domain controller.

Variable Name (with example value) Explanation

%PsmDllVersion%=106 The version of the PSM package(dll)
that has sent the notification to the
UMRA service.

%PsmStatTimeStartup%=07:34
05/28/2008

The system time at which the PSM
package was initialized by the
Windows LSA process.

%PsmStatTimeRequest%=10:23
05/28/2008

The system time at which the PSM
package received the most recent
changed password from Windows.
Note that this is not necessarily the
time at which the specific password
of the current user was received by
the PSM package.

%PsmStatPasswordChangesCount%=1 The total number of times the PSM
package has received a changed
password for any user from
Windows since startup, at the time
%psmStatTimeRequest%.

%PsmStatPasswordSyncRequestCount%=1 The total number of times the PSM
package has initiated notifying the
UMRA service of a new password
since startup.

%PsmStatThreadCount%=1 The current number of threads in
the PSM package. This is an
indication of how much
notifications are queued in the PSM
package to be send to the UMRA
service.

%PsmStatMaxThreadCount%=1 The maximum number of threads
that occurred in the PSM package.

%PsmStatErrorCount%=0 The total number of errors that
have occurred in the PSM package
since startup.

 Chapter 1 UMRA User

UMRA PSM Package registry values

There are several values in the Windows registry on the domain
controller that affect the operation of the UMRA PSM Package.

Generally there is no need to change any of them directly by means of
the registry editor, and direct modification is strongly discouraged. They
are either set automatically during installation, or by modifying
configuration settings through the UMRA console. (select Tools,

Password Synchronization Manager, Installation - Upgrade to open the
overview window, select the DC's from the list, and select Options)

However, a list of registry settings may be helpful during
troubleshooting, and allows for the change of a few rarely modified
settings that cannot be changed through the UMRA console.

Values affecting Registration with Windows
Key:
 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa

ValueName: Notification Packages

Value Type: REG_MULTI_SZ

Example Value: RASSFM KDCSVC WDIGEST scecli UmraPsmW32

Explanation: The name of the package is added to the
existing values automatically when installing the package with the UMRA
console. This instructs the LSA service to try to load the associated .dll
on startup.

Values affecting package behaviour.

All following values are located under
HKEY_LOCAL_MACHINE\SOFTWARE\Tools4ever\UmraPsm on 32 bit
OS domain controllers, and under
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Tools4ever\Umra
Psm on 64 bit OS domain controllers.

 Chapter 1 UMRA User

ValueNa
me

ValueTy
pe

Default
Value

Explanation

EnableLog
ging

REG_DW
ORD

1 Possible values 1 (default) or 0.

1 indicates that logging to a file is
enabled. 0 indicates that nothing is
logged at all. Set by configuration
options in the UMRA console.

LogFile REG_SZ <ValueN
ame not
defined>

Optional, the full local path to the log
file. If not specified, the
system32\UmraPms.log is used.

LogFileSiz
e

REG_SZ <ValueN
ame not
defined>

Optional, the maximum size in bytes
of the log file. When this value is
exceeded, the file is cleared, and
logging will continue. if not specified
the maximum size of the file is 5 MB.

LogLevel REG_DW
ORD

7 Value determines what kind of
messages are logged. 7 indicates a
combination of: Error (1), warning (2)
and informational (4) messages.

Set by configuration options in the
UMRA console.

NotifyEna
bled

REG_DW
ORD

1 Possible values 1 or 0.

If set to 1 (default), the UMRA service
will be contacted when a password
change is detected.

If set to 0, no attempt to contact a
UMRA service is made.

Set through configuration options in
the UMRA console.

 Chapter 1 UMRA User

Operation
al

REG_DW
ORD

0 or 1 System only. Do not change manually.
Value is set to 1 by the Package itself
when the Windows lsass process
initializes the package. Is used to
detect that the package is loaded.

PortNumb
er

REG_DW
ORD

56814 TCP/IP port number at which the
UMRA Service can be contacted.
Automatically set during installation
by the UMRA console, with the value
of the service the console was
connected to at that time.

ServerList REG_SZ <ValueN
ame not
defined>

Optional. If specified it overrules the
ServerName setting.

Contains the list of UMRA services
that should receive notifications. The
first server is contacted by default. if
unresponsive, the next server in the
list is contacted instead.

format:

"servername:portnumber,servername
:portnumber"

Set by configuration options in the
UMRA console.

ServerNa
me

REG_SZ NETBIOS
name of
the
server
that runs
the
UMRA
service

The name of the server at which the
UMRA service runs that should
receive notifications. Automatically
set during installation by the UMRA
console, with the value of the service
the console was connected to at that
time.

 Chapter 1 UMRA User

3.23.4. Manage Active Directory with the UMRA Powershell
Agent service

A number of UMRA dynamic actions require the Exchange 2007

Management Tools to be installed, although these actions do not
manage Exchange 2007 related resources. For these actions, it is not
necessary to have Exchange 2007 Server installed on any server, but the
Exchange 2007 Management Tools need to be installed on the computer
that runs the UMRA Powershell Agent service. Examples of these UMRA
actions are: Get AD permissions (action folder: Powershell, Active
Directory permissions) and Get (nested) group memberships (action
folder: Powershell, Group management). These actions are implemented
using cmdlets that are part of the Exchange 2007 snap-in
Microsoft.Exchange.Management.PowerShell.Admin. Therefore, the
Exchange Management Tools need to be installed on the computer that
runs the UMRA Powershell Agent service in order to use these actions.
Note that not all cmdlets of this snap-in can be used if Exchange 2007
server is not installed. For instance, the cmdlets to create a mail-enable
user account requires Exchange 2007 Server to be installed.

The described UMRA dynamic actions have the following characteristics:

1. The actions use cmdlets that are part of the Exchange 2007
Powershell snap-in that comes with the Exchange 2007
Management Tools;

2. The cmdlets do not require Exchange 2007 Server to be installed in
the network. Instead, the cmdlets can be used to manage Active
Directory resources;

3. To execute the Powershell scripts that use these cmdlets, the
Exchange 2007 Management Tools need to be installed on the
computer that runs the UMRA Powershell Agent service.

The Exchange 2007 Management Tools are available for 32-bit and 64-
bit platforms. When Exchange 2007 Server is installed (64-bit platform
only), the tools are installed automatically. To install the tools on a 32-
bit platform, see Setting up the Exchange 2007 Management Tools on a 32-bit

platform for more information. To install the tools on a 64-bit platform
without installing Exchange 2007 Server, a similar procedure must be
used.

 Chapter 1 UMRA User

3.24. Education
UMRA supports a number of connectors for educational systems. For
each of these systems, a collection of UMRA actions is available. Each
action implements a specific task for the system. The connectors
consists of the specific UMRA actions for each system.

3.24.1. Aura connector installation

Aura is a Dutch company that offers library software that is primarily
used in schools. The UMRA connector for Aura integrates the student
information system, for instance Magister, @VO or nOISe, with the Aura
software. Changes in the student information system are automatically
propagated to Aura.

The connector uses SOAP to integrate the different systems. The central
component is the UMRA-Aura-Webservice that communicates with Aura
and is accessed by the UMRA software to implement the connector.

The installation of the UMRA-Aura connector includes a number of
steps. These are described in the following topics.

Aura installation 1 - Architecture

Both the UMRA and Aura software are available in different versions and
modules. It is important to understand how the connector operates in
order to install the software successfully. The following software
modules implement the connector:

1. Aura standard software
The Aura standard software can consist of a number of modules. In
all cases, the following modules are installed Aura Catalogus and
Aura Uitleen. These are the conventional applications that are
already in use without the UMRA-Aura connector in place.

2. UMRA-Aura-WebService
This is the central component that interfaces between UMRA and
Aura. The web service runs on top of Microsoft's Internet

 Chapter 1 UMRA User

Information Service (IIS) and communicates according to the SOAP
standard. The web service receives requests from the UMRA
software using SOAP and handles these requests by accessing the
Aura standard software environment (Aura proprietary). A
response from the Aura software is send back to UMRA. In the
UMRA project script, the response can be used for further
processing. Each operation of the connector always starts with
UMRA executing a script action that results in a SOAP request that
is handled by the web service. The installation procedure mainly
deals with setting up this web service.

3. UMRA Powershell Agent service
The UMRA Powershell Agent service is the UMRA module that
accesses the UMRA-Aura-WebService. The service converts the
UMRA script actions to Powershell code that communicates with
the web service using SOAP.

4. UMRA Service or UMRA Mass
The UMRA modules that executes project scripts contains actions
that manage Aura.

Note that these modules can all run on different computers but also on
one and the same computer.

Aura installation 2 - Prerequisites

The following prerequisites apply for the different software modules.

Module Prerequisites Remarks

Aura standard
software

Version 9 or
higher

 Chapter 1 UMRA User

UMRA-Aura-
WebService

Operating
system:

Windows XP

Windows
Server 2003

The UMRA-Aura-WebService runs on
top of IIS (Internet Information
Services). IIS must be installed on the
computer. It is required to have

ASP.NET 1.1.432 installed on IIS. With
other versions of ASP.NET, for instance
ASP.NET 2.x or higher, the connector
will not function. When running the
UMRA-Aura-WebService on a server
platform (Windows Server 2003) an
Aura client/server license is required.

UMRA
Powershell
Agent service

Build 1573 or
higher

UMRA Mass /
UMRA Service

Build 1573 or
higher

Aura installation 3 - Create user account

There are a number of ways to setup how the UMRA-Aura-WebService
on IIS accesses the Aura database server. In this documentation, a
dedicated, new domain account is used. This is the most transparent
approach for all operating systems but other methods may work as well.
For this method, it is required that all computers that run (1) the
standard Aura software, (2) UMRA-Aura-WebService, (3) UMRA
Powershell Agent service and (4) UMRA are member of the same
Windows domain. If this is not the case, the installation may differ from
the procedure described in this documentation.

In the domain, create a new account and remember the password.
Configure the password settings so that it will never expire.

Example:

Username: UmraAuraUser

Password: secret3635

 Chapter 1 UMRA User

Aura installation 4 - Create web site

This topic describes how to setup the web-site that hosts the UMRA-
Aura-WebService.. To simplify the procedure, the web-site is setup not-
secure. To setup the web-site secure, see Configuring a secure web-site with

IIS for more information:

1. To start, log on to the computer that is going to run the UMRA-

Aura-WebService with administrative access. On this machine, IIS
should be installed. Note that Windows XP and Windows Server
2003 use different versions of IIS, 5.1 and 6.0 respectively;

2. Download the UMRA-Aura-WebService files from
http://www.aura.nl/aura90/UmraAuraWebservice9.zip;

3. Start Internet Information Services ((IIS) Manager and create a
new web-site for the UMRA-Aura-WebService. In order to access
the web-site using the host name only, other web-site hosted on
the same computer should not use port 80.

4. The web-site needs at least read access to the local path and
execute permissions for scipts as shown in the following picture.

 Chapter 1 UMRA User

During the creation of the web-site a directory is created. By
default, the location of a web-site is a subdirectory of the IIS
directory, for instance C:\InetPub\Aura.

5. Unpack the UMRA-Aura-WebService files to the newly created
directory;

6. Specify the account of the web-site used when accessing Aura:
Select the properties of the newly created web-site, select tab
Directory Security, section Authentication and access control. Click
Edit. Uncheck all options, except Enable anonymous access and
specify the username and password of the account created in the
previous step:

This image cannot currently be displayed.

 Chapter 1 UMRA User

Click OK a number of times to exit the open dialog windows.

Aura installation 5 - IIS / ASP.NET 1.1.4322

It is required to have ASP.NET installed as part of the IIS service on the
computer on which the UMRA-Aura-WebService is installed. The
installation of ASP.NET on a computer running IIS is different for
Windows XP and Windows 2003. ASP.NET is part of the Microsoft's .NET
framework. When all updates and service packs of the OS are installed,
the most recent version of ASP.NET is by default available for IIS. As of
this writing, the most recent version is ASP.NET 2.0. This is not the
correct version. Instead ASP.NET 1.1 is required.

For instructions how to enable ASP.NET 1.1.4322 see
http://support.microsoft.com/kb/816782 for more information.

Once installed and configured, select the Aura web-site and check the
properties. The ASP version should look similar as in the following
picture:

 Chapter 1 UMRA User

Further, on Windows 2003, the Web Service Extension for ASP.NET
v.1.1.4322 must be enabled as shown in the following screenshot:

 Chapter 1 UMRA User

Aura installation 6 - Aura license file

To run properly, a license is required for the UMRA-Aura-WebService.
Request a license from the Aura support desk. The license is contained in
a file with name auraumra.lic. Copy the file to the directory of the web-
site of the UMRA-Aura-WebService. The directory of the web-site should
now have the following contents:

 Chapter 1 UMRA User

Aura installation 7 - Aura data access

The UMRA-Aura-WebService must be able to access the Aura database
server. In case the UMRA-Aura-WebService is running on a server
platform, e.g. Windows Server 2003, a client/server license is required
and the Aura data is accessed using a host - port combination. In this
case, no special steps are required to access the data. If not running a
client/server license, the Aura database server is accessed through file
sharing. If the standard Aura software and the UMRA-Aura-WebService
are running on the same computer, not special steps are required. In all
other cases, a share must be created to access the Aura database server.

To summarize, execute the following steps only if:

 Chapter 1 UMRA User

1. The standard Aura software and the UMRA-Aura-WebService run
on different computers and

2. Aura is running without using a client/server license.

To setup the share, perform the following steps on the computer that
runs standard Aura software:

1. Locate the auradb.add file on computer that runs the Aura
standard software;

2. Setup a share for the directory that contains the file. The file is now
accessible using UNC path: \\COMPUTER\Sharename\auradb.add;

3. Setup the share permissions and grant Full Control access rights for
the account used by the UMRA-Aura-WebService.

4. Modify the NTFS permissions of the directory that contains the the
auradb.add file. Grant Modify, Read & Execute, List Folder

Contents, Read and Write permissions for the new account.
Propagate the permissions to the directory itself and all files
contained in the directory.

Aura installation 8 - Update web.config

The UMRA-Aura-WebService used configuration file web.config for a
number of settings. The file is located in the directory of the UMRA-
Aura-WebService web-site. The following settings must be updated:

Data source reference
Find element <appSettings>, child element <add key="DataSource" ...>
in the file. The value contains the directory of the Aura database server.
If a share is used, specify the UNC path. If the standard Aura software is
running on the same computer, the full path name can be used. Refer to
the comment section in the file for more information.

Examples:

If running the Aura software on computer BERN, and the file auradb.add
is located in a directory shared with name Aurawin:

 Chapter 1 UMRA User

<appSettings>

 <add key="DataSource" value="\\BERN\Aurawin\auradb.add" />

 ...

</appSettings>

If running on the same computer:

<appSettings>

 <add key="DataSource" value="D:\auradb\auradb.add" />

 ...

</appSettings>

Debug log file

It is possible to log the operations and errors of the UMRA-Aura-
WebService to a file. The file is specified as follows:

<appSettings>

 ...

 <add key="DebugSoapFile" value="C:\AuraLog\debugSOAP.log"
/>

</appSettings>

The directory of the file must exist and the account used by the UMRA-
Aura-WebService (see further) must have write access to the file. It is
recommended to enable the logfile during installation and testing. When
the installation is complete, debug logging is disabled by updating the
entry in the configuration file:

<appSettings>

 ...

 Chapter 1 UMRA User

 <!--add key="DebugSoapFile"
value="C:\AuraLog\debugSOAP.log" /-->

</appSettings>

Identity

When the UMRA-Aura-WebService is running on Windows XP, the
account that is used to access the Aura database server must be
specified. Insert the following element just before the termination
element </system.web>:

<system.web>

 ...

 ...

 <identity impersonate="true" userName="domain\username"
password="[password]"/>

</system.web>

Example, with username UmraAuraUser of domain DOM_A and
password [secret3635]:

<system.web>

 ...

 ...

 <identity impersonate="true"
userName="DOM_A\UmraAuraUser" password="[secret3635]"/>

</system.web>

 Chapter 1 UMRA User

Aura installation 9 - Test the web-site

Before using UMRA to access the connector, it is a good idea to test the
web-site first. Before running the test, enable debug logging. See Aura

installation 8 - Update web.config for more information. On the computer
that runs the UMRA-Aura-WebService, start Internet Explorer and
connect to file
http://Localhost/uPersonManagementServiceSync.asmx. The result
should look like this:

 Chapter 1 UMRA User

 Chapter 1 UMRA User

If nothing is shown or an error message shows up, something is wrong
with the configuration. Check the UMRA-Aura-WebService debug log file
for more information. If all is fine, the log file contains similar
information as shown below:

Umra Aura-webservice
Versie9.01
Start: 4-6-2009 14:21:0:51
ConnectionString=Data Source =
\\BERN\AuraWin\auradb.add; User ID = AuraNET;
Password = AuraNET!; TableType = CDX; ServerType
= REMOTE|LOCAL; Shared = TRUE; Pooling = FALSE
ServerName=BERN
ServerType=LOCAL
PasnummerIsLenersCode=1
DebugSoapFile=C:\AuraLog\debugSOAP.log
deletePersonAllowed=1

Licentie gegevens.
Module: Aura-Umra webservice (030)
Versie: 9
Bestandsnaam: C:\Inetpub\Aura\auraumra.lic
Licentiehouder: Aura testlicentie
Licentie is geldig

Einde umra Aura-webservice: 4-6-2009 14:41:29:681

Aura installation 10 - Test the UMRA-Aura-WebService

When the test of step 9 is completed successfully, UMRA can be used to
test the UMRA-Aura-WebService. For this test it is assumed that the
UMRA Console, Service and Powershell Agent service are installed. With
the UMRA Console application, setup a small automation project as
shown below:

 Chapter 1 UMRA User

When the project is executed, no errors should occur. The Aura debug
log file, UMRA Powershell Agent service and UMRA Service log file
contain information describing the execution of the project.

3.25. SOAP Synchronization template project
This topic describes a general synchronization project that can be used
to implement a connector with a particular system.

Creating a PowerShell Initialization Script.

The text <Product> should be replaced some word, describing the name
of the system for which the PowerShell session is used. For example
'Google, TeleTOP, etc.

 Chapter 1 UMRA User

 1. Create a new automation script ('<Product>Sync_Init').

 2. a. Add the action 'Check session variable'

 b. Set the property 'Variable name' to
'%G_<Product>PowerShellSession%'

 c. Set the output property 'Variable exists flag' to
'%<Product>PowerShellSessionExists%'

 d. Set the on error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to '<Product> Sync init: Error, could not determine
if the PowerShell session exists.'

 3. a. Add the action 'If-Then-Else'

 b. Add a if-criteria (Variable Name =
'%<Product>PowerShellSessionExists%', Variable type = 'boolean
(yes/no, true/false)', Operator = 'equal', Value = 'No')

 c. Set the 'Then Goto label' to '<Product>_session_create'

 4. a. Add the action 'Check Powershell Agent service session'

 b. Set the property 'Session ID' to '%G_<Product>PowerShellSession%'

 c. Set the output property 'Variable exists flag' to
'%<Product>PowerShellSessionIsValid%'

 d. Set the on error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to '<Product> Sync init: Error, could not determine
if the PowerShell session '%G_<Product>PowerShellSession%' is valid.'

 5. a. Add the action 'If-Then-Else'

 Chapter 1 UMRA User

 b. Add a if-criteria (Variable Name =
'%<Product>PowerShellSessionIsValid%', Variable type = 'boolean
(yes/no, true/false)', Operator = 'equal', Value = 'Yes')

 c. Set the 'Then Goto label' to '<Product>_session_exists'

 6. a. Add the action 'No operation'

 b. Set the label to <Product>_session_create

 7. a. Add the action 'Setup Powershell Agent service session'

 b. Set the output property 'Session ID' to
'%G_<Product>PowerShellSession%'

 c. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to '<Product> Sync init: Error, could not setup a
PowerShell session.'

 8. a. <place some product specific actions to initialize the session (such
as setup connection) here>

 b. Make sure for every! (even a set variable) action the On error is set
to: A jump to label 'ERROR_CLEANUP_POWERSHELL', Set variable
'%OperationStatus%' to '<Product> Init: <specific error message here>'

 9. a. Add the action 'Set session variable'

 b. Set the property 'Variable name' to
'%G_<Product>PowerShellSession%'

 c. Set the On error to: A jump to label
'ERROR_CLEANUP_POWERSHELL', Set variable '%OperationStatus%' to
'<Product> Sync init: Error, could not save the <product> PowerShell
session to the UMRA session.'

 Chapter 1 UMRA User

10. a. Add the action 'No operation'

 b. Set the label to <Product>_session_exists

11. a. <place some product specific actions (after a session is setup)
here. For example actions to initialize the user table.>

 b. Make sure for every major action the On error is set to: A jump to
label 'ERROR', Set variable '%OperationStatus%' to '<Product> Init: Error,
<specific error message here>'

12. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

13. a. Add the action 'No operation'

 b. Set the label to 'ERROR_CLEANUP_POWERSHELL'

14. a. Add the action 'Release Powershell Agent service session.

 b. Set the property 'Session ID' to '%G_<Product>PowerShellSession%'

15. a. Add the action 'Delete session variable'

 b. Set the property 'Variable name' to
'%G_<Product>PowerShellSession%'

16. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

17. a. Add the action 'Go to label'

 Chapter 1 UMRA User

 b. Set the property 'Label' to 'END'

18. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

19. <Place the same action as in step 13 here.>

20. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

21. a. Add the action 'No operation'

 b. Set the label to 'END'

Save the script.

Creating a PowerShell Cleanup Script.

The text <Product> should be replaced some word, describing the name
of the system for wich the PowerShell session is used. For example
'Google, TeleTOP, etc.

 1. Create a new automation script ('<Product>Sync_Cleanup').

 2. a. Add the action 'Check session variable'

 b. Set the property 'Variable name' to
'%G_<Product>PowerShellSession%'

 c. Set the output property 'Variable exists flag' to
'%<Product>PowerShellSessionExists%'

 Chapter 1 UMRA User

 d. Set the on error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to '<Product> Sync cleanup: Error, could not
determine if the PowerShell session 'G_<Product>PowerShellSession'
exists.'

 3. a. Add the action 'If-Then-Else'

 b. Add a if-criteria (Variable Name =
'%<Product>PowerShellSessionExists%', Variable type = 'boolean
(yes/no, true/false)', Operator = 'equal', Value = 'No')

 c. Set the 'Then Goto label' to 'END'

 4. a. Add the action 'Release Powershell Agent service session'

 b. Set the property 'Session ID' to '%G_<Product>PowerShellSession%'

 5. a. Add the action 'Delete Session Variable'

 b. Set the property 'Variable name' to
'%G_<Product>PowerShellSession%'

 6. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 7. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

 8. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

 Chapter 1 UMRA User

 9. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

10. a. Add the action 'No operation'

 b. Set the label to 'END'

Creating the Example source script.

 1. Create a new automation script. ('ExampleSource_Init')

 2. a. Add the action: 'Generate generic table'

 b. Set the table type to 'File (text, csv)'

 c. Specify the example file.

 d. Check the checkbox 'First line contains headers'

 e. Uncheck the checkbox 'Insert row number column'

 f. Specify the variable '%ExampleSourceUsers%' in the 'Variable' tab

 g. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'Example Source init: Error, could not load the
example source data.'

 3. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 4. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

 Chapter 1 UMRA User

 5. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

 6. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 7. a. Add the action 'No operation'

 b. Set the label to 'END'

UMRA Help

Copyright © Tools4ever 1998 - 2012 1

4. UMRA Reference Guide

4.1. Script action overview
This section contains an overview of all available script actions.

4.1.1. User

Active Directory

Script Action: Create user (AD)

Function

Creates a user account in an Active Directory domain. This action is
intended to create user accounts in domains and organizational units of
Active Directory. In addition to just creating the account itself it also will
also configure Active Directory attributes of the account, such as the
password and the description of the account.

Some attributes of the user account may specify the usage by the
account of other resources in the network. These resources themselves
will not be created by this action. If these resources need to be created,
this can be done by separate actions that follow this action in the User
Management Resource Administrator script. An example of such a
property is the Home Directory. When specified in this Create User
action, the Home Directory attribute of the user account will be set. The
directory itself however is not created. In order to create the directory
itself, the script action File System, Create directory on page 341 should be
performed

This action cannot be used to create accounts outside of Active
Directory. In order to create user accounts in a NT4 domain, or to create
local user accounts on specific computers, use the action Script Action:

Create User (no AD) on page 68 instead.

Deployment

This action is typically used as core part of a script designed to create
users in Active Directory domains, in order to create the account and its
attributes itself. In such a script this is usually the first major action
invoked. After creating the account, the script usually continues by
invoking actions to create home directories, home shares, group
memberships, etc.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

Domain The domain in which
to create the user
domain account.

%Domain% Often the domain name
is used in many
different actions, and is
determined and stored
in a variable previous to
the action (e.g.
%Domain%). The name
of the domain can be
either in DNS or
NETBIOS style. (e.g.
Tools4ever.com or
TOOLS4EVER). For more
information on how to
specify the
domain/OU/container
in which the user
account is created, see
the Remarks section
below.

Organizational
Unit-
Container

The name of the
Active Directory
Organizational unit or
other container in
which to create the
account.

 Users Specify the path of the
organizational unit (OU)
or container relative to
the domain. To specify
OU's in OU's, use the
full path relative to the
domain, separated by
slashes:
OU/ChildOU/GrandChil
dOU. Examples:
students or
students/group1. For
more information on
how to specify the
domain/OU/container
in which the user
account is created, see
the Remarks section
below.

UMRA Help

LDAP
container

Optional: The LDAP
name of the
container in which to
create the account.

 Optionally specifies
name of the Active
Directory container in
which the user is
created directly by
means of its LDAP name
(Example: CN=users,
DC=tools4ever,DC=com
Example: OU=Group1,
OU=Students,
DC=tools4ever,
DC=com)

This specification can
be used instead of the
Domain and
Organizational Unit-
Container properties of
this action. If specified,
the specified LDAP
Container takes
precedence, and the
Domain And
Organization Unit-
Container properties
are ignored. For more
information on how to
specify the
domain/OU/container
in which the user
account is created, see
the Remarks section
below.

UMRA Help

Domain
(controller)

Optional: The name
of the domain
controller or domain
used to access the
domain.

 If this value is not
specified, the
application creates the
account on a domain
controller that is
determined by Active
Directory (serverless
binding). If a domain
controller is specified,
the account is explicitly
created on the specified
controller (server
binding). In both cases,
Active Directory itself
will replicate the
account information to
all domain controllers in
the forest automatically
as required.

Depending on the
actual User
Management Resource
Administrator Script
used, it may be
necessary to specify a
domain controller here.
If an subsequent script
action does an Active
Directory query to
obtain information of
the newly created user,
this query may occur
before Active Directory
has replicated the new
information to other
Domain Controllers. As
a consequence, the
query may fail to find
the newly created user.
When both actions
however specify the
same domain
controller, the newly
created user can be
found.

Often a requery of
Active Directory by
subsequent actions for
the newly created user

UMRA Help

Name
generation
algorithm

Specifies the name of
the algorithm used to
generate user names

 Default The main purpose of
the Name Generation
algorithm is to create
unique names that
adhere to your
company's syntax
requirements.

A common
implementation of the
algorithm will take as
input the three
variables %FirstName%,
%MiddleName% and
%LastName%, and
generate from these
the variables
%FullName% and
%UserName%. Here
%FullName% contains
the complete name of
the user formatted for
display purposes, and
%UserName% the
name formatted for use
as the name of the
account. These
resulting variables can
then be used as input
for the other properties
of this action

UMRA Help

SAM- Account-
Name

The user logon
name(Pre- Windows
2000) without the
(NETBIOS) Domain
name.

%UserName% This name is required,
also in domains that
use solely Active
Directory domain
controllers. This name
is usually chosen to be
the same as the prefix
of the User Principal
Name.

A SAM-Account-Name
cannot be identical to
any other user or group
name on the domain
being administered. It
can contain up to 20
uppercase or lowercase
characters, except for
the following: " / \ [] : ;
| = , + * < >. A SAM-
Account-Name cannot
consist solely of periods
(.) or spaces.

Typically the name
contained in
%UserName% is
generated by the Name
generation algorithm on
page 121. If the name is
found not be unique,
the next iteration of the
algorithm is tried until
unique definite names
are generated.

UMRA Help

User-
Principal-
Name

The User- Principal-
Name (UPN) is an
Internet style logon
name for the user.

%UserName%
@Mycompany.
com

The UPN is the
preferred login name
for Active Directory
users. Users should be
using their UPN to log
on to the domain. The
UPN has the format
account_name@domai
n.com, where
account_name is the
UPN prefix and
domain.com is the UPN
suffix.

The UPN Prefix is
usually chosen to be
the same as the SAM-
Account-Name.
Typically the name
contained in
%UserName% is
generated by the name
generation algorithm.

CommonName The CommonName is
the full name of the
user. This name is
most commonly used
in user interfaces.

%FullName% Typically the name
contained in
%FullName% is
generated by the name
generation algorithm.

DisplayName This is the Display
name attribute of the
account. It usually
contains the full
name of the user.

%FullName% Typically the name
contained in
%FullName% is
generated by the name
generation algorithm.

Given- Name Optional. The given
name corresponds
usually with the first
name of the user.

%FirstName% Typically the variable
%FirstName% is directly
read from the a import
file specifying the users
to create.

UMRA Help

Initials Optional. The initials
of the user. It has a
maximum length of
six characters.

%MiddleName
%

Typically the variable
%MiddleName% is
directly read from the a
import file specifying
the users to create.

SurName Optional. The
surname of the user.

%LastName% Typically the variable
%LastName% is directly
read from the a import
file specifying the users
to create.

Password
generator

The specification how
to generate
passwords for the
user account

 Specifies the method
used to generate a
password for the user
account. These
methods vary from
simple (easy to
remember) passwords
to strong passwords.
There are several
predefined settings
available.

The resulting password
will be stored in a
variable. By default it is
stored in the variable
%Password%. This
variable is used as the
value for the Password
property.

UMRA Help

Password The password for the
created account

%Password% Typically the name
contained in the
variable %Password% is
generated by the
Password generator.
To create the same
password for all users
you can specify the
password here directly.
For example
"test1234". You can
also read the password
from the input file.

Description A text string, that will
be shown in the
Description field of
the user account in
windows. The string
can have any length.

UMRA Help

Home
directory

The home directory
of the user as
specified in the
"Home folder"
setting of the user
account

\\%HomeServe
r%\
users\
%UserName%

The value can be
specified either in the
form \\<server
name>\<share
name>\<rest of path>,
or as an local path e.g.
G:\UserData\<user
name>.

Note, This specification
does create the home
directory itself if it does
not exist. In order to
create the home
directory, specify the
action Script Action:
Create Directory on
page 341 in the User
Management Resource
Administrator script
after this action.

Typically the name
contained in
%UserName% is
generated by the name
generation algorithm on
page 121, and the name
contained in
\\%HomeServer% is
specified previously in
the script, or in the
import file.

Home
directory drive

The drive letter to
which the home
directory is
connected. Specify
only the drive letter
itself without colon
and or backslash

 If the drive letter is
specified, the Home
directory must be
specified in the form
\\<server
name>\<share
name>\<rest of path>,
and not as a local path.

UMRA Help

User profile The profile path of
the user account

\\%HomeServe
r%\
profiles\
%UserName%

The value must have he
form \\<server
name>\<share
name>\<rest of path>.

Logon script Full or relative path
to the script file that
is executed by
Windows when the
user logs on

\\%HomeServe
r%\
scripts\
%UserName%.
bat

or

%UserName%.
bat

If a relative path is
specified, this is relative
to the default Script
directory of Windows.

User must
change
password at
next logon

Specifies whether the
user must change the
password at the next
logon

Yes Valid specifications are
YES and NO. The default
value is NO. When set
to YES, the User
cannot change
password property
must by set to NO.

User cannot
change
password

Specifies whether the
user is disallowed
change the assigned
password

No Valid specifications are
YES and NO. The default
value is NO. This setting
has no effect on
members of the
administrators group.
When set to YES, the
User must change
password at next
logon property must by
set to NO.

Password
never expires

Specifies whether the
password will never
expire

 Valid specifications are
YES and NO. The default
value is NO. This setting
overrides the
Maximum Password
Age setting in the
password policy for the
domain/computer.

UMRA Help

Store
password
using
reversible
encryption

Specifies whether the
password will be
stored using
reversible encryption

No Allows a user to log on
to a Windows network
from Apple computers.
If a user is not logging
on from an Apple
computer, this option
should not be used.

Account
Disabled

Specifies whether the
account should be
create in the disabled
state

No Valid specifications are
YES and NO. The default
value is NO

Smart cart is
required for
interactive
logon.

Specifies whether a
smart cart is required

No Requires that the user
possesses a smart cart
to log on to the
network interactively.
The users must also
have a smart card
reader attached to their
computer and a valid
personal identification
number (PIN) for the
smart cart. When this
option is selected, the
password for the user
account is automatically
set to a random and
complex value and the
Password never expires
account option is set.

UMRA Help

Account is
trusted for
delegation

Specifies whether the
account is trusted for
delegation

No Allows a service running
under this account to
perform operations on
behalf of other user
accounts on the
network. A service
running under a user
account (otherwise
known as a service
account) that is trusted
for delegation can
impersonate a client to
gain access to resources
on the computer

Account is
sensitive and
cannot be
delegated

Specified that the
account cannot be
delegated.

No Allows control over a
user account, such as a
for guest or temporary
account. This option
can be user if this
account cannot be
assigned for delegation
by another account

Use Des
encryption
types for this
account

Provides support for
Data Encryption
Standard (DES)

No The Default value is NO

Do not require
Kerberos
preauthenticat
ion

Provides support for
alternative
implementations of
the Kerberos protocol

No The Default value is NO.

Computer
account

This is a computer
account for a MS
Windows NT
Workstation/Window
s 2000 Professional
or Windows NT
Server/Windows
2000 Server that is a
member of this
domain. Default
value: 'No'.

No Specify Yes if the
account is computer
workstation account.

UMRA Help

Account
Expiration

Specifies the date
after which the
account is expired

 If not specified, the
account will never
expire.

Logon hours The hours the user
account can log on to
the domain. By
default, domain
logon is allowed 24
hours a day, 7 days a
week.

 The value is specified as
a text of 42
hexadecimal
characters,
representing all the
hours of a week. The
hours of each day are
represented by 6
characters.

Workstations A list of workstation
names, separated by
",", on which the user
is allowed to logon.

 If specified, the user is
only allowed to logon
when seated at one of
the computers
(workstation or server)
listed. A maximum of 8
computer (workstation
or server) names can be
specified.

If not specified, such an
explicit restriction does
not apply.

General -
Office

The users's office
location This is the
person's office
location, including
the building and
office address or
number.

General -
TelephoneNu
mber

The user's phone
number

UMRA Help

General - E-
mail

The user's e- mail
address. The e-mail
address appears with
the universal
principal name suffix
(for example,
someone@microsoft.
com).

General -
Web-Page

The user's home page
URL, either on the
Internet or in the
local intranet site.

Address -
Street

The user's street
address

Address - P.O.
Box

The user's post office
box number

Address - City The city where the
user is located

Address -
State/province

The state or province
where the user is
located

Address -
Zip/Postal
Code

The zip or postal code
applicable for the
user

Address -
Country/regio
n

The user's country or
region

 The country can be
either explicitly chosen
from a drop down list,
or be specified as text.
In the latter case it can
also be read from a
variable, for instance
created by a column
from the list of users.

Telephones -
Home

The user's home
telephone number

UMRA Help

Telephones -
Pager

The user's page
number

Telephones -
Mobil

The user's mobil
telephone number

Telephones -
Fax

The user's fax
number

Telephones -
IP phone

The users IP
telephone number

Telephones -
Notes

Descriptive
information and any
comments for this
user.

Organization -
Title

The user's title

Organization -
Department

The user's
department

Organization -
Company

The users's company

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage. However, it may
be that the actual value of a specific property is required for an
successive action in the User Management Resource Administrator
script. To facilitate this need, any property can be explicitly configured to
be saved in a variable when the action has been performed. For
example, when the password of a user is created with the password
generator, the resulting password value may be stored in a variable, so it
can be exported to a file by an other action in the script.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

UMRA Help

Property Description Default
variable
name

Remarks

SAM-
Account-
Name

The user logon
name(Pre-
Windows
2000) without
the (NETBIOS)
Domain name,
that was used
to create the
account

%UserName% If more names have been tried as
a consequence of the user name
generation algorithm, this
contains the last name tried.

Common
name

The
CommonName
is the full
name of the
user. This
name is most
commonly
used in user
interfaces.

%FullName% If more names have been tried as
a consequence of the user name
generation algorithm, this
contains the last name tried.

Password The password
for the new
account

%Password%

User Object
Distinguished
name

The Object
Distinguished
name of the
just created
account

%UserODN% This name is often used to
uniquely identify the User object
in AD, and can be used ad
inpmut in several subsequent
actions, usually specified as
"LDAP://%UserODN%"

UMRA Help

User Security
Identifier
(SID)

After
execution of
the action, this
property will
contain the
security
Identifier (SID)
of the new
account. This
is an output-
only property

%UserSid% The User-Security Identifier (SID)
is created by the Active directory
automatically when the user is
created. The SID is used when
setting permissions, for instance
on home directories. The Create
User (AD) action copies this value
to this property, so it can be
stored in a variable for later
usage.

By default it is stored in the
variable %UserSid%. This can
then be used later in subsequent
actions, for example when
permissions for this account
must be specified on files and
directories.

User object This Internal
application
object
representing
the just
created
account.

%UserObject% The User Object is main purpose
is to ease subsequent operations
on the same account by actions
that follow in the script. For
several actions this object can be
used as input to specify the
account the actions work on.

Remarks

Domain / OU / Container / LDAP -specification

User Management Resource Administrator supports several methods to
specify the entity (domain, OU or container) in which the user account
will be created. These methods differ in the way the property values are
specified. The properties involved are: Domain, Organizational Unit-
Container, LDAP container. Depending on your network environment
and input data, you should choose the method that fits best:

UMRA Help

Properties
specified

Properties not
specified

Example Description

Domain
Organizational
Unit-Container

LDAP container Domain:
TOOLS4EVER or
tools4ever.com
Organizational
Unit- Container:
STUDENTS/GROUP1

This is most easy
method to create user
accounts in OU's. To
create the account,
User Management
Resource Administrator
will automatically
compose the LDAP
name of the container
to create the user
account.

Domain LDAP container
Organizational
Unit-Container

TOOLS4EVER or
tools4ever.com

Use this method only,
to create user accounts
in the domain root. No
OU is involved.

LDAP
container

Domain
Organizational
Unit-Container

OU=Group1,
OU=Students,
DC=tools4ever,
DC=com

Use this method if you
want to specify the OU
directory using the
LDAP format. If this
property is specified,
the Domain and
Organizational Unit-
Container properties
are ignored.

Script Action: Create contact (AD)

Function

Creates an Active Directory contact. A contact is an active directory
object which contains contact information.

Deployment

This action is typically used as a part of a script designed to create
contacts in Active Directory domains.Contacts are most often used to
make communication between different active directories possible.
When you create a contact, the contact can not login on the network.

UMRA Help

The setting of the contact can be used by users of the network to
contact other users or entities that are not connected to the network.

Properties

Property
Name

Description Typical
setting

Remarks

Domain The domain in which
to create the user
domain account.

%Domain% Often the domain
name is used in many
different actions, and is
determined and stored
in a variable previous to
the action (e.g.
%Domain%). The name
of the domain can be
either in DNS or
NETBIOS style. (e.g.
Tools4ever.com or
TOOLS4EVER). For
more information on
how to specify the
domain/OU/container
in which the user
account is created, see
the Remarks section
below.

UMRA Help

Organizational
Unit- Container

The name of the
Active Directory
Organizational unit or
other container in
which to create the
account.

 Users Specify the path of the
organizational unit
(OU) or container
relative to the domain.
To specify OU's in OU's,
use the full path
relative to the domain,
separated by slashes:
OU/ChildOU/GrandChil
dOU. Examples:
students or
students/group1. For
more information on
how to specify the
domain/OU/container
in which the user
account is created, see
the Remarks section
below.

UMRA Help

LDAP container Optional: The LDAP
name of the container
in which to create the
account.

 Optionally specifies
name of the Active
Directory container in
which the user is
created directly by
means of its LDAP
name (Example:
CN=users,
DC=tools4ever,DC=com
Example: OU=Group1,
OU=Students,
DC=tools4ever,
DC=com)

This specification can
be used instead of the
Domain and
Organizational Unit-
Container properties of
this action. If specified,
the specified LDAP
Container takes
precedence, and the
Domain And
Organization Unit-
Container properties
are ignored. For more
information on how to
specify the
domain/OU/container
in which the user
account is created, see
the Remarks section
below.

UMRA Help

Domain
(controller)

Optional: The name of
the domain controller
or domain used to
access the domain.

 If this value is not
specified, the
application creates the
account on a domain
controller that is
determined by Active
Directory (serverless
binding). If a domain
controller is specified,
the account is explicitly
created on the
specified controller
(server binding). In
both cases, Active
Directory itself will
replicate the account
information to all
domain controllers in
the forest automatically
as required.

Depending on the
actual User
Management Resource
Administrator Script
used, it may be
necessary to specify a
domain controller here.
If an subsequent script
action does an Active
Directory query to
obtain information of
the newly created user,
this query may occur
before Active Directory
has replicated the new
information to other
Domain Controllers. As
a consequence, the
query may fail to find
the newly created user.
When both actions
however specify the
same domain
controller, the newly
created user can be
found.

Often a requery of
Active Directory by
subsequent actions for

UMRA Help

Name
generation
algorithm

Specifies the name of
the algorithm used to
generate user names

 Default The main purpose of
the Name Generation
algorithm is to create
unique names that
adhere to your
company's syntax
requirements.

A common
implementation of the
algorithm will take as
input the three
variables %FirstName%,
%MiddleName% and
%LastName%, and
generate from these
the variables
%FullName% and
%UserName%. Here
%FullName% contains
the complete name of
the user formatted for
display purposes, and
%UserName% the
name formatted for use
as the name of the
account. These
resulting variables can
then be used as input
for the other properties
of this action

For a thorough
discussion, please see
Name Generation on
page 121.

CommonName The CommonName is
the full name of the
user. This name is
most commonly used
in user interfaces.

%FullName% Typically the name
contained in
%FullName% is
generated by the name
generation algorithm.

UMRA Help

DisplayName This is the Display
name attribute of the
account. It usually
contains the full name
of the user.

%FullName% Typically the name
contained in
%FullName% is
generated by the name
generation algorithm.

Given-Name Optional. The given
name corresponds
usually with the first
name of the user.

%FirstName% Typically the variable
%FirstName% is directly
read from the a import
file specifying the users
to create.

Initials Optional. The initials
of the user. It has a
maximum length of six
characters.

%MiddleNam
e%

Typically the variable
%MiddleName% is
directly read from the a
import file specifying
the users to create.

SurName Optional. The surname
of the user.

%LastName% Typically the variable
%LastName% is directly
read from the a import
file specifying the users
to create.

Description A text string, that will
be shown in the
Description field of the
user account in
windows. The string
can have any length.

General - Office The users's office
location This is the
person's office
location, including the
building and office
address or number.

General -
TelephoneNum
ber

The user's phone
number

UMRA Help

General - E-
mail

The user's e- mail
address. The e-mail
address appears with
the universal principal
name suffix (for
example,
someone@microsoft.c
om).

General - Web-
Page

The user's home page
URL, either on the
Internet or in the local
intranet site.

Address -
Street

The user's street
address

Address - P.O.
Box

The user's post office
box number

Address - City The city where the
user is located

Address -
State/province

The state or province
where the user is
located

Address -
Zip/Postal Code

The zip or postal code
applicable for the user

Address -
Country/region

The user's country or
region

 The country can be
either explicitly chosen
from a drop down list,
or be specified as text.
In the latter case it can
also be read from a
variable, for instance
created by a column
from the list of users.

Telephones -
Home

The user's home
telephone number

Telephones -
Pager

The user's page
number

UMRA Help

Telephones -
Mobil

The user's mobil
telephone number

Telephones -
Fax

The user's fax number

Telephones - IP
phone

The users IP telephone
number

Telephones -
Notes

Descriptive
information and any
comments for this
user.

Organization -
Title

The user's title

Organization -
Department

The user's department

Organization -
Company

The users's company

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage. However, it may
be that the actual value of a specific property is required for an
successive action in the User Management Resource Administrator
script. To facilitate this need, any property can be explicitly configured to
be saved in a variable when the action has been performed. For
example, when the password of a user is created with the password
generator, the resulting password value may be stored in a variable, so it
can be exported to a file by an other action in the script.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

UMRA Help

Property
Name

Description Default
variable name

Remarks

Common
name

The
CommonName
is the full
name of the
user. This
name is most
commonly
used in user
interfaces.

%FullName% If more names have been tried
as a consequence of the user
name generation algorithm, this
contains the last name tried.

Contact
object

This Internal
application
object
representing
the just
created
contact object.

%ContactObject% The Contact Object is main
purpose is to ease subsequent
operations on the same object
by actions that follow in the
script. For several actions this
object can be used as input to
specify the object the actions
work on.

Remarks

Domain / OU / Container / LDAP -specification

User Management Resource Administrator supports several methods to
specify the entity (domain, OU or container) in which the user account
will be created. These methods differ in the way the property values are
specified. The properties involved are: Domain, Organizational Unit-
Container, LDAP container. Depending on your network environment
and input data, you should choose the method that fits best:

UMRA Help

Properties
specified

Properties
not specified

Example Description

Domain
Organizational
Unit-
Container

LDAP container Domain:
TOOLS4EVER or
tools4ever.com
Organizational
Unit- Container:
STUDENTS/GROUP1

This is the easiest
method to create user
accounts in OUs. To
create the account, User
Management Resource
Administrator will
automatically compose
the LDAP name of the
container to create the
user account.

Domain LDAP container
Organizational
Unit-Container

TOOLS4EVER or
tools4ever.com

Use this method only, to
create user accounts in
the domain root. No OU
is involved.

LDAP
container

Domain
Organizational
Unit-Container

OU=Group1,
OU=Students,
DC=tools4ever,
DC=com

Use this method if you
want to specify the OU
directory using the LDAP
format. If this property is
specified, the Domain
and Organizational Unit-
Container properties are
ignored.

Related information:

UMRA Basics on page 3

Script Action: Get user (AD)

Function

Accesses a user account in Active Directory. The action is always used in
combination with other subsequent actions. Once the user is found, an
internal data structure representing the user account is setup. This
structure is stored in a variable (%UserObject%) that can be used by
other actions. The action supports several methods to find the user.

UMRA Help

Deployment

This action is typically used in a script that is used to manage, edit or
delete existing user accounts. A number of actions are available to
manage user accounts. Most of these actions require a input variable
(%UserObject%) that holds the user account. When this action is
executed successfully, the subsequent actions in the script have access
to the user account using this variable.

You have three options to identify the user account.

1. LDAP name: The user account is identified by its full LDAP name.
Example: cn=John Williams, ou=Schools, dc=Tools4ever, dc=Com.
You only need to specify the property LDAP name to identify the
user account. Optionally you can specify a domain controller.
The user account is always searched for using LDAP. By
specifying the name of a domain controller, the program directly
binds to the domain controller instead of a domain controller
chosen by Active Directory.

2. Domain, Organizational Unit-Container, FullName: From these
components, User Management Resource Administrator will
compose the LDAP name. If necessary, the components are
converted to a suitable format. If the FullName is specified but
no Organizational Unit-Container is specified, User Management
Resource Administrator will not be able to find the user account.
Optionally you can specify a domain controller. The user account
is always searched for using LDAP. By specifying the name of a
domain controller, the program directly binds to the domain
controller instead of a domain controller chosen by Active
Directory.

3. Domain, Username: The user account is specified using the NT-
style format Domain/UserName. User Management Resource
Administrator will convert the name to the full LDAP name. This
method requires most resources but does not need the
organizational unit to be specified.

If none of these options can be used, you can use the Script Action: Search

object (AD) on page 146 to search for the user account. The result of the
Search object action is the LDAP name of the user account that can be
used for option 1.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

Domain The name of the domain (DNS or
NETBIOS style, e.g.
tools4ever.com or TOOLS4EVER)
of the user account. The user
account is specified using LDAP.
To specify the user account, you
have three options. 1: LDAP name
(available from network tree
browse operations), 2: Domain +
Organizational Unit-Container +
FullName (the LDAP name is
composed from the individual
components), 3: Domain +
Username (NT-style, LDAP name
is searched for). For each option,
you need to specify the
corresponding properties.

%Domain% See
Deployment
section.

Organizational
Unit-
Container

The name of the Organizational
Unit-Container of the user
account (example: Students or
Students\\Group1). The user
account is specified using LDAP.
To specify the user account, you
have three options. 1: LDAP name
(available from network tree
browse operations), 2: Domain +
Organizational Unit-Container +
FullName (the LDAP name is
composed from the individual
components), 3: Domain +
Username (NT-style, LDAP name
is searched for). For each option,
you need to specify the
corresponding properties.

 See
Deployment
section.

UMRA Help

Full name The full name, more precisely
known as the common name of
the user account in the
Organizational Unit-Container -
Domain (example: John Williams).
The user account is specified
using LDAP. To specify the user
account, you have three options.
1: LDAP name (available from
network tree browse operations),
2: Domain + Organizational Unit-
Container + FullName (the LDAP
name is composed from the
individual components), 3:
Domain + Username (NT- style,
LDAP name is searched for). For
each option, you need to specify
the corresponding properties.

%FullName% See
Deployment
section.

Username The pre-Windows 2000 logon
name of the user account
(example: JWilliams). The user
account is specified using LDAP.
To specify the user account, you
have three options. 1: LDAP name
(available from network tree
browse operations), 2: Domain +
Organizational Unit-Container +
FullName (the LDAP name is
composed from the individual
components), 3: Domain +
Username (NT-style, LDAP name
is searched for). For each option,
you need to specify the
corresponding properties.

%UserName% See
Deployment
section.

UMRA Help

LDAP name The full LDAP name of the user
account. (example: cn=John
Williams, ou=Schools,
dc=Tools4ever, dc=Com). If this
value is specified, it takes
precedence and the values for
the properties 'Domain',
'Organizational Unit-Container',
'Full name' and 'Username' are
ignored and do not have to be
specified.

 See
Deployment
section.

Domain
controller

Optional: The name of the
domain controller, used to access
to the domain, container or
organizational unit where the
account exists. This property can
be used for any of the methods
used to specify the user account.
If this value is not specified,
Active Directory chooses one
automatically (serverless
binding).

 See
Deployment
section.

User Object An internal data structure
representing the user account.
This property is an 'output only'
property and is generated
automatically when the user is
found in Active Directory. This
property can be used in other
script actions, for instance to
create an Exchange mailbox,
setup group memberships or
modify user attributes.

No input value
can be
specified.
Always specify
an output
variable, for
example
%UserObject%

UMRA Help

User Security
Identifier (SID)

The security identifier (SID) of the
user account. This property is an
'output only' property and can be
determined when the user is
found in Active Directory. The
'User Security Identifier (SID) is
created by the Active Directory
automatically when the user
account was created. The SID is
used when setting permissions,
for instance on home directories,
Exchange mailboxes etc. The SID
is stored by default in the variable
%UserSid%.

No input value
can be
specified.

Specify an
output
variable
value if the
SID is needed
in
subsequent
actions.

Globally
Unique
Identifier
(GUID)

The globally unique identifier
(GUID) of the user account. This
property is an 'output only'
property and can be determined
when the user is found in Active
Directory. The GUID is stored by
default in the variable
%UserGuid%.

No input value
can be
specified.

Specify an
output
variable
value if the
GUID is
needed in
subsequent
actions.

User account
display name

The display name for the user
account as found in Active
Directory

No Input value
can be
specified

Specify an
output
variable if
the display
name is
needed in
subsequent
actions.

Remarks

Each of the properties Full name, Username and LDAP name can be
specified as output variables, even if the user account is determined by
other than the output properties.

Related information:

UMRA Basics on page 3

UMRA Help

Script Action: Edit user (AD)

Function

Edits an existing user account in Active Directory. The account is
identified by a variable containing the User Object. Use the Script Action:

Get user (AD) on page 31 to find the user first. For the user account, all
regular attributes can be changes and/or reset.

Deployment

This action is typically used as one of the main actions to manage
existing user accounts in Active Directory. You can use this action for a
single change, for instance resetting the password of an account or
multiple changes like home directory, profile directory and Active
Directory attributes. To change the common name (full name) of a user
account, you should use the Script Action: Move - rename user (AD) on page
63 instead.

For this action, the user account is identified by a variable (default:
%UserObject%). To execute this action successfully, the variable must
have a valid value. The variable is an output variable of the Script Action:

Get user (AD) on page 31. The Get User action supports several ways to
find the user and fill the variable.

The Edit user action contains a large number of properties. As described
above, the User Object property is used to identify the user account.
Further all the properties are initially not specified. This means that the
corresponding Active Directory attributes of the user account are not
changed when the action is executed. So only when a property is
specified, the attribute is updated in Active Directory.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

User Object An data structure
representing the user
account. Use the action
'Get user (AD)' to find
the user account in
Active Directory and
setup the variable that
contains the 'User
Object'.

%UserObje
ct%

See Deployment
section.

SAM- Account-
Name

The user logon name
(pre- Windows 2000)
without the (NETBIOS)
domain name. In most
cases the SAM- Account-
Name is equal to the
prefix of the User-
Principal- Name and
specified by the general
%UserName% name
variable. The name must
be unique within the
domain.

 Specify the path of the
organizational unit (OU)
or container relative to
the domain. To specify
OU's in OU's, use the
full path relative to the
domain, separated by
slashes:
OU/ChildOU/GrandChil
dOU. Examples:
students or
students/group1. For
more information on
how to specify the
domain/OU/container
in which the user
account is created, see
the Remarks section
below.

UMRA Help

User-
Principal-
Name

The User-Principal-Name
(UPN) is an Internet-style
login name for the user.
The UPN is the preferred
logon name for Active
Directory users. Users
should be using their
UPNs to log on to the
domain. The UPN has
the format
'account_name@domain
.com', where
'account_name' is the
UPN-prefix and
'domain.com' is the upn-
suffix. In most cases the
User-Principal- Name
prefix is specified by the
general user name
variable.

 The UPN is the
preferred loin name for
Active Directory users.
Users should be using
their UPN to log on to
the domain. The UPN
has the format
account_name@domai
n.com, where
account_name is the
UPN prefix and
domain.com is the UPN
suffix.

The UPN Prefix is
usually chosen to be the
same as the SAM-
Account-Name.
Typically the name
contained in
%UserName% is
generated by the name
generation algorithm.

DisplayName This is the Display name
attribute of the account.
It usually contains the
full name of the user.

Given- Name The Given-name
corresponds with the
first name of the user
account. The Given-
name is an optional
attribute of Active
Directory user accounts.

Initials The 'Initials'-field name
corresponds with the
middle name of the user
account. The 'Initials'-
field is an optional
attribute of Active
Directory user accounts.

UMRA Help

SurName The 'Surname'
corresponds with the
last name of the user
account. The 'Surname'
is an optional attribute
of Active Directory user
accounts.

Password
generator

The specification how to
generate passwords for
the user account

 Specifies the method
used to generate a
password for the user
account. These
methods vary from
simple (easy to
remember) passwords
to strong passwords.
There are several
predefined settings
available.

The resulting password
will be stored in a
variable. By default it is
stored in the variable
%Password%. This
variable must be
specified as the value
for the Password
property.

Password The password of the user
account.

 Typically the name
contained in the
variable %Password% is
generated by the
Password generator.
To create the same
password for all users
you can specify the
password here directly.
For example "test1234".
You can also read the
password from the
input file.

UMRA Help

Description A user comment. The
field can contain a text
of any length.

Home
directory

The path of the home
directory of the user
account. Note that the
home directory is not
moved or created by this
action. Instead, the
home directory
specification in the
Active Directory is
updated. You can move
the home directory, by
adding the actions 'Copy
directory' and 'Delete
directory' to the script.

 The value can be
specified either in the
form \\<server
name>\<share
name>\<rest of path>,
or as an local path e.g.
G:\UserData\<user
name>.

Note, This specification
does create the home
directory itself if it does
not exist. In order to
create the home
directory, specify the
Script Action: Create
Directory on page 341 in
the User Management
Resource Administrator
script after this action.

Home
directory drive

The drive letter to which
the home directory is
connected. Specify only
the drive letter itself
without colon and or
backslash.

 If the drive letter is
specified, the Home
directory must be
specified in the form
\\<server
name>\<share
name>\<rest of path>,
and not as a local path.

UMRA Help

User profile A path to the user's
profile. Note that this
specification does not
create the profile
directory. Instead, it
specifies the profile's
path in the SAM user
account database. You
can create the profile
directory, by adding the
action 'Create Directory'
to the script.

 The value must have he
form \\<server
name>\<share
name>\<rest of path>.

Logon script The path for the user's
logon script file. The
script file can be a .CMD
file, an .EXE file, or a
.BAT file.

User must
change
password at
next logon

The password is expired.
Use this property to
force the user to change
the password at the next
logon. Note that the user
can logon using the
current password.

 When set to Yes the
User cannot change
password property
must by set to No.

User cannot
change
password

The user cannot change
password. When the
user cannot change the
password, only the
administrator can
change the password.

 Valid specifications are
Yes and No. This
setting has no effect on
members of the
administrators group.
When set to Yes, the
User must change
password at next
logon property must be
set to No.

UMRA Help

Password
never expires

The password should
never expire on the
account.

 Valid specifications are
Yes and No. The
default value is No. This
setting overrides the
Maximum Password
Age setting in the
password policy for the
domain/computer.

Store
password
using
reversible
encryption

An password specific
option. If you have users
logging on to your
Windows 2000 network
from Apple computers,
select this option for
those user accounts.

 Allows a user to log on
to a Windows network
from Apple computers.
If a user is not logging
on from an Apple
computer, this option
should not be used.

Account
disabled

The user's account is
disabled. If an user
account is disabled, the
account does exist but
cannot be used to logon
to the network.

Smart cart is
required for
interactive
logon.

Specifies whether a
smart cart is required

 Requires that the user
possesses a smart cart
to log on to the network
interactively. The users
must also have a smart
card reader attached to
their computer and a
valid personal
identification number
(PIN) for the smart cart.
When this option is
selected, the password
for the user account is
automatically set to a
random and complex
value and the Password
never expires account
option is set.

UMRA Help

Account is
trusted for
delegation

Specifies whether the
account is trusted for
delegation

 Allows a service running
under this account to
perform operations on
behalf of other user
accounts on the
network. A service
running under a user
account (otherwise
known as a service
account) that is trusted
for delegation can
impersonate a client to
gain access to resources
on the computer

Account is
sensitive and
cannot be
delegated

Specified that the
account cannot be
delegated.

 Allows control over a
user account, such as a
for guest or temporary
account. This option can
be user if this account
cannot be assigned for
delegation by another
account

Use DES
encryption
types for this
account

Provides support for
Data Encryption
Standard (DES)

Do not require
Kerberos
preauthenticat
ion

Provides support for
alternative
implementations of the
Kerberos protocol

Account
expiration

Specifies the date after
which the account is
expired

Logon hours The hours the user
account can log on to
the domain. By default,
domain logon is allowed
24 hours a day, 7 days a
week.

 The value is specified as
a text of 42
hexadecimal characters,
representing all the
hours of a week. The
hours of each day are
represented by 6
characters.

UMRA Help

Workstations A list of workstation
names, separated by ",",
on which the user is
allowed to logon.

 If specified, the user is
only allowed to logon
when seated at one of
the computers
(workstation or server)
listed. A maximum of 8
computer (workstation
or server) names can be
specified.

If not specified, such an
explicit restriction does
not apply.

General -
Office

The users's office
location This is the
person's office location,
including the building
and office address or
number.

General -
TelephoneNu
mber

The user's phone
number

General - E-
mail

The user's e-mail
address. The e-mail
address appears with the
universal principal name
suffix (for example,
someone@microsoft.co
m).

General - Web-
Page

The user's home page
URL, either on the
Internet or in the local
intranet site.

Address -
Street

The user's street address

Address - P.O.
Box

The user's post office
box number

UMRA Help

Address - City The city where the user
is located

Address -
State/province

The state or province
where the user is located

Address -
Zip/Postal
Code

The zip or postal code
applicable for the user

Address -
Country/regio
n

The user's country or
region

 The country can be
either explicitly chosen
from a drop down list,
or be specified as text.
In the latter case it can
also be read from a
variable, for instance
created by a column
from the list of users.

Telephones -
Home

The user's home
telephone number

Telephones -
Pager

The user's page number

Telephones -
Mobil

The user's mobil
telephone number

Telephones -
Fax

The user's fax number

Telephones -
IP phone

The users IP telephone
number

Telephones -
Notes

Descriptive information
and any comments for
this user.

Organization -
Title

The user's title

Organization -
Department

The user's department

Organization -
Company

The users's company

UMRA Help

See also:

Help on help

Script Action: Move - rename user (AD) on page 63

UMRA Basics on page 3

Script Action: Edit user logon

Function

Edits the logon settings of an existing user account . The account is
identified by a variable containing the User Object. Use the Script Action:

Get user (AD) on page 31 to find the user first. For the user account, all
regular attributes can be changed and/or reset.

Deployment

This action is typically used as one of the main action to manage existing
user accounts in Active Directory. You can use this action for a single
change, for instance resetting the password of an account or multiple
changes like home directory, profile directory and Active Directory
attributes. To change the common name (full name) of a user account,
you cannot use this action. Use the Script Action: Move - rename user (AD)
on page 63 instead to do this.

For this action, the user account is identified by a variable (default:
%UserObject%). To execute this action successfully, the variable must
have a valid value. The variable is an output variable of the action Script

Action: Get user (AD) on page 31. The Get User action supports several
ways to find the user and fill the variable.

The Edit user logon action contains a large number of properties. As
described above, the User Object property is used to identify the user
account. Other properties are initially not specified. This means that the
corresponding Active Directory attributes of the user account are not
changed when the action is executed. Only when a property is specified,
the attribute is updated in Active Directory.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

User Object An data structure
representing the
user account. Use
the action Get
user (AD) on page
31 to find the
user account in
Active Directory
and setup the
variable that
contains the 'User
Object'.

%UserObject% See Deployment section.

Username The SAM account
name of the user
for which you
want to edit the
logon settings.

 You should only use this option
when you are not using the
%UserObject% variable. Instead
of the %userObject variable an
user account can also be
identified by the user name
and the domain name or the
domain controller.

Domain The domain in
which the user
account, for
which you want
to edit the logon
settings, is
located.

 You should only use this option
when you want to identify the
user account by username and
domain name.

Domain
controller

The domain
controller of the
domain in which
the user account,
for which you
want to edit the
logon settings, is
located.

 You should only use this option
when you want to identify the
user account by username and
domain controller.

UMRA Help

Password
generator

The specification
how to generate
passwords for the
user account

 Specifies the method used to
generate a password for the
user account. These methods
vary from simple (easy to
remember) passwords to
strong passwords. There are
several predefined settings
available.

The resulting password will be
stored in a variable. By default
it is stored in the variable
%Password%. This variable
must be specified as the value
for the Password property.

Password The password of
the user account.

 Typically the name contained in
the variable %Password% is
generated by the Password
generator. To create the same
password for all users you can
specify the password here
directly. For example
"test1234". You can also read
the password from the input
file.

User must
change
password
at next
logon

The password is
expired. Use this
property to force
the user to
change the
password at the
next logon. Note
that the user can
logon using the
current password.

 When set to Yes the User
cannot change password
property must by set to No.

UMRA Help

User
cannot
change
password

The user cannot
change password.
When the user
cannot change
the password,
only the
administrator can
change the
password.

 Valid specifications are Yes and
No. This setting has no effect
on members of the
administrators group. When set
to Yes, the User must change
password at next logon
property must by set to No.

Password
never
expires

The password
should never
expire on the
account.

 Valid specifications are Yes and
No. The default value is No.
This setting overrides the
Maximum Password Age
setting in the password policy
for the domain/computer.

Account
disabled

The user's
account is
disabled. If an
user account is
disabled, the
account does
exist but cannot
be used to logon
to the network.

Unlock the
account

Unlock an user
account. When an
account is locked
it is temporarily
impossible to log
on to the
network. An
account gets
locked when an
incorrect
password is
specified.

 Valid specifications are Yes and
No. The default value is No.
When set to Yes an locked
account will be unlocked. This
property can only be used
when an account is locked.

See also:

Help on help

UMRA Help

Script Action: Move - rename user (AD) on page 63

UMRA Basics on page 3

Script Action: Get user table (locked out/disabled/password)

Function

Script action returning locked-out and disabled users. The resulting table
is stored in the variable %UsersTable%.

Deployment

This script action will typically be used in a delegation project with
multiple forms to obtain a list a locked-out and disabled users. The result
is stored in a variable in table format, containing rows and columns. To
show these table data in a form, you have to use the generic form table
of the Variable type. This action requires the use of an initial project.

Properties

Propert
y Name

Description Typical
setting

Remark
s

Active
Directory
Root

If set to "Yes", a binding will be
established to the root of the Active
directory for the currently logged on
user or service. If set to "Yes", you need
to set the LDAP path property to "No".

LDAP path The full LDAP name of the organizational
unit, container or domain that must be
used for the search (e.g.
LDAP://OU=Helpdesk,DC=t4edoc,DC=co
m

 If you only
want to
obtain a
list of user
objects in
a specific
OU, then
set the
property
Active
Directory
root to
"No".

UMRA Help

Include all
users

Includes all user accounts in the search.
When set to "Yes", the properties
"Include locked out accounts" and
"Include disabled accounts" are ignored.

Include
locked out
accounts

If set to "Yes", it will include user
accounts that are locked out

Include
disabled
accounts

If set to "Yes", it will include user
accounts that are currently disabled

User table Output is
stored in
%UsersTable
%

For each returned user object in the table %UsersTable%, the following
columns are included:

Column Description

Name User name

Description Description to display for an object

Locked out "Yes" or "No"

Locked out period
[hh:mm:ss]

Specifies the length of time a user is locked out after
exceeding the maximum number of invalid password
attempts.

Disabled "Yes" or "No"

Password expired If "Yes", the password has expired. If "No", the
password has not expired.

Password expires The value is either Expired for those accounts for
which Password expired is "Yes" or the number of
days before the password will expire.

SAM account name The logon name used to support clients and servers
running older versions of the operating system, such as
Windows NT 4.0, Windows 95, Windows 98, and LAN
Manager.

Object distinguished
name

Same as the Distinguished Name for an object.

UMRA Help

User account control
flags

Flags that control the behaviour of the user account
(e.g. user cannot change password, user is currently
locked out, no password required, password never
expires, user account is disabled, etc.). The values are
given in decimals. If these are converted to hexidecimal
values, you can verify which flags are set for the user.
Some examples:

514 - Disabled users

512 - Default account type that represents a typical
user

See the table under UserAccountControl flags for a full
overview.

User lockout time The date and time (UTC) that this account was locked
out. This value is stored as a large integer that
represents the number of 100 nanosecond intervals
since January 1, 1601 (UTC). A value of zero means that
the account is not currently locked out.

Password last set time The date and time that the password for this account
was last changed. The resulting value represents the
number of 100 nanosecond intervals since 12:00 AM
January 1, 1601. The date represented by this number
is in Coordinated Universal Time (UTC). It must be
adjusted by the time zone bias in the local machine
registry to convert to local time.

UserAccountControl flags

This attribute value can be zero or a combination of one or more of the
following values:

Hexadecimal value Description

0x00000001 The logon script is executed.

0x00000002 The user account is disabled.

0x00000008 The home directory is required.

0x00000010 The account is currently locked out.

0x00000020 No password is required.

0x00000040 The user cannot change the password.

UMRA Help

0x00000080 The user can send an encrypted
password.

0x00000200 This is a default account type that
represents a typical user.

0x00000800 This is a permit to trust account for a
system domain that trusts other
domains.

0x00001000 This is a computer account for a
computer that is a member of this
domain.

0x00002000 This is a computer account for a system
backup domain controller that is a
member of this domain.

0x00010000 The password for this account will
never expire.

0x00020000 This is an MNS logon account.

0x00040000 The user must log on using a smart
card.

0x00080000 The service account (user or computer
account), under which a service runs, is
trusted for Kerberos delegation. Any
such service can impersonate a client
requesting the service.

0x00100000 The security context of the user will
not be delegated to a service even if
the service account is set as trusted for
Kerberos delegation.

0x00200000 Restrict this principal to use only Data
Encryption Standard (DES) encryption
types for keys.

0x00400000 This account does not require Kerberos
pre- authentication for logon.

0x00800000 The user password has expired. This
flag is created by the system using data
from the Pwd- Last-Set attribute and
the domain policy.

UMRA Help

0x01000000 The account is enabled for delegation.
This is a security-sensitive setting;
accounts with this option enabled
should be strictly controlled. This
setting enables a service running under
the account to assume a client identity
and authenticate as that user to other
remote servers on the network.

If you want to use the content of the variable %UsersTable% in a
generic table, you need to set up a generic table of the Variable type. In
the setup procedure, you can select the column template User info
which includes the above mentioned columns.

See also:

Script Action: Get user info on page 101

UMRA tables on page 9

Script Action: Delete user (AD)

Function

Deletes an existing user account from Active Directory. The account is
identified by a variable containing the 'User Object'. Use the action Script

Action: Get user (AD) on page 31 to find the user first.

Deployment

This action is typically used to delete one or more user accounts and
associated resources from Active Directory. This action, should be the
last action. First the user's resources, e.g. group memberships, home-
and profile directories should be deleted.

For this action, the user account is identified by a variable (default:
%UserObject%). To execute this action successfully, the variable must
have a valid value. The variable is an output variable of the action Script

Action: Get user (AD) on page 31. The Get user script action supports
several ways to find the user and fill the variable.

UMRA Help

With this action you can not delete local computer accounts and
Windows NT4 domain account. Use Script Action: Delete user (no AD) on
page 86 instead.

Properties

Property
Name

Description Typical
setting

Remarks

User Object An data structure
representing the
user account. Use
the action 'Get
user (AD)' to find
the user account
in Active Directory
and setup the
variable that
contains the 'User
Object'.

%UserObject% See Deployment section.

See also:

Help on help

Script Action: Get user (AD) on page 31

Script Action: Move - rename user (AD) on page 63

Script Action: Delete user (no AD) on page 86

UMRA Basics on page 3

Script Action: Set user group memberships (AD)

Function

Makes an Active Directory user account a member of specified Active
Directory universal, domain global or domain local groups. The groups
can be either security or distribution groups.

Deployment

This action is typically used in a script that is intended to create new
users in Active Directory, after creation of the actual user account with

UMRA Help

Script Action: Create User (AD) on page 3. It can also be used for modifying
existing accounts.

The groups can be specified by two properties using LDAP names
(property: Group names (LDAP)) and pre-Windows 2000 names
(property: Group names (Pre-W2K name)). For both properties, the
LDAP name is used to add the user account to the group. For property
Group names (Pre-W2K name) the LDAP name is searched for in Active
Directory. If the group names are known in advance and there is no need
to use variables in the specification of the group names, it is
recommended to use property Group names (LDAP) to specify the
names of the groups. In case you want to use pre- Windows 2000 names
and variables, it is more convenient to use property Group names (Pre-

W2K name). This property contains a list with the pre-Windows 2000
names of the groups. The entries of the list can be a single group name
or a variable containing one or more group names specified as a text list.
When the action is executed, the application will search in Active
Directory to find the LDAP name of the group. The method used to
access Active Directory is determined by the syntax used to specify the
group name:

Syntax Example Description

GroupName Administrators The Active Directory path of
the %UserObject% property is
used to access Active
Directory.

Domain\GroupName SEASONS\Administrators The application accesses Active
Directory through the domain:
LDAP://Domain

\\Server\GroupName \\SPRING\Administrators The application accesses Active
Directory by accessing the
server: LDAP://Server

Note that for each item of the list a different syntax can be used.

A common scenario to specify a number of groups using variables is as
follows:

1. A number of Set Variable on page 544 script actions are used to
initialize multiple variables, each containing a number of groups:
%GroupSetA%, %GroupSetB%, %GroupSetC% etc.

UMRA Help

2. The Map variable on page 567 script actions copies the content of
one of these variables into the resulting variable %GroupSet%.
The mapping is somehow determined by the content of the input
data.

3. The Group names (Pre-W2K name) property contains a single
entry: %GroupSet%

The mapping performed in step 2 determines the groups of which the
user account becomes a member.

Properties

Property
Name

Description Typical
setting

Remarks

User
Object

Internal application
object representing
the user account that
must be made a
member of specified
groups.

%UserObject% The User Object must always
be specified as a variable.
This variable must have been
set by a previous script
action, e.g. the Script Action:
Create User (AD) on page 3
will by default fill the
variable %UserObject% with
the User Object of the newly
created user.

UMRA Help

Group
names
(LDAP)

The names of the
groups of which the
user account must
become a member.
Each group name is
specified by 2 text
strings: A display
name and the LDAP
name. The display
string has the easy
readable format
Domain/GroupName,
for instance:
TOOLS4EVER/Users.
The LDAP name is
the name of the
group in Active
Directory. The LDAP
name is used by the
application to add
the user to the
group.

LDAP group
names
specified by
means of a
special dialog

The property is list with text
pairs. Each pair represents a
single group. The pair items
are the display name and the
LDAP name of the group,

Group
names
(Pre-W2K
name)

The names of the
groups of which the
user account must
become a member.
Each group name is
specified by its pre-
Windows 2000
name. This name
corresponds with the
Windows NT naming
style. The application
will first search for
the full LDAP-name
of the group. See the
on- line help for
more information.

Pre- Windows
2000 group
names

The property is a list. The list
contains the pre-Windows
2000 names of the groups.
The name can be specified
using the following syntax:
DOMAIN\GroupName,
\\SERVER\GroupName,
GroupName. See the
Deployment section for
more information.

Multiple domain controllers

In a scenario where there are multiple domain controllers in a network,
the LDAP group name may have to be specified somewhat differently.

UMRA Help

After the LDAP names of the groups have been specified, edit the LDAP
names of the groups manually and specify the same server for the
binding as the one which was used to create the user. This needs to be
done for each group of which the user should become a member.

If this procedure is not followed, an error may occur in a situation where
this script action is used for a user which has just been created. This is
because the Set User Group Memberships (AD) action may be executed
on a different domain controller than the one on which the user has just
been created. This is inherent to the way in which in the script action
operates:

1. It retrieves the full LDAP user name from the user object.

2. Then it connects to a given domain controller using the specified
AD group.

3. Finally, the script actions tells the AD group to make the user a
member of the group.

This is where it can go wrong, since this user may not be known yet on
any other domain controller than the one on which it has just been
created.

See also:

Help on help

UMRA Basics on page 3

Script Action: Remove user group memberships (AD)

Function

Removes the group memberships of an Active Directory user account.
You can filter on local, global, universal, security and distribution groups.

UMRA Help

Deployment

This action is typically used in a script that is intended to manage
existing user accounts. With this action you can delete the user accounts
from all or various groups of which the account is a member. You can
define 2 filters to determine the groups from which the user account is
deleted:

Filter 1: local - global - universal groups. For each possible value you can
specify if the user account must be deleted from the corresponding
groups.

Filter 2: security - distributions groups. For each possible value you can
specify if the user account must be deleted from the corresponding
groups.

The user account is deleted from a group if both filter criteria are met.
Example: If you set the filter properties for global and security to Yes and
all other filter properties to No, the user account is deleted from a global
security group but not from a global distribution group.

Properties

Property
Name

Description Typical
setting

Remarks

User Object A data structure
representing the
user account.
Use the action
'Get user (AD)' to
find the user
account in Active
Directory and
setup the
variable that
contains the
'User Object'.

 %UserObject% The User Object must
always be specified as a
variable. This variable must
have been set by a previous
script action, for example
Script Action: Get user (AD).

UMRA Help

Remove from
local groups

Remove the user
account from
local groups

Yes See Deployment section

Remove from
global groups

Remove the user
account from
global groups
(scope: local -
global -
universal).

Yes See Deployment section

Remove from
universal
groups

Remove the user
account from
universal groups
(scope: local -
global -
universal).

Yes See Deployment section

Remove from
security groups

Remove the user
account from
security groups
(scope: security -
distribution).

Yes See Deployment section

Remove from
distribution
groups

Remove the user
account from
distribution
groups (scope:
security -
distribution).

Yes See Deployment section

See also:

Script Action: Set User Group Memberships (AD) on page 56

Script Action: Set User Global Group Memberships on page 88

Help on help

UMRA Basics on page 3

UMRA Help

Script Action: Move - rename (AD)

Function

Moves a user account in Active Directory to another OU or container
within the same domain. Alternatively, you can also use this action to
rename a user account in an organizational unit - container of Active
Directory.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts. With this action you can execute 2 operations:

1. Move user account(s) to other organizational units: The user
account can be moved to another organizational unit in the same
domain. When the account is moved, the common name of the
user account is not changed by default. The common name is
part of the full LDAP name of the user account that uniquely
identifies the user account in the organizational unit or
container. Hence, the common name must be unique in the
organizational unit. If you execute this action and move an
account to an OU and a user account with the same common
name already exists in the OU, the action will fail. Alternatively,
you can rename the account (property NewName).

2. Rename a user account: With this action you can change the
common name of the user account. The common name is part of
the full LDAP name of the user account that uniquely identifies
the user account in the organizational unit or container. Hence,
the common name must be unique in the organizational unit. If
the new common name is not unique, the action will fail and an
error is generated.

You can also combine the 2 possible operations and both move and
rename the user account. When you want to move the user account,
you need to specify the destination organizational unit or container of
the user account. If you only want to rename the user account, the
destination organizational unit or container is not changed for the user
account. To specify the destination organizational unit or container you
have 2 options:

UMRA Help

1. Specify properties Domain and Organizational Unit-Container:
When moving user accounts to another organizational unit, you
must specify the new name of the OU. If the domain is not
changed, you don't need to specify property Domain. If you want
to use this option, you don't need to specify the property OU-
Container LDAP name

2. Specify property OU-Container LDAP name: If you use this
option, you need to specify the full LDAP name of the destination
organizational unit - container. Examples: ou=Schools,
dc=Tools4ever, dc=Com, LDAP://ou=Schools, dc=Tools4ever,
dc=Com, LDAP://domaincontroller/ou=Schools, dc=Tools4ever,
dc=Com. With this option, you don't need to specify the
properties Domain and Organizational Unit-Container.

Properties

Property
Name

Description Typical
setting

Remarks

User Object A data structure
representing the user
account. Use the action
'Get user (AD)' to find the
user account in Active
Directory and setup the
variable that contains the
'User Object'.

%UserObject% The User Object
must always be
specified as a
variable. This
variable must have
been set by a
previous script
action, for example
Script Action: Get
user (AD) on page
31.

UMRA Help

Domain The name of destination
domain (DNS or NETBIOS
style, e.g. tools4ever.com
or TOOLS4EVER) of the
user account. If the
domain name is not
specified, the application
assumes that the account
is not moved across
domains. When no
destination
Organizational Unit-
Container is specified, the
user account is not moved
but renamed only.

 Specification of this
property is required
only if you want to
move and optionally
rename the user
account across
domains.

Organizational
Unit-
Container

The name of the
destination
Organizational Unit-
Container of the user
account (example:
Students or
Students/Group1). When
this property is not
specified, the user
account is not moved but
renamed only unless the
property 'OU-Container
LDAP name' is specified.

 Specification of this
property is required
only if you want to
move and optionally
rename the user
account to another
organizational unit
or container.

UMRA Help

OU-Container
LDAP name

The full LDAP name of the
destination
Organizational Unit-
Container (example:
ou=Schools,
dc=Tools4ever, dc=Com).
When specified, the
properties 'Domain' and
'Organizational Unit-
Container' are ignored.
When no destination
Organizational Unit-
Container is specified, the
user account is not moved
but renamed only.

 Specification of this
property is required
only if you want to
move and optionally
rename the user
account to another
organizational unit
or container.

Domain
controller

Optional: The name of the
domain controller, used
to access to the domain,
container or
organizational unit where
the account is moved to
or where the account
exists in case of a rename
operation. This property
'helps' User Management
Resource Administrator to
access Active Directory.

New name The new name of the user
account. The name is the
name that identifies the
user account in Active
Directory e.g. the
'Common- Name'. If this
property is not specified,
the account is not
renamed. To rename
other names of user
accounts, use the action
'Edit user (AD)'.

 You only need to
specify this property
if you want to
rename the user
account, e.g. change
the common name.

See also:

Script Action: Move cross-domain (AD) on page 67

UMRA Help

UMRA Basics on page 3

Script Action: Move cross-domain (AD)

Function

Moves an existing user object (users and computer accounts) from an
OU in one domain to an OU in another domain.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts. When moving a user account to another domain,
several restrictions apply:

1. The source and destination domain must be in the same forest of
domains.

2. The destination domain must be in native mode.

Properties

The script action Move cross domain (AD) has the following properties:

Proper
ty
Name

Description Remarks

Source
object

The Source object
property is the LDAP name
of the object to be moved in
the original location (before
the move).

Important: In case the source domain
has multiple domain controllers, the
domain controller with the role of RID
master must be used to access the
source account. Access to the source
account is controlled by specifying a
binding string as part of the LDAP
name:

LDAP://server_rid_master.mydomai
n.com on page 63/
CN=<AccountToMove>,
OU=<SourceOU>,
DC=<mydomain>.DC=com.

UMRA Help

Target
containe
r

The Target container
property is used to specify
the full LDAP name of the
destination of the object.
The container can be an
organizational unit, domain
or general container (e.g.
Users). The container must
be specified using a server
binding string in DNS
format:
goldfish.marketing.TheFirm.
com. This type of
specification enforces the
move operation to use
Kerberos authentication
instead of NTLM.

New
name

New name only has to be
specified if the (common)
name of the user account
changes. If not, it can be left
unspecified.

See also:

Script Action: Move - rename user (AD) on page 63

UMRA Basics on page 3

non- Active Directory

Script Action: Create User (no AD)

Function

Creates a user account in an NT4 domain or on a local computer. This
action is intended to create user accounts on NT4 domains. Alternatively
it can be used to create user accounts on local computers. In addition to
just creating the account itself it also will configure several attributes of
the account, such as the password and the description of the account.

Some attributes of the user account may specify the usage by the
account of other resources in the network. These resources themselves
will not be created by this action. If these resources need to be created,

UMRA Help

this can be done by separate actions that follow this action in the User
Management Resource Administrator script. An example of such a
property is the Home Directory. When specified in this Create User
action, the Home Directory attribute of the user account will be set. The
directory itself however is not created. In order to create the directory
itself, the action Script Action: Create Directory on page 341 should be
performed.

The action may also be used to create user accounts in the default Users
container of Active Directory domains. When this action is used to
create domain accounts on Active Directory domains, it will correctly
create the account in the Active Directory, but many of the Active
Directory properties will have default values. To create Accounts in
Active Directory with other than default settings, use the action Script

Action: Create User (AD) on page 3 instead.

Deployment

This action is typically used as core part of a script designed to create
users on NT4 domains or local (non domain controller) computers, in
order to create the account itself. In such a script this is usually the first
major action invoked. After creating the account, the script usually
continues by invoking actions to create home directories, home shares,
group memberships, etc.

UMRA Help

Properties

Property
Name

Description Typical setting Remarks

Domain The Domain in which
to create the user
domain account.

%Domain% Often the domain
name is used in many
different actions, and
is determined and
stored in a variable
previous to the action
(e.g. %Domain%).

Alternatively the
domain name can be
specified directly
here. Use the
NETBIOS (NT4-style)
domain name and
not the DNS name of
the domain This is
usually the same as
the first part of the
DNS domain name.

Computer The computer on
which the local user
account is created

 If specified, the
domain property is
ignored, and the
account created is a
local account on the
specified computer,
and not a domain
account.

UMRA Help

Name
generation
algorithm

Specifies the name of
the algorithm used to
generate user names

 The main purpose of
the Name Generation
algorithm is to create
unique names that
adhere to your
company's syntax
requirements. A
common
implementation of
the algorithm will
take as input the
three variables
%FirstName%,
%MiddleName% and
%LastName%, and
generate from these
the variables
%FullName% and
%UserName%. Here
%FullName%
contains the
complete name of
the user formatted
for display purposes,
and %UserName%
the name formatted
for use as NT
Account. These
resulting variables
can then be used as
input for the other
properties of this
action.

For a thorough
discussion, please see
Name Generation on
page 121.

UMRA Help

Username The name of the user
account

%UserName% A user name cannot
be identical to any
other user or group
name on the
computer being
administered. It can
contain up to 20
uppercase or
lowercase characters,
except for the
following: " / \ [] : ; |
= , + * < >

A user name cannot
consist solely of
periods (.) or spaces.

Typically the name
contained in
%UserName% is
generated by the
name generation
algorithm.

Full name The full name of the
user

%FullName% Typically the name
contained in
%FullName% is
generated by the
name generation
algorithm.

UMRA Help

Password
generator

The specification how
to generate
passwords for the
user account

 Specifies the method
used to generate a
password for the user
account. These
methods vary from
simple (easy to
remember)
passwords to strong
passwords. There are
several predefined
settings available.

The resulting
password will be
stored in a variable.
By default it is stored
in the variable
%Password%. This
variable is used as the
value for the
Password property.

Password The password for the
created account

%Password% Typically the name
contained in the
variable %Password%
is generated by the
Password
generator. To create
the same password
for all users you can
specify the password
here directly. For
example "test1234".
You can also read the
password from the
input file.

Description A text string, that will
be shown in the
Description field of
the user account in
windows. The sting
can have any length

UMRA Help

Home
directory

The home directory of
the user as specified
in the "Home folder"
setting of the user
account

\\%HomeServer%\
users\
%UserName%

The value can be
specified either in the
form \\<server
name>\<share
name>\<rest of
path>, or as an local
path e.g.
G:\UserData\<user
name>.

Note, This
specification does
create the home
directory itself if it
does not exist. In
order to create the
home directory,
specify the action
"Create Directory" in
the User
Management
Resource
Administrator script
after this action.

Typically the name
contained in
%UserName% is
generated by the
name generation
algorithm, and the
name contained in
\\%HomeServer% is
specified previously
in the script, or in the
import file.

UMRA Help

Home
directory
Drive

The drive letter to
which the home
directory is
connected. Specify
only the drive letter
itself without colon
and or backslash

 If the drive letter is
specified, the Home
directory must be
specified in the form
\\<server
name>\<share
name>\<rest of
path>, and not as a
local path.

User profile The profile path of the
user account.

\\%HomeServer%\
profiles\
%UserName%

The value must have
he form \\<server
name>\<share
name>\<rest of
path>.

Logon script Full or relative path to
the script file that is
executed by Windows
when the user logs on

\\%HomeServer%\
scripts\
%UserName%.bat

or

%UserName%.bat

If a relative path is
specified, this is
relative to the default
Script directory of
Windows.

User must
change
password at
next logon

Specifies whether the
user must change the
password at the next
logon

Yes Valid specifications
are YES and NO. The
default value is NO.
When set to YES, the
"User cannot change
password " property
must by set to NO.

User cannot
change
password

Specifies whether the
user is disallowed
change the assigned
password.

No Valid specifications
are YES and NO. The
default value is NO.
This setting has no
effect on members of
the administrators
group. When set to
YES, the "User must
change password at
next logon" property
must by set to NO.

UMRA Help

Password
never
expires

Specifies whether the
password will never
expire

 Valid specifications
are YES and NO. The
default value is NO.
This setting overrides
the "Maximum
Password Age"
setting in the
password policy for
the
domain/computer.

No password
required

Specifies whether it is
allowed to specify an
empty Password value
for the user account.

No Valid specifications
are YES and NO. The
default value is NO.
Setting this value to
YES allows empty
passwords to be
specified. For security
reasons it is strongly
advised to set this
property to NO. If not
specified, the
password is required.

Computer
account

This is a computer
account for a MS
Windows NT
Workstation/Windows
2000 Professional or
Windows NT
Server/Windows 2000
Server that is a
member of this
domain. Default value:
'No'.

No Specify Yes is the
account represents a
computer -
workstation account.

Account
disabled

Specifies whether the
account should be
create in the disabled
state.

 Valid specifications
are YES and NO. The
default value is NO.

Account
expiration

Specifies the date
after which the
account is expired

 If not specified, the
account will never
expire.

UMRA Help

Logon hours The hours the user
account can log on to
the domain. By
default, domain logon
is allowed 24 hours a
day, 7 days a week.

 The value is specified
as a text of 42
hexadecimal
characters,
representing all the
hours of a week. The
hours of each day are
represented by 6
characters.

Workstations A list of workstation
names, separated by
",", on which the user
is allowed to logon.

 If specified, the user
is only allowed to
logon when seated at
one of the computers
(workstation or
server) listed. A
maximum of 8
computer
(workstation or
server) names can be
specified.

If not specified, such
an explicit restriction
does not apply.

Special user
comment

A text string
containing additional
comments

 This property of an
user account is not
exposed in the User
Manager for Domains
on a NT 4 machine, or
the local accounts
snap-in on windows
2000,XP and 2003
computers, but may
be shown for
informational
purposes in other
applications.

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage. However, it may

UMRA Help

be that the actual value of a specific property is required for an
successive action in the User Management Resource Administrator
script. To facilitate this need, any property can be explicitly configured to
be saved in a variable when the action has been performed.

For example, when the password of a user is created with the password
generator, the resulting password value may be stored in a variable, so it
can be exported to a file by an other action in the script.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with a blue arrow
in the properties list.

Property Description Default
variable
name

Remarks

User
name

The name of
the user
account

%UserName% If more names have been tried as
a consequence of the user name
generation algorithm, this
contains the last name tried.

Full name The full name
of the user

%FullName% If more names have been tried as
a consequence of the user name
generation algorithm, this
contains the last name tried.

Password The password
for the
created
account

%Password%

See also:

UMRA Basics on page 3

UMRA Help

Script Action: Edit user (no AD)

Function

Edits an existing user account. All main properties and attributes of the
account, including password, full name, home directory settings etc. can
be modified with this action.

Deployment

This action is typically used as one of the main action to manage existing
user accounts. The account can be a:

 Windows NT 4 domain account

 Local workstation or member server account

 Active Directory account. For an Active Directory account, you
can also use Script Action: Edit user (AD) on page 37 to edit the
account.

To execute this action you need to specify the properties that identify
the user account: Username and Domain or Computer. To edit a user
account on an Active Directory workstation, you need to specify the
name of the workstation for the Computer property. By default, all
properties that effect the user account are not specified, e.g. nothing is
changed for the user account. By specifying one or more properties,
changes are made.

Properties

Property
Name

Description Remarks

Domain The name of the domain of the
user account. The domain can be
specified using with a DNS or
NETBIOS name. If the Computer
property is specified, this
property is ignored.

To specify the user account,
specify properties Username
and Domain or Computer.

UMRA Help

Computer The name of the computer that
maintains the user account. This
computer can be specified with a
DNS or NETBIOS name. The
computer can be a domain
controller of a Windows
NT4/2000/2003 domain, a
member server of a domain or a
workstation. If this property is
specified, the 'Domain' property
is ignored.

To specify the user account,
specify properties Username
and Domain or Computer.

Username The name of the user account.
The name equals the SAM
account name of the user
account.

To specify the user account,
specify properties Username
and Domain or Computer.

Full name The full name of the user
account. When specified, the
current name of the user
account is changed into the
name specified.

Password
generator

A password can be generated
automatically. The 'Password
generator' specifies how the
password is generated, e.g.
password length, password
complexity requirements,
password output variable etc.
When this property is specified
the password is generated
automatically. The password
output variable (default:
%Password%) should correspond
with the variable generated by
the password generator.

Password The password of the user
account.

Description A description associated with the
user account. The field can
contain a text of any length.

UMRA Help

Home
directory

The path of the home directory
of the user account. Note that
this specification does not create
the home directory. Instead, it
specifies the home directory in
the SAM user account database.
You can create the home
directory, by adding the action
'Create Directory' to the script.

Home
directory
drive

The drive letter assigned to the
user's home directory for logon
purposes.

User profile A path to the user's profile. Note
that this specification does not
create the profile directory.
Instead, it specifies the profile's
path in the SAM user account
database.

Logon script The path for the user's logon
script file. The script file can be a
.CMD file, an .EXE file, or a .BAT
file.

User must
change
password at
next logon

The password is expired. Use this
property to force the user to
change the password at the next
logon. Note that the user can
logon using the current
password.

User cannot
change
password

The user cannot change
password. When the user cannot
change the password, only the
administrator can change the
password.

Password
never expires

The password should never
expire on the account.

No password
required

No password is required for the
user account.

UMRA Help

Account
disabled

The user's account is disabled. If
an user account is disabled, the
account does exist but cannot be
used to logon to the network.

Account
expiration

The time and date when the
account expires. The value can
be 'Never' or a time and date.

Logon hours The hours the user account can
log on to the domain. By default,
domain logon is allowed 24
hours a day, 7 days a week.

The value is specified as a text
of 42 hexadecimal characters,
representing all the hours of a
week. The hours of each day
are represented by 6
characters.

Workstations Optional: the names of the
workstations from which the
user can log on (8 maximum),
separated by commas.

Special user
comment

A user comment. The field can
contain a text of any length.

See also:

UMRA Basics on page 3

Script Action: Create User (no AD) on page 68

Script Action: Edit user (AD) on page 37

Script Action: Edit user logon

Function

Edits the logon settings of an existing user account . The account is
identified by a variable containing the User Object. Use the Script Action:

Get user (AD) on page 31 to find the user first. For the user account, all
regular attributes can be changed and/or reset.

Deployment

This action is typically used as one of the main action to manage existing
user accounts in Active Directory. You can use this action for a single
change, for instance resetting the password of an account or multiple

UMRA Help

changes like home directory, profile directory and Active Directory
attributes. To change the common name (full name) of a user account,
you cannot use this action. Use the Script Action: Move - rename user (AD)
on page 63 instead to do this.

For this action, the user account is identified by a variable (default:
%UserObject%). To execute this action successfully, the variable must
have a valid value. The variable is an output variable of the action Script

Action: Get user (AD) on page 31. The Get User action supports several
ways to find the user and fill the variable.

The Edit user logon action contains a large number of properties. As
described above, the User Object property is used to identify the user
account. Other properties are initially not specified. This means that the
corresponding Active Directory attributes of the user account are not
changed when the action is executed. Only when a property is specified,
the attribute is updated in Active Directory.

Properties

Property
Name

Description Typical
setting

Remarks

User Object An data structure
representing the
user account. Use
the action Get
user (AD) on page
31 to find the
user account in
Active Directory
and setup the
variable that
contains the 'User
Object'.

%UserObject% See Deployment section.

UMRA Help

Username The SAM account
name of the user
for which you
want to edit the
logon settings.

 You should only use this option
when you are not using the
%UserObject% variable. Instead
of the %userObject variable an
user account can also be
identified by the user name
and the domain name or the
domain controller.

Domain The domain in
which the user
account, for
which you want
to edit the logon
settings, is
located.

 You should only use this option
when you want to identify the
user account by username and
domain name.

Domain
controller

The domain
controller of the
domain in which
the user account,
for which you
want to edit the
logon settings, is
located.

 You should only use this option
when you want to identify the
user account by username and
domain controller.

Password
generator

The specification
how to generate
passwords for the
user account

 Specifies the method used to
generate a password for the
user account. These methods
vary from simple (easy to
remember) passwords to
strong passwords. There are
several predefined settings
available.

The resulting password will be
stored in a variable. By default
it is stored in the variable
%Password%. This variable
must be specified as the value
for the Password property.

UMRA Help

Password The password of
the user account.

 Typically the name contained in
the variable %Password% is
generated by the Password
generator. To create the same
password for all users you can
specify the password here
directly. For example
"test1234". You can also read
the password from the input
file.

User must
change
password
at next
logon

The password is
expired. Use this
property to force
the user to
change the
password at the
next logon. Note
that the user can
logon using the
current password.

 When set to Yes the User
cannot change password
property must by set to No.

User
cannot
change
password

The user cannot
change password.
When the user
cannot change
the password,
only the
administrator can
change the
password.

 Valid specifications are Yes and
No. This setting has no effect
on members of the
administrators group. When set
to Yes, the User must change
password at next logon
property must by set to No.

Password
never
expires

The password
should never
expire on the
account.

 Valid specifications are Yes and
No. The default value is No.
This setting overrides the
Maximum Password Age
setting in the password policy
for the domain/computer.

UMRA Help

Account
disabled

The user's
account is
disabled. If an
user account is
disabled, the
account does
exist but cannot
be used to logon
to the network.

Unlock the
account

Unlock an user
account. When an
account is locked
it is temporarily
impossible to log
on to the
network. An
account gets
locked when an
incorrect
password is
specified.

 Valid specifications are Yes and
No. The default value is No.
When set to Yes an locked
account will be unlocked. This
property can only be used
when an account is locked.

See also:

Help on help

Script Action: Move - rename user (AD) on page 63

UMRA Basics on page 3

Script Action: Delete user (no AD)

Function

Deletes a user account from a NT4 domain or local computer.

Deployment

This action is typically used as core part of a script designed to delete
user accounts. With this action you can delete user accounts from NT4
domains, member servers and workstations and local computers. You
can also delete user accounts from Active Directory domains running

UMRA Help

Windows 2003/2000 but for Active Directory it is recommended to use
Script Action: Delete user (AD) on page 55 instead.

The user account that must be deleted is specified by the name of user
account and the domain or computer.

Properties

Property
Name

Description Remarks

Domain The name of the domain from
which the account is deleted.
The domain can be specified
using with a DNS or NETBIOS
name. If the 'Computer'
property is specified, this
property is ignored.

Computer The name of the computer
from which the account is
deleted. This computer can be
specified with a DNS or
NETBIOS name. The computer
can be a domain controller of a
Windows NT4/2000/2003
domain, a member server of a
domain or a workstation. If this
property is specified, the
'Domain' property is ignored.

Username The name of the user account
that must be deleted.

The name is the SAM
account name.

See also:

UMRA Basics on page 3

Script Action: Delete user (AD) on page 55

UMRA Help

Script Action: Setup User Global Group Memberships

Function

Makes a Active Directory or NT4 user account member of a global group.
The global group can be a global group from a Active Directory, or an
NT4 domain. In both cases the group is identified by its NT4-style
(NETBIOS) name. The user and the groups must be all in the same
domain. The groups may be either security groups or distribution
groups.

Deployment

This action is typically used in a script that is intended to create new
users in Active Directory or NT4 domains, after creation of the actual
user account with Script Action: Create User (AD) on page 3 or Script Action:

Create User (no AD) on page 68. This action is then used to make the users
member of a global group.

Properties

Property
Name

Description Typical
setting

Remarks

Domain The NT4 style
(NETBIOS) name
of the domain
that contains
the global
groups

%Domain% If a DNS-style domain is given,
this is converted to a NT4-style
domain name by truncating at
the first "." encountered in the
name.

Domain
controller

Optional: the
name of the
NT4 style
(NETBIOS) name
of the domain
controller of the
domain that
contains the
groups

 If a value for the domain
controller is specified, the
value entered in the domain
property is not used.

UMRA Help

Username The NT4 or Pre-
Windows 2000
user logon
name of the
user that must
be added to the
groups.

 The logon name must exist on
the domain or domain
controller specified in order
for the action to succeed.

Any domain names and or
backslashes that are specified
in this field are automatically
stripped from the user name
before setting this property

Global groups A list of global
group names of
whom the user
is to be made a
member.
Multiple names
can be specified
by using a
comma "," as
separator.

 The groups must exist on the
domain or domain controller
specified in order for the
action to succeed. Any domain
names and or backslashes that
are specified in this field are
automatically stripped from
the user name before setting
this property. For more
information on the
specification of groups using
variables, see Data
specification - Text list on page
624.

Remove from
other global
groups

Indicates
whether or not
the user must
be removed
from all other
global groups

No

Error if
already
member

When set, no
error is
generated when
the user
account is
already a
member of the
global group.
Default value:
'No'.

No

UMRA Help

See also:

UMRA Basics on page 3

Script Action: Map variable on page 567

Script Action: Add account to local group

Function

Adds an existing user or global group account to a local group of a
domain, server or workstation.

Deployment

This action is typically used in a script that manages user accounts and
local group memberships. The action can be used in Active Directory,
Windows NT domains or workgroup environment. The account is an
existing user or global group account. In case the user account is created
in the same script, or the user is searched for in Active Directory the
security identifier (SID) of the user account can be used to specify the
new local group member.

The target local group is one of the following:

1. Active Directory domain local group. In this case you can also use
Script Action: Set User Group Memberships (AD) on page 56 to add
the account to the local group;

2. Windows NT4 domain local group. The group is a local group of
the domain, maintained on the primary and backup domain
controllers of the Windows NT4 domain.

3. Member server local group. The server is not a domain controller
and either a member server of an Active Directory domain,
Windows NT4 domain or a workgroup.

4. Workstation local group. The workstation is either a member
server of an Active Directory domain, Windows NT4 domain or a
workgroup.

Depending on the type of local group, you must specify the Local group

name and the Domain or Computer property to identify the local group
to which the new member is added.

The new member is specified by either the name (property: Member

(name)) or security identifier (SID) (property: Member (SID)) of the

UMRA Help

member. If the new member is a domain user account which is created
in the same script, and multiple domain controllers exist, it is strongly
recommended to use the security identifier to specify the new member.
By default, the Script Action: Create User (AD) on page 3 generates a
variable (%UserSid%) that holds the security identifier for the new user
account. This variable can be used to specify the property: Member

(SID) = %UserSid%.

The reason behind this mechanism is the fact that internally, the
network operating system will try to resolve a specified account name to
find the security identifier when the account is added to the local group.
This operation might fail in case different domain controllers are used to
create the account and to find the security identifier.

Properties

4.1.2.

Property
name

Description Typical
setting

Remarks

Computer The name of the computer that
contains the local group. The
computer can be a workstation,
domain member server, domain
controller or workgroup member.
The name must be specified as a
NETBIOS or DNS name. If this
property is specified, the property
'Domain' is ignored.

 When
specified, the
Domain
property is
ignored.

Domain The name of the domain that
contains the local group. The
domain must be specified as a
NETBIOS or DNS name. If the
group is not a domain local group,
this property must not be
specified.

 Only used if
the
Computer
property is
not
specified.

UMRA Help

Local group
name

The name of local group. The
name must be specified as a single
text field, for instance
'Administrators'. Preceding
domain and computer names and
(back)slashes are removed.

 Mandatory
property.
Name of the
local group
to which the
new member
is added.

Member
(SID)

The new group member, specified
as a (variable holding a) security
identifier (SID). When the SID of
the new member is available, it is
recommended to use this property
to specify the new member. If this
property is specified, the property
'Member (name)' is ignored.

 When
specified, the
Member
(name)
property is
not used.
See
Deployment
section for
more
information.

Member
(name)

The new group member specified
by the name of the new member.
When the SID of the new member
is available, it is recommended to
use property 'Member (SID)'
instead. When the SID is not
available, you should use this
property. The group member can
be a user account or global group.
The name must be specified using
syntax 'DOMAIN\\MEMBER' or
'MEMBER'.

 Only used
when the
Member
(SID)
property is
not used.
See
Deployment
section for
more
information.

Error if
already
member

When set, no error is generated
when the account is already a
member of the local group.
Default value: 'No'.

No

See also:

UMRA Basics on page 3

Script Action: Create User (AD) on page 3

Script Action: Set User Group Memberships (AD) on page 56

UMRA Help

Script Action: Create local group

Function

Using this action you can create a local group on a server or workstation.

Properties

Property
Name

Description Typical
setting

Remarks

Computer Name The name of
the
workstation or
member
server on
which to
create the
local group

 Used when creating a local
group on a member server
or workstation

May fail when setting local
groups on a Domain
controller. In that case
specify the domain name
rather than the computer
name

Domain The domain in
which to
create the
group.

Not used Typically used to create a
domain local group on a
domain controller.

Local Group
name

The local
group name

%GroupName% This name is required,

The cannot be identical to
any other user or group
name on the domain or
workstation being
administered. It can contain
up to 20 uppercase or
lowercase characters,
except for the following: " /
\ [] : ; | = , + * < >. A group
name cannot consist solely
of periods (.) or spaces.

UMRA Help

Comment A text string,
that will be
shown in the
Description
field of the
group in
windows. The
string can
have any
length.

Error if group
already exists

When set to
'Yes' an error
will be
generated if
the group
already exists

Yes

Remarks

This action is mainly intended to create local groups on Workstations
and member servers, outside of active directory.

To create local and or global groups in AD use Script Action: Create group

(AD) on page 138 instead.

Script Action: Remove group member

Function

Removes the group member from a specific group.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts. With this action you can remove a group member
from a specific group.

UMRA Help

Properties

Property Name Description Typical setting

Group domain name The domain name of the group
from which the member must
be removed. To identify the
group, specify a value for either
the preoperty "Group name" or
"Group computer name".

NA

Group computer name The computer name of the
group from which the member
must be removed (e.g.
SERVER_A). The name of the
computer can be a local
computer, server or domain
controller. To identify the group,
specify a value for either the
property "Group name" or
"Group domain name".

NA

Group name The name of the group as
specified by the SAM account
name (e.g. "Students"). To
identify the group, specify a
value for either the property
"Group domain name" or
"Group computer name".

NA

Member name The name of the group member
that must be removed. For
global groups, please specify the
SAM account name of the
member. For local groups, you
need to include the domain
name (e.g. STUDENTS\Group_A)

NA

Global group flag A flag which indicates if the
group is a globall group (="Yes"),
a domain group (="No"), or a
computer local group (="No").
The default value is "Yes".

Yes

UMRA Help

Script Action: Set primary group (non AD)

Function

Sets the primary group. Can be used both in Windows NT and in Active
Directory.

Properties

Property
name

Description Typical
setting

Remarks

Domain
controller

The name of the domain
controller that maintains the
account. To determine the
domain controller used to
set the primary group, either
this property or the property
Domain must be specified.

Domain The name of the domain
that maintains the account.
To determine the domain
controller used to set the
primary group, either this
property or the property
Domain controller must be
specified.

Account name The SAM account name of
the account for which the
primary group must be set.

%UserName%

Group name The name of the primary
group

See also:

Script Action: Set primary group (AD) on page 155

UMRA Help

General user Actions

Script Action: Edit user logon

Function

Edits the logon settings of an existing user account . The account is
identified by a variable containing the User Object. Use the Script Action:

Get user (AD) on page 31 to find the user first. For the user account, all
regular attributes can be changed and/or reset.

Deployment

This action is typically used as one of the main action to manage existing
user accounts in Active Directory. You can use this action for a single
change, for instance resetting the password of an account or multiple
changes like home directory, profile directory and Active Directory
attributes. To change the common name (full name) of a user account,
you cannot use this action. Use the Script Action: Move - rename user (AD)
on page 63 instead to do this.

For this action, the user account is identified by a variable (default:
%UserObject%). To execute this action successfully, the variable must
have a valid value. The variable is an output variable of the action Script

Action: Get user (AD) on page 31. The Get User action supports several
ways to find the user and fill the variable.

The Edit user logon action contains a large number of properties. As
described above, the User Object property is used to identify the user
account. Other properties are initially not specified. This means that the
corresponding Active Directory attributes of the user account are not
changed when the action is executed. Only when a property is specified,
the attribute is updated in Active Directory.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

User Object An data structure
representing the
user account. Use
the action Get
user (AD) on page
31 to find the
user account in
Active Directory
and setup the
variable that
contains the 'User
Object'.

%UserObject% See Deployment section.

Username The SAM account
name of the user
for which you
want to edit the
logon settings.

 You should only use this option
when you are not using the
%UserObject% variable. Instead
of the %userObject variable an
user account can also be
identified by the user name
and the domain name or the
domain controller.

Domain The domain in
which the user
account, for
which you want
to edit the logon
settings, is
located.

 You should only use this option
when you want to identify the
user account by username and
domain name.

Domain
controller

The domain
controller of the
domain in which
the user account,
for which you
want to edit the
logon settings, is
located.

 You should only use this option
when you want to identify the
user account by username and
domain controller.

UMRA Help

Password
generator

The specification
how to generate
passwords for the
user account

 Specifies the method used to
generate a password for the
user account. These methods
vary from simple (easy to
remember) passwords to
strong passwords. There are
several predefined settings
available.

The resulting password will be
stored in a variable. By default
it is stored in the variable
%Password%. This variable
must be specified as the value
for the Password property.

Password The password of
the user account.

 Typically the name contained in
the variable %Password% is
generated by the Password
generator. To create the same
password for all users you can
specify the password here
directly. For example
"test1234". You can also read
the password from the input
file.

User must
change
password
at next
logon

The password is
expired. Use this
property to force
the user to
change the
password at the
next logon. Note
that the user can
logon using the
current password.

 When set to Yes the User
cannot change password
property must by set to No.

UMRA Help

User
cannot
change
password

The user cannot
change password.
When the user
cannot change
the password,
only the
administrator can
change the
password.

 Valid specifications are Yes and
No. This setting has no effect
on members of the
administrators group. When set
to Yes, the User must change
password at next logon
property must by set to No.

Password
never
expires

The password
should never
expire on the
account.

 Valid specifications are Yes and
No. The default value is No.
This setting overrides the
Maximum Password Age
setting in the password policy
for the domain/computer.

Account
disabled

The user's
account is
disabled. If an
user account is
disabled, the
account does
exist but cannot
be used to logon
to the network.

Unlock the
account

Unlock an user
account. When an
account is locked
it is temporarily
impossible to log
on to the
network. An
account gets
locked when an
incorrect
password is
specified.

 Valid specifications are Yes and
No. The default value is No.
When set to Yes an locked
account will be unlocked. This
property can only be used
when an account is locked.

See also:

Help on help

UMRA Help

Script Action: Move - rename user (AD) on page 63

UMRA Basics on page 3

Script Action: Get user info

Security administrators and managers frequently request a user account
status report—that is, a report showing which accounts in a domain are
active, which are locked out, and which are disabled. Active Directory
(AD) user accounts have a bitmask attribute called userAccountControl
that you can check to determine the user account status. Some flags of
this attribute can easily be retrieved using an LDAP call in a generic
table, but some other flags like "Account disabled" and "User must
change password at next logon" cannot be retrieved this way. For these
user flags you can use the Get user info script action.

Please note that in test mode, this function will not return any values.

Properties

Property
Name

Description Typical
setting

Remarks

Domain %Domain% Often the domain name is used
in many different actions, and is
determined and stored in a
variable previous to the action (
e.g. %Domain%). The name of
the domain can be either in DNS
or NETBIOS style. (e.g.
Tools4ever.com or
TOOLS4EVER). For more
information on how to specify
the domain/OU/container in
which the user account is
created, see the Remarks
section below.

UMRA Help

Computer The name of the
computer that
maintains the
user account.
This computer
can be specified
with a DNS or
NETBIOS name.
The computer
can be a domain
controller of a
Windows
NT4/2000/2003
domain, a
member server
of a domain or a
workstation. If
this property is
specified, the
'Domain'
property is
ignored.

 To specify the user account,
specify properties Username and
Domain or Computer.

Username The name of the
user account.
The name equals
the SAM account
name of the user
account.

 To specify the user account,
specify properties Username and
Domain or Computer.

Full name The full name of
the user account.

Description A description
associated with
the user account

Account
disabled

Output only
property. When
this property is
set to Yes, the
account does
exist but cannot
be used to logon
to the network

 Based on property flag
ACCOUNTDISABLE (hex value
0x0002).

UMRA Help

No
password
required

Output only
property. When
this property is
set to Yes, no
password is
required for the
user account

 Based on property flag
PASSWD_NOTREQD (hex value
0x0020)

User
cannot
change
password

Output only
property. When
this property is
set to Yes, the
user cannot
change the
password. Only
the administrator
can change the
password.

 Based on property flag
PASSWD_CANT_CHANGE (hex
value 0x0040)

Locked out Output only
property. When
this property is
set to Yes, the
user account is
currently locked
out.

 Based on property flag
LOCKOUT (hex value 0x0010)

Password
never
expires

Output only
property. When
this property is
set to Yes, the
password for the
account will
never expire.

 Based on property flag
DONT_EXPIRE_PASSWD .

UMRA Help

Relative
identifier

Output only
property. The
relative identifier
(RID) uniquely
defines the user
account within
the domain

 In Windows 2000, the relative
identifier (RID) is the part of a
security ID (SID) that uniquely
identifies an account or group
within a domain. Each newly
created object in Active
Directory is automatically
assigned to an RID. Each domain
controller has a pool of RIDs. If
necessary, Windows adds to
these pools in batches of 500.
You chan check the range of
RIDs in a current pool using the
system command dcdiag /v
/test:ridmanager

See also:

Script Action: Get user (AD) on page 31

Script action: Terminal Services user settings

Function

Sets the Terminal Services settings for a new or existing user account.
The account either exists in a Active Directory or NT4 domain.

Deployment

This action is typically used in a script that is intended to:

 create new users in Active Directory or NT4 domains and to
setup the Terminal Services settings for each individual
account or

 to setup the Terminal Services for a number of existing user
accounts.

For new user accounts, the action that creates the user account should
precede this action. For new user accounts in Active Directory, it is
strongly recommended to create the user account using server binding,

UMRA Help

e.g. specify the domain controller both in this action and the action that
creates the user account in Active Directory.

Properties

Property
Name

Description Typical setting Remark
s

User
account

The name of user account for
which the Terminal Services
settings must be applied. The
user account must be specified
using the first part of the user
logon name
(j.smith@tools4ever.com ->
j.smith) in Active Directory or the
SAM account name (username) in
Windows NT4 networks.

%Username%

UMRA Help

Domain
Controller

The name of the domain
controller that maintains the user
account (DNS or NETBIOS style,
e.g. server_1.tools4ever.com or
SERVER_1). In case the user
account is just created and
multiple domain controllers exist,
this property should equal the
domain controller used to create
the account. If this value is
specified, the 'Domain' property
is ignored.

%DomainController
%

If the
Domain
Controlle
r property
is
specified
and the
user
account is
created in
Active
Directory
in the
same
script,
you must
specify
the same
domain
controller
in the
action
that
creates
the user
account
in Active
Directory.

UMRA Help

Domain The name of the domain (DNS or
NETBIOS style, e.g.
tools4ever.com or TOOLS4EVER)
of the user account. If this
property is specified and the
'Domain Controller' property is
not specified, User Management
Resource Administrator searches
for an arbitrary domain controller
of the domain. In case the user
account is just created and
multiple domain controller exist,
this domain controller might not
recognize the user as an existing
user account. In this case it is
advised to specify the property
'Domain Controller' instead. This
property is ignored if a value is
specified for the property
'Domain Controller'.

Profile path The Terminal Services Profile
path. The profile is a roaming or
mandatory user profile for use
when the user logs on to a
Terminal server. To enable a
roaming or mandatory profile,
type the network path in this
form: \\\\server name\\profiles
folder name\\user name. To
assign a mandatory user profile,
type the network path in this
form: \\\\server name\\profiles
folder name\\user profile name.
The Terminal Services profile path
is used for logging on to Terminal
servers only. If you specify a
profile path for logging on to
Windows 2000, the path is also
used for logging on to Terminal
servers unless you specify a
Terminal Services profile path
here.

UMRA Help

Home
directory

The Terminal Services home
directory. Each user on a Terminal
server should have a unique
home directory. This ensures that
application information is stored
separately for each user in the
multiuser environment. You can
specify a directory on the local
server (example:
C:\\Users\\%Username% - >
C:\\Users\\johnw) or shared
network directory
(\\\\Server_A\\Users\\%Usernam
e% - >
\\\\Server_A\\Users\\johnw). In
the latter case, you also need to
specify a value for the 'Home
directory drive' property.

Home
directory
drive

The Terminal Services home
directory drive. Specify the drive
letter (example: J:) mapped to the
shared network directory
specified for property 'Home
directory'. In case you specify a
local home directory, you should
not to specify this property.

Allow logon
to terminal
server

Specifies whether the user is
permitted to log on to the
Terminal server.

Yes

End
disconnecte
d session
(seconds)

Sets the maximum time that a
disconnected session remains
active on the server. If you specify
this property, a disconnected
session is reset after the time in
seconds elapses. The value is
specified in seconds. Do not
specify this property if you don't
want to reset a disconnected
session on the server.

UMRA Help

Active
session limit
(seconds)

Sets the maximum duration for
sessions in seconds. If you specify
a duration, the session is
disconnected or reset after the
time elapses. Do not specify this
property (or specify a value of 0
(zero)) to allow the connection to
continue for an unlimited period.

Idle session
limit
(seconds)

Sets the maximum idle time in
seconds allowed before the
session is disconnected or reset. If
you specify a duration, the
session is disconnected or reset
after there has been no client
activity for that period of time. Do
not specify this property (or
specify a value of 0 (zero)) to
allow clients to remain idle
indefinitely.

Disconnect
on
connection
broken -
time-out

Disconnect the client when the
connection to the server is
broken for any reason, including a
request, a connection error, or a
session limit is reached. The client
can reconnect to the session if
needed. If you specify no, the
session is reset. A reset session
cannot be reconnected.

Yes

Allow
reconnectio
n from any
client

Specifies that Terminal Services
allows reconnection to a
disconnected session from any
computer. This is the default
setting. If you select 'No' a
reconnection to a disconnected
session is restricted to the
computer that started the
session. This option is supported
only for Citrix ICA-based clients
that provide a serial number
when connecting."),

Yes

UMRA Help

User can
specify
initial
program

Specifies whether the user can
start any program. If you specify
'No' the program specified at
property 'Logon program' runs
automatically when the user logs
onto a remote computer.
Terminal server logs the user off
when the user exits that program.

Yes

Logon
program

The path and file name of the
application that you want to start
when the user logs on to the
Terminal server.

Logon
program
working
directory

The working directory path for
the application that you want to
start when the user logs on to the
Terminal server.

Connect
client drives
at logon

This option is for ICA clients only.
Specifies whether to
automatically reconnect to
mapped client drives.

Yes

Connect
client
printers at
logon

Specifies whether to
automatically reconnect to
mapped client printers.

Yes

Default to
main client
printer

Specifies whether to
automatically print to the client’s
default printer.

Yes

Remote
control

Specify the level to control or
observe a user's session. If you do
not specify value for this
property, the remote control
function is disabled.

Callback
enabled

Set this property to 'Yes' if you
want to enable the Terminal
Server callback function. By
default, (or when you specify
'No'), this function is disabled.

UMRA Help

Fixed
callback
phone
number

Set this property to 'Yes' if you
want the Terminal Server to
callback at a default fixed phone
number. You need to specify the
number for property 'Callback
phone number'.

Callback
phone
number

Specify the callback phone
number. If you set this, value, you
should also set the value of
properties 'Callback enabled' and
'Fixed callback phone number' to
'Yes'.

Script Action: Get terminal services user settings

Function

Retrieves the Terminal Services settings for an existing user account. The
account either exists in a Active Directory or NT4 domain.

Properties

Property
Name

Description Typical setting Remarks

User Object A data structure
representing the user
account. The property
is used to identify the
user account and is
normally generated
as a variable by a
previous script action.

%UserObject% Use only with
Windows 2003 or
higher!

User account The user account
specified by the
domain SAM account
name

%DomainUserName This property must
be used with
Windows 2000 and
Windows NT4
networks.

UMRA Help

Profile path Roaming or
mandatory profile
path to use when the
user logs on to the
Terminal Server.

Home
directory

Home directory for
the user. Each user on
a Terminal Server has
a unique home
directory. This
ensures that
application
information is stored
separately for each
user in a multi- user
environment.

Home
directory
drive

Home drive for the
user. In a network
environment, this
property is a string
containing a drive
specification to which
the home directory is
mapped.

Allow logon
to terminal
server

Specifies whether the
user is permitted to
log on to the Terminal
server.

Yes

Enable
remote
control

Value that specifies
whether to allow
remote observation
or remote control of
the user's Terminal
Services session.

UMRA Help

Max.
disconnection
time

Maximum amount of
time, in minutes, that
a disconnected
Terminal Services
session remains
active on the
Terminal Server. After
the specified number
of minutes have
elapsed, the session is
terminated.

Max.
connection
time

Maximum duration of
the Terminal Services
session, in minutes.
After the specified
number of minutes
has elapsed, the
session can be
disconnected or
terminated.

Max. idle
time

Maximum amount of
time, in minutes, that
the Terminal Services
session can remain
idle. After the
specified number of
minutes has elapsed,
the session can be
disconnected or
terminated.

Reconnection
action

Value that specifies
whether to allow
reconnection to a
disconnected
Terminal Services
session from any
client computer.

UMRA Help

Broken
connection
action

Value that specifies
the action to take
when a Terminal
Services session limit
is reached.

Client drives
at logon

Value that specifies
whether to reconnect
to mapped client
drives at logon.

Client
printers at
logon

Value that specifies
whether to reconnect
to mapped client
printers at logon.

Default
printer

Value that specifies
whether to print
automatically to the
client's default
printer.

Working
directory

Working directory
path for the user.

Initial
program

Path and file name of
the application that
the user wants to
start automatically
when the user logs on
to the Terminal
Server.

Script Action: Dial-in user settings

Function

Sets the dial-in setting for an active directory user account. This function
is used for remote access permissions to be explicitly allowed, denied, or
determined through remote access policies.

Deployment

This action is typically used in a script that is intended to create new user
accounts or manage existing user accounts. The user account for which

UMRA Help

the dial-in setting should be set is identified by the properties User

account and Domain Controller. To execute this action successfully,
these two properties must have a valid value. Different settings can be
applied to increase the security. Dial-in options should always be set as
securely as possible.

Properties

Property
Name

Description Typical setting Remarks

User
account

The name of user
account for which the
Dial-in settings must be
applied. The user
account must be
specified using the first
part of the user logon
name
(j.smith@tools4ever.com
-> j.smith) in Active
Directory or the SAM
account name
(username) in Windows
NT4 networks.

%UserName%

Domain
Controller

The name of the domain
controller that maintains
the user account (DNS or
NETBIOS style, e.g.
server_1.tools4ever.com
or SERVER_1). In case
the user account is just
created and multiple
domain controllers exist,
this property should
equal the domain
controller used to create
the account.

%DomainController%

UMRA Help

Allow
access

Specifies whether dial-
up, virtual private
network (VPN),
authentication switch, or
wireless access is
allowed for the user.

 Yes This option should
be cleared when
you want to use
the 'Use Remote
Access Policy'
option.

Use
Remote
Access
Policy

Specifies whether a
remote access policy is
used for setting dial-up,
virtual private network
(VPN), authentication
switch, or wireless
access properties for the
user.

 When set to 'Yes' ,
the 'Allow access'
option should not
be set.

No
Callback

If this property is
enabled (default), the
RAS server doesn't call
the caller back during
the connection process.

Yes Only one of the
three callback
options (No
Callback, Callback -
Set by Caller,
Callback - Always
Callback preset
phone number)
should be set to
Yes.

Callback -
Set by
Caller

Specifies whether a user
can set the callback
number.

No Only one of the
three callback
options (No
Callback, Callback -
Set by Caller,
Callback - Always
Callback preset
phone number)
should be set to
Yes.

UMRA Help

Callback -
Always
Callback
preset
phone
number

Specifies whether a
preset phone number is
used for the callback
function.

No Only one of the
three callback
options (No
Callback, Callback -
Set by Caller,
Callback - Always
Callback preset
phone number)
should be set to
Yes.
When set to 'Yes' a
Callback phone
number should be
set.

Callback
phone
number

Specifies the number the
server should call back
to.

 This option should
only be used when
the 'Callback -
Always Callback
preset phone
number' option is
set to Yes.

See also:

UMRA Basics on page 3

4.1.3. Active Directory

Script Action: Create object (AD)

Function

Creates an AD object

Deployment

This action is typically used for creating non-user objects in the AD (e.g.
an OU)

UMRA Help

Properties

Property Name Description Remarks

Domain The name of the
domain where the
object will be
created

 If you specify a value for this
property, please do not specify a
value for property LDAP
container since this specification
takes precedence.

Organizational Unit-
Container

The name of the
Organizational Unit-
container where
the object must be
created.

 If you specify a value for this
property, you should also specify a
value for the Domain property. In
that case, do not specify a value for
the property LDAP container since
this specification takes
precedence.

LDAP container The LDAP name of
the OU or container
where the object
must be created.

You must specify a value either for
this property or values for the
properties Domain and
Organizational Unit-Container.
If values for both methods are
specified, this method takes
precedence.

Domain (controller) The name of the
domain controller
or domain, used to
access the domain,
container or OU
where the object
must be created.

Optional. If this value is not
specified or if the name of a
domain is specified, the application
creates the account on a domain
controller that is to be determined
by Active Directory (serverless
binding). If a domain controller is
specified, the account is explicitly
created on the specified controller
(server binding). In both cases
ActiveDirectory will replicate the
account information to all domain
controllers in the ActiveDirectory
forests and domains.

Class name The object type to
be created. Specify
as the LDAP class
name.

UMRA Help

Common Name The CommonName
corresponds with
the Common Name
of the object. This
name defines the
contact in an OU
and must be
unique. You can use
the Name
generation
algorithm to make
the name
automatically
unique.

Object Distinguished
Name

Output only.

The Object
Distinguished Name
of the just created
object

Active Directory
Object

An internal data
structure
representing the
object. This
property is an
"output only"
property and is
generated
automatically. This
property can be
used in other script
actions.

 Note there is a difference between
the "Active Directory Object", and
the similar "User object" generated
by the "create user (AD) action.

Some Script actions allow you to
specify either the "User Object", or
the "Active Directory Object" as an
input value. Make sure that you fill
the correct corresponding input
parameter

Script Action: Delete Object (AD)

Function

Deletes an existing AD object

UMRA Help

Deployment

This action is typically used for deleting existing non-user objects in the
AD (e.g. an OU)

Properties

The object to delete must be specified by one of the following
properties:

Property Name Description

Active Directory Object An internal data structure representing the object.
This property is an "output only" property and is
generated automatically. This property cannot be
used in other script actions.

LDAP name The LDAP name of the object to be deleted.

SAM account name The SAM account name (Pre- Windows 2000) of the
object you want to delete.

See also:

Script Action: Create object (AD) on page 117

Script Action: Get attribute (AD)

Function

Gets the value of an attribute of an Active Directory user account or
other object. The attribute is specified by the LDAP display name of the
attribute. For the most common properties, the LDAP name can be
selected from a list.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts or other Active Directory objects. Once the
attribute is found for the object, the attribute value is saved in a variable
that can be used by subsequent actions of the script. The actions
supports multi-value attributes: When an attribute has multiple values,
the values can be stored as multi-values or converted to a single value.

UMRA Help

The attribute can be obtained from any Active Directory object. In most
scripts, the Active Directory object is an user account. The Active
Directory object must be specified as a variable. This variable is used for
property User Object or property Active Directory Object. The Script

Action: Get user (AD) on page 31 can be used to set the value for the
variable used for the User Object property. For the Active Directory

Object property, the action Script Action: Get Object (AD) on page 145 can
be used. Either one of the two properties User Object and Active

Directory Object must be used.

Properties

Property
Name

Description Typical
setting

Remarks

User Object A data structure
representing a user
account. If you want to
obtain the property of a
user account object, you
can use this property to
specify the Active Directory
object for this action. Use
the action 'Get user (AD)'
to find the user account in
Active Directory and setup
the variable that contains
the 'User Object'.

%UserObject% The User Object
must always be
specified as a
variable. This
variable must have
been set by a
previous script
action, for example
Script Action: Get
user (AD) on page
31.

Active
Directory
Object

A data structure
representing a Active
Directory object for which
an attribute must obtained.
This property can only be
used as a input variable.
Earlier in the script,
another script action must
have generated the value
for this variable.

UMRA Help

Convert to
text

If set to Yes, the value is
converted to text.

If not, the value is
converted to one of the
UMRA supported data
types.

Yes See section How
attribute values
are stored below

Multi-value
flag

Specifies how to convert an
AD multi-value attribute to
the resulting UMRA
variable.

If the AD value is multi-
valued, and this flag is Yes,
the value is stored as an list
or an table type variable.

If the AD value is multi-
valued. and this flag is No,
the values are converted
and stored in single text
variable.

No See section How
attribute values
are stored below

UMRA Help

LDAP
attribute
display name

The LDAP name of the
attribute. The name
identifies the attribute of
the Active Directory object.
For a number of well-
known attributes, the LDAP
name can be selected from
a list but you can specify
any other valid name.

 A LDAP attribute
has several names.
In the Windows
2003/2000
schema, for
instance the
common name and
the LDAP-Display-
Name are used.
(example: for the
NT-style name of a
user, the common
name is 'SAM-
Account-Name'
and the LDAP
display name is
sAmAccountName.
Note that these
names are case
sensitive.

Error if no
attribute
found

Generate an error for this
script action if the specified
attribute is not found.

Yes

Error if empty Generate an error for this
script action if the attribute
is found but attribute value
is empty.

Yes

Attribute
value

The value found for the
attribute. This property is
an 'output only' property
and is generated by the
application automatically.
By default, the value for
this property is stored in
variable %AttributeValue%.

 In most cases, you
must specify a
output variable for
this property.
Otherwise, the
value of the
attribute cannot be
used in other script
actions.

How attribute values are stored

Active Directory contains many different data types. In UMRA, the
following data types are supported:

UMRA Help

 text

 numeric

 date-time

 long integer

 Boolean

The way in which the values of output variables are stored, depends on
your settings. The table below provides an overview of the various
possible settings and the resulting effect for the way in which the output
variable is stored.

An instance of a single-valued attribute can contain a single value (e.g.
givenName, surname, title). An instance of a multi valued attribute (e.g.
group membership lists) can contain either a single value or multiple
values. Depending on the Multi-value flag and Convert to text properties
(Yes or No), the data types will be stored as follows:

If Convert to text
is

And Multivalue is Then the variable is
stored as type

Yes No text

Yes Yes text list

No Yes table

No No single unconverted data

If you are not sure what the original data type of an attribute value is,
the best option is to choose the table type (original value is not
converted).

See also:

UMRA Basics on page 3

Script Action: Set attribute (AD) on page 124

Script Action: Set attribute (AD)

Function

Dit is de versiie in master helpSets the value of an attribute of an Active
Directory object. The attribute to set is specified by the LDAP display

UMRA Help

name of the attribute. For the most common properties, the LDAP name
can be selected from a list. There are several option to specify which
changes are made. You can for example skip or overwrite an attribute
when the attribute value is already present.

Deployment

This action is typically used in a script that is intended to manage
existing objects and update a particular Active Directory attribute. You
can manage an Active Directory user account by the %UserObject%
variable (Use Script Action: Get user (AD) on page 31 to obtain the variable)
or every other Active Directory object by the %ActiveDirectoryObject%
variable (Use Script Action: Get object (AD) on page 145 to obtain the
variable).

Properties

Property
Name

Description Typical setting Remarks

User
Object

A data structure
representing a user
account. If you want
to set the property
of a user account
object, you can use
this property to
specify the Active
Directory object for
this action. Use the
action 'Get user
(AD)' to find the user
account in Active
Directory and setup
the variable that
contains the 'User
Object'.

%UserObject% The User Object
must always be
specified as a
variable. This
variable must have
been set by a
previous script
action, for example
Script Action: Get
user (AD) on page
31.

UMRA Help

Active
Directory
Object

A data structure
representing an
Active Directory
Object. If you want
to set the property
of an Active
Directory Object,
you can use this
property to specify
the Active Directory
object for this
action. Use the
action 'Get object
(AD)' to find the
object in Active
Directory and setup
the variable that
contains the
'Object'.

%ActiveDirectoryObject% The Active
Directory Object
must always be
specified as a
variable. This
variable must have
been set by a
previous script
action, for example
Script Action: Get
object (AD) on
page 145.

Active
Directory
object
LDAP
name

The full LDAP name
of the target Active
Directory object.
This object can be
any object in Active
Directory.

 Example: cn=John
Williams,
ou=Schools,
dc=Tools4ever,
dc=Com

UMRA Help

LDAP
attribute
display
name

The LDAP name of
the attribute. The
name identifies the
attribute of the
Active Directory
object. For a number
of well-known
attributes, the LDAP
name can be
selected from a list
but you can specify
any other valid
name.

 A LDAP attribute
has several names.
In the Windows
2003/2000
schema, for
instance the
common name and
the LDAP-Display-
Name are used.
(example: for the
NT-style name of a
user, the common
name is 'SAM-
Account-Name'
and the LDAP
display name is
sAmAccountName.
Note that these
names are case
sensitive.

UMRA Help

Attribute
value

The value of the
attribute. The value
must be specified as
a text value. When
the attribute value is
multi-value, the
multi- value flag
should be set to 'Yes'

 To include carriage
return line feed
characters, specify
the escape
character
sequences
according to the
following values.
At runtime, the
values will be
replaced into the
real values:

[\r]: Carriage
return

[\n]: Line feed

[\r\n]: Carriage
return - line feed

[\t]: Tab

By default, [\r\n] is
used to move to
the beginning of
the next line.

Example to specify
an address:
New York[\r\n]USA
will result in:

New York

USA

Skip if
new value
empty

Default value: 'No'.
Specify 'Yes' to
ignore this action if
the new attribute
value is empty. In
this case, the
attribute is not
changed. If this
property is not
specified or set to
'No', the target
attribute is always
updated."),

 The new attribute
value is empty
when the text
value contains no
characters. If the
value contains a
single blank
character, it is
considered not
empty.

UMRA Help

Multi-
value flag

Default value: 'No'.
This value must be
set to 'Yes' when
multi- value
attributes should be
set.

Append
versus
update
multi-
value flag

Default value: ' No'.
When set to 'Yes'
the current values
will stay the same.
When set to 'No' the
current values will
be replaced with the
specified values

See also:

Script Action: Get user table (AD) on page 51

Script Action: Delete attribute value (AD)

Function

This script action deletes the value of an attribute for a specified user
object. Note that you cannot delete the value of attributes with a
"System Only" flag in the attribute definition (e.g. memberOf).

Deployment

This action can be used to clean up attribute values which are no longer
used. This could be the case for instance, if you have a company where a
pager is no longer used. The attribute values for the pager numbers can
then be deleted.

UMRA Help

Properties

Property
Name

Description Typical
setting

Active Directory
object

A data structure representing the Active
Directory object. This object can be
obtained using either the Script Action: Get
user (AD) on page 31 or Script Action: Get
Object (AD) on page 145..

Use either this property or the property
Active Directory path to specify the
Active Directory object.

%UserObject%

Active Directory
path

The full LDAP name of the Active Directory
object of which the attribute must be
deleted. Use either this property or Active
Directory object to specify the Active
Directory object.

LDAP attribute
display name

The LDAP display name of the attribute
(e.g. telephoneNumber)

See also:

Script Action: Get user (AD) on page 31

Script Action: Get Object (AD) on page 145

Script Action: Remove SID history

Function

This script action allows you to remove the SID history of the object
contained in the variable %ActiveDirectoryObject%.

Deployment

This script action can be used as part of a complete cleanup operation to
remove user accounts.

UMRA Help

Property

Property name Description Typical setting

Active Directory
Object

A data structure
representing a Active
Directory object for which
the SID history must be
removed. This property can
only be used as a input
variable. Earlier in the script,
another script action must
have generated the value
for this variable.

The data structure
contained in
%ActiveDirectoryObject% is
obtained as a result of
either the action Get user
(AD) on page 31 or Get
object (AD) on page 145.

Script Action: Update group memberships (AD)

Function

Adds, removes or synchronizes an Active Directory account (user,
contact, group etc.) with a number of Active Directory groups. An
update of multiple group membership can take place. Multiple groups
can be specified for the Active Directory account. Both the Active
Directory account and groups must exist.

Deployment

The action can execute one of three main tasks. For each of these tasks,
multiple groups can be specified. The account can be any Active
Directory object that can become a member of Active Directory groups,
including user accounts, groups account etc. The three main tasks are:

1. Add an account to a number of specified Active Directory groups.
The account can already be a member of the specified groups or
other groups. The account is only added to the specified groups if
the account is not already a member of the group. The account is
not removed from any group;

2. Remove an account from a number of specified Active Directory
groups. For each specified group, the action checks if the account is
a member of the group. If this is the case, the account is removed
from the group. No other updates take place;

UMRA Help

3. Synchronize an account with a number of Active Directory groups.
On completion, the account only is a member of the specified
groups. To accomplish the synchronization, group memberships
can be removed and/or added.

In Active Directory, a user account always is a member of a primary

group. Also, an account cannot be removed from its primary group
unless another group is assigned as the primary group. By default, the
primary group is Domain Users. With this action, the primary group is
ignored. When using this action, do not remove an account from its
primary group and when synchronizing, do not include the primary
group in the synchronization list. Even when the the synchronization list
does not contain the primary group, the action will not remove the
account from the primary group. If the synchronization list does contain
the primary group, an error is generated when the action is executed.

Properties

Property
Name

Descriptio
n

Typical setting Remarks

Active
Directory
account
object

An Active
Directory
object for
which the
group
memberships
are updated.

%ActiveDirectoryObject
%

The value of this variable
should be obtained from
an other action. This
value can be obtained
from script actions:
Create user (AD), Create
contact (AD), Get User
(AD) or Get object (AD)
etc. You should make
sure the export variable
of these actions is the
same as the import
variable of the property
(default:
%ActiveDirectoryObject%
)

UMRA Help

Add list If the account
must be
added to a
number of
groups,
specify this
property. See
the Remarks
section for
more
information.

 Note: specify only one of
the properties 'Add list',
'Remove list' and 'Sync
list'.

Remove list If the account
must be
removed
from a
number of
groups,
specify this
property.
See the
Remarks
section for
more
information.

 Note: specify only one of
the properties 'Add list',
'Remove list' and 'Sync
list'.

Sync list If the account
group
memberships
must be
synchronized
with a
number of
groups,
specify this
property.
See the
Remarks
section for
more
information.

 Note: specify only one of
the properties 'Add list',
'Remove list' and 'Sync
list'.

UMRA Help

Binding
informatio
n

Optionally:
The binding
information
used to
access the
specified
groups and
Active
Directory
account. See
the Remarks
section for
more
information.

 If this property is not
specified, the action uses
the binding information
specified for each group,
or LDAP:// if the group
specification does not
include binding
information. If the
property is specified, the
binding information is
used unless a group is
specified with its own
binding information.

Remarks

Specify only one of the properties 'Add list', 'Remove list' and 'Sync list'.
The task executed by the action depends on which property is specified:
Add, Remove or Sync. Multiple groups can be specified in different ways
as described below. The groups must be specified using the
distinguished names, optionally including binding information. Valid
specifications are:

 cn=grp_a,ou=org_a,dc=domain,dc=com

 LDAP://cn=grp_a,ou=org_a,dc=domain,dc=com

 LDAP://dc.domain.com/cn=grp_a,ou=org_a,dc=domain,dc=com

Note that if a group is specified with binding information, the binding
information overrides the value of optional property Binding

information. So to use the value of property Binding information for all
groups, specify each group with its distinguished name: cn=Group...

For each of the lists, the corresponding properties can be specified as
follows:

1. Normal text, specifying a single group. Example:
cn=GroupA,dc=domain,dc=com;

2. Normal text, specifying multiple groups, each group quoted with
double quotes and individual group entries separated by comma's:

UMRA Help

"cn=GroupA,dc=domain,dc=com","cn=GroupB,
dc=domain,dc=com";

3. Normal text, specified as a text variable. The value of the text
variable can be specified as described in options 1 and 2. Example:
%GroupNames%;

4. Text list (specified as a variable): The variable contains a text list
value, each list entry specifying a single group. Example:
%GroupList%

5. Table (specified as a variable): The table should contain a least a
single column, with the first column specifying a single group in
each row. Example: %GroupTable%.

Script Action: Set group membership (AD)

Function

Makes an Active Directory object a member of specified Active Directory
universal, domain global or domain local groups. An update of the group
membership will take place. The group membership will be added to the
'Member Of' list of the Active Directory object.

Deployment

This action is typically used in a script that is intended to manage
existing objects in active directory. This action can be used to set group
memberships for every object in your Active directory.

In this action the Active Directory Object is identified by a property
value. You should either provide a data structure provided by an other
action (Property: Active Directory Object) or provide the object
distinguished (Property: Active Directory name). When you want to add
the object to multiple groups, the Group names must be obtained from
a multi-text variable Script Action: Manage multi-text value variable on page
558.

UMRA Help

Properties

Prope
rty
Name

Descrip
tion

Typical setting Remarks

Active
Directo
ry
Object

An Active
Directory
object for
which the
group
members
hips are
updated.

%ActiveDirectory
Object%

The value of this variable should be
obtained from an other action. This
value can be obtained from script
actions: Create user (AD), Create
contact (AD), Get User (AD) or Get
object (AD). You should make sure the
export variable of these actions is the
same as the import variable of the
property (default:
%ActiveDirectoryObject%)

Active
Directo
ry
name

The
object
distinguis
hed name
of the
Active
Directory
object.

 You should use either the Active
Directory Object
(%ActiveDirectoryObject%) to identify
the object or the Active Directory name.
The active directory name should be
specified by the object distinguished
name.
Example:cn=Group1,ou=OrgUnit,dc=too
ls4ever,dc=com

Group
names
(variabl
e)

The
names of
the
groups of
which the
object
becomes
a
member.

 The group names should be specified by
there full LDAP name. You should use a
multi-text variable to set this property
using the Script Action: Manage multi-
text value variable on page 558. The
group memberships are updated not
reset. The specified object will remain
member of earlier specified groups.

See also:

Script Action: Get Object (AD) on page 145

UMRA Help

Script Action: Remove specific group memberships (AD)

Function

Removes a specific group membership of an Active Directory user
account. Unlike the Script Action: Remove user group memberships (AD) on
page 60 it does not remove ALL user groups, but only a specific one.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts. With this action you can delete the user account
from a specific group of which the account is a member. More
specifically, you would be using this function if a user moves from
department A to B in which case you will need to remove specific group
memberships and add new ones.

Properties

Propert
y Name

Description Typica
l
settin
g

Remark
s

Group
name
(LDAP)

The full LDAP name of the group from which
the membership must be updated. To specify
the group, enter a value for either the
property "Group name (LDAP)", "Group name
(SAM account name)" or "Group object".

NA Unique
within OU

Group
name
(SAM
account
name)

The group name specified using the SAM
account name (e.g. DOMAIN_A\Group_C). To
specify the group, enter a value for either the
property "Group name (LDAP)", "Group name
(SAM account name)" or "Group object".

NA Unique
within
domain

UMRA Help

Group
object

A data structure representing the group. To
specify the group, enter a value for either the
property "Group name (LDAP)", "Group name
(SAM account name)" or "Group object".

NA This value
can only
be
generated
as a
variable
resulting
from a
previous
script
action.

Account
name

The LDAP name of the account from which the
group membership must be removed (e.g.
LDAP://DC_B/CN=Student,DC=Domain,DC=co
m)

NA

Account
object

A data structure representing the account
from which the group membership must be
removed. To specify the group member, enter
a value for either the property "Account
Name" or "Account object".

NA This value
can only
be
generated
as a
variable
resulting
from a
previous
script
action.

Script Action: Create group (AD)

Function

Creates a group in Active Directory. Using this action you can create
Local groups, Global groups or Universal groups. The groups can be
Security groups or Distribution groups. The groups can be placed in any
container you specify. A description can be added to easily identify the
group.

Deployment

This action is typically used for creating multiple groups. When building
your Active Directory from the ground up, one of the first thing you

UMRA Help

should do is create the groups of which the other Active Directory object
will be members. Groups can be used to easily allow or deny users
access to parts of the network.

Properties

Property
Name

Description Typical
setting

Remarks

Domain The domain in
which to create
the group.

%Domain% Often the domain name is
used in many different
actions, and is determined
and stored in a variable
previous to the action (e.g.
%Domain%). The name of
the domain can be either in
DNS or NETBIOS style. (e.g.
Tools4ever.com or
TOOLS4EVER). For more
information on how to
specify the
domain/OU/container in
which the group is created,
see the Remarks section
below.

Organizational
Unit- Container

The name of
the Active
Directory
Organizational
unit or other
container in
which to create
the group.

 Users Specify the path of the
organizational unit (OU) or
container relative to the
domain. To specify OUs in
OUs, use the full path
relative to the domain,
separated by slashes:
OU/ChildOU/GrandChildOU.
Examples: students or
students/group1. For
more information on how
to specify the
domain/OU/container in
which the group is created,
see the Remarks section
below.

UMRA Help

LDAP container Optional: The
LDAP name of
the container
in which to
create the
group.

 Optionally specifies name of
the Active Directory
container in which the
group is created directly by
means of its LDAP name
(Example: CN=users,
DC=tools4ever,DC=com
Example: OU=Group1,
OU=Students,
DC=tools4ever, DC=com)

This specification can be
used instead of the Domain
and Organizational Unit-
Container properties of this
action. If specified, the
specified LDAP Container
takes precedence, and the
Domain And Organization
Unit-Container properties
are ignored. For more
information on how to
specify the
domain/OU/container in
which the group is created,
see the Remarks section
below.

UMRA Help

Domain
(controller)

Optional: The
name of the
domain
controller or
domain used
to access the
domain.

 If this value is not specified,
the application creates the
account on a domain
controller that is
determined by Active
Directory (serverless
binding). If a domain
controller is specified, the
account is explicitly created
on the specified controller
(server binding). In both
cases, Active Directory itself
will replicate the account
information to all domain
controllers in the forest
automatically as required.

Depending on the actual
User Management
Resource Administrator
Script used, it may be
necessary to specify a
domain controller here. If
an subsequent script action
does an Active Directory
query to obtain information
of the newly created group,
this query may occur before
Active Directory has
replicated the new
information to other
Domain Controllers. As a
consequence, the query
may fail to find the newly
created group. When both
actions however specify the
same domain controller, the
newly created group can be
found.

Often a requery of Active
Directory by subsequent
actions for the newly
created group can be
prevented by using the
Group Object that is
created by this action in
subsequent actions, instead
of the name of the group.

UMRA Help

CommonName The
CommonName
is the name of
the group. This
name is most
commonly
used in user
interfaces.

%GroupName% In this action the
CommonName and SAM-
Account-Name will be the
same by default. To change
this, you should create an
other variable for one of the
settings.

SAM-Account-
Name

The group
name(Pre-
Windows
2000) without
the (NETBIOS)
Domain name.

%GroupName% This name is required, also
in domains that use solely
Active Directory domain
controllers.

A SAM-Account-Name
cannot be identical to any
other user or group name
on the domain being
administered. It can contain
up to 20 uppercase or
lowercase characters,
except for the following: " /
\ [] : ; | = , + * < >. A SAM-
Account-Name cannot
consist solely of periods (.)
or spaces.

Description A text string,
that will be
shown in the
Description
field of the
group in
windows. The
string can have
any length.

Local group When set to
'Yes' the
created group
will be a
(domain) local
group.

No One of the three groups
(local, global and universal),
must be set to 'Yes'.

UMRA Help

Global group When set to
'Yes' the
created group
will be a global
group.

No One of the three groups
(local, global and universal),
must be set to 'Yes'.

Universal group When set to
'Yes' the
created group
will be a
universal
group.

No One of the three groups
(local, global and universal),
must be set to 'Yes'.

Security group When set to
'Yes' the
created group
will be a
security group.
When set to
'No' a
distribution
group will be
created.

No

No error if group
already exists

When set to
'Yes' no error
will be
generated.

No Warning: when set to 'Yes'
some errors are ignored
and scripts may not be
completed correctly.

Group Object
Distinguished
Name

The Object
Distinguished
name of the
just create
group.

%GroupODN% output only. Can be used as
input in other actions where
a Object Distinguished
name is required.

Group Object An internal
data structure
representing
the group. this
property will
only give an
output. this
output can be
used in other
script actions.

 This script action has an
output variable (default:
%GroupObject%). This
variable can be used in
other script actions.

UMRA Help

Remarks

Domain / OU / Container / LDAP -specification

User Management Resource Administrator supports several methods to
specify the entity (domain, OU or container) in which the group will be
created. These methods differ in the way the property values are
specified. The properties involved are: Domain, Organizational Unit-
Container, LDAP container. Depending on your network environment
and input data, you should choose the method that fits best:

Properties
specified

Properties
not
specified

Example Description

Domain
Organizational
Unit-
Container

LDAP
container

Domain:
TOOLS4EVER or
tools4ever.com
Organizational Unit-
Container:
STUDENTS/GROUP1

This is most easy method
to create groups in OU's.
To create the group, User
Management Resource
Administrator will
automatically compose
the LDAP name of the
container to create the
group.

Domain LDAP
container
Organizational
Unit-
Container

TOOLS4EVER or
tools4ever.com

Use this method only, to
create groups in the
domain root. No OU is
involved.

LDAP
container

Domain
Organizational
Unit-
Container

OU=Group1,
OU=Students,
DC=tools4ever,
DC=com

Use this method if you
want to specify the OU
directory using the LDAP
format. If this property is
specified, the Domain
and Organizational Unit-
Container properties are
ignored.

See also:

UMRA Basics on page 3

UMRA Help

Script Action: Get Object (AD)

Function

Accesses an object in Active Directory. The action is used always in
combination with other subsequent actions. Once the object is found, an
internal data structure representing the group is setup. This structure is
stored in a variable (%ActiveDirectoryObject%) that can be used by
other actions.

Deployment

This action is typically used in a script that is used to manage, edit or
delete existing Active Directory objects. When this action is execute
successfully, the subsequent actions in the script have access to the
object using the variable %ActiveDirectoryObject%.

Properties

Property
Name

Description Remarks

LDAP name The full LDAP name of the object.
The LDAP name is used to identify
the Active Directory Object.

Example: cn=John
Williams, ou=Schools,
dc=Tools4ever, dc=Com

Active
Directory
Object

An internal data structure
representing the object. This
property will only give an output.
The output can be used in other
script actions.

This script action has an
output variable (default:
%ActivedirectoryObject%).
This variable can be used
in other script actions.

Relative name
(output)

The relative name of the object Example: "CN=GroupA"

Class name
(output)

The name of the class of the object
according to the AD schema

Active
Directory path
(output)

This string uniquely identifies the
object in a network environment.

the object can always be
retrieved using this path.

Parent AD
path (output)

The string identifies the container
of the object.

Schema AD
path (output)

The AD schema path of the class of
this object.

UMRA Help

Unigque
object
identifier
(output)

The GUID of the object.

See also:

UMRA Basics on page 3

Script Action: Search object (AD)

Function

Searches the Active Directory for one or more objects. For each object
found, the object distinguished name is returned. For the search, you
need to specify the environment (LDAP, GC, domain, ou, etc.) and the
LDAP search string.

Deployment

This action is typically used in a script that is intended to manage
existing user. The accounts can be specified by an Active Directory
attribute. This action is then used to find the Active Directory user
object. Next, the output distinguished name of the user account can be
used to compose to full LDAP name. The resulting name is then used in
the Script Action: Get user (AD) on page 31 to bind to the user account.

The search is performed in an environment you can specify. There are
three options:

 Search in the entire Active Directory: The application first
determines the root domain name of the Active Directory
environment and then binds to Active Directory. To select,
specify LDAP for the property Search environment.

 Search in the global catalogue of Active Directory: The
application first determines the root domain name of the
Active Directory environment and then binds to Active
Directory. To select, specify GC for the property Search

environment.

 Search in a specific domain, organizational unit or container
of Active Directory: With this option you can limit the scope of

UMRA Help

the search operation. To select, specify the full LDAP name of
the object you wish to search in for the property Search

environment. Optionally, you can specify the name of domain
controller (NETBIOS or DNS format) computer that the
application must use to bind to Active Directory. Example:
LDAP://domaincontroller/OU=students,DC=domain,DC=com.

If you are searching for specific objects in Active Directory, you need to
specify a filter with criteria that only match for the objects searched for.
The filter is specified as a text string according to RFC 2254. Example: to
search for a object of class User, (e.g. a user account) with a specific
content for the attribute description (1234) the filter looks like this:

(&(objectClass=user) (&(description=1234)))

If you don't know how to specify the filter, please contact Tools4ever
support (www.tools4ever.com http://www.tools4ever.com/support/user-
management-resource-administrator/documentation/manuals-and-
guides/, support@tools4ever.com mailto:support@tools4ever.com).

Properties

Proper
ty
Name

Description Typi
cal
setti
ng

Remarks

Search
environ
ment

The search is performed in one of three
possible environment: LDAP, GC or any
other object. To search the entire Active
Directory environment accessible from
the local computer, specify the word LDAP
(1). To search in the Global Catalog,
specify the word GC (2). To search in any
other environment, specify the LDAP
binding string to access the object (3).
Example: To search in a specify domain:
LDAP://domain or LDAP://host. To search
in a specific OU:
LDAP://domaincontroller/OU=students,D
C=domain,DC=com.

LDAP See Deployment
section

http://www.tools4ever.com/support/user-management-resource-administrator/documentation/manuals-and-guides/
http://www.tools4ever.com/support/user-management-resource-administrator/documentation/manuals-and-guides/
http://www.tools4ever.com/support/user-management-resource-administrator/documentation/manuals-and-guides/
mailto:support@tools4ever.com

UMRA Help

LDAP
search
Filter

The LDAP search filter according to RFC
2254. Example, to find user accounts with
a specific description field 1234:
(&(objectClass=user)
(&(description=1234)))

Error if
nothing
found

Generate an error for this script action if
no matching objects are found.

Yes

Error if
multiple
found

Generate an error for this script action if
multiple matching objects are found.

Yes

Search in
child
objects

Search in the specified environment and
child objects, for example child domains.

Yes

Number
of
objects
found

The number of matching objects found.
This property is an 'output only' property
and is generated by the application
automatically. By default, the value for
this property is stored in variable
%SearchResultCount%.

 The number of
objects found can
be stored in a
variable. By
default, the name
of this variable is
%SearchResultC
ount%.

Object
distingui
shed
names

The distinguished names of the matching
objects. This property is an 'output only'
property and is generated by the
application automatically. By default, the
value for this property is stored in variable
%SearchResults%.

 The object
distinguished
names are
collected for each
matching object.
These names are
stored in a single
variable. By
default the name
of the variable is
%SearchResults
%.

See also:

Script Action: Get user (AD) on page 31

UMRA Basics on page 3

UMRA Help

Script Action: Move - rename (AD)

Function

Moves a user account in Active Directory to another OU or container
within the same domain. Alternatively, you can also use this action to
rename a user account in an organizational unit - container of Active
Directory.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts. With this action you can execute 2 operations:

1. Move user account(s) to other organizational units: The user
account can be moved to another organizational unit in the same
domain. When the account is moved, the common name of the
user account is not changed by default. The common name is
part of the full LDAP name of the user account that uniquely
identifies the user account in the organizational unit or
container. Hence, the common name must be unique in the
organizational unit. If you execute this action and move an
account to an OU and a user account with the same common
name already exists in the OU, the action will fail. Alternatively,
you can rename the account (property NewName).

2. Rename a user account: With this action you can change the
common name of the user account. The common name is part of
the full LDAP name of the user account that uniquely identifies
the user account in the organizational unit or container. Hence,
the common name must be unique in the organizational unit. If
the new common name is not unique, the action will fail and an
error is generated.

You can also combine the 2 possible operations and both move and
rename the user account. When you want to move the user account,
you need to specify the destination organizational unit or container of
the user account. If you only want to rename the user account, the
destination organizational unit or container is not changed for the user
account. To specify the destination organizational unit or container you
have 2 options:

UMRA Help

1. Specify properties Domain and Organizational Unit-Container:
When moving user accounts to another organizational unit, you
must specify the new name of the OU. If the domain is not
changed, you don't need to specify property Domain. If you want
to use this option, you don't need to specify the property OU-
Container LDAP name

2. Specify property OU-Container LDAP name: If you use this
option, you need to specify the full LDAP name of the destination
organizational unit - container. Examples: ou=Schools,
dc=Tools4ever, dc=Com, LDAP://ou=Schools, dc=Tools4ever,
dc=Com, LDAP://domaincontroller/ou=Schools, dc=Tools4ever,
dc=Com. With this option, you don't need to specify the
properties Domain and Organizational Unit-Container.

Properties

Property
Name

Description Typical
setting

Remarks

User Object A data structure
representing the user
account. Use the action
'Get user (AD)' to find the
user account in Active
Directory and setup the
variable that contains the
'User Object'.

%UserObject% The User Object
must always be
specified as a
variable. This
variable must have
been set by a
previous script
action, for example
Script Action: Get
user (AD) on page
31.

UMRA Help

Domain The name of destination
domain (DNS or NETBIOS
style, e.g. tools4ever.com
or TOOLS4EVER) of the
user account. If the
domain name is not
specified, the application
assumes that the account
is not moved across
domains. When no
destination
Organizational Unit-
Container is specified, the
user account is not moved
but renamed only.

 Specification of this
property is required
only if you want to
move and optionally
rename the user
account across
domains.

Organizational
Unit-
Container

The name of the
destination
Organizational Unit-
Container of the user
account (example:
Students or
Students/Group1). When
this property is not
specified, the user
account is not moved but
renamed only unless the
property 'OU-Container
LDAP name' is specified.

 Specification of this
property is required
only if you want to
move and optionally
rename the user
account to another
organizational unit
or container.

UMRA Help

OU-Container
LDAP name

The full LDAP name of the
destination
Organizational Unit-
Container (example:
ou=Schools,
dc=Tools4ever, dc=Com).
When specified, the
properties 'Domain' and
'Organizational Unit-
Container' are ignored.
When no destination
Organizational Unit-
Container is specified, the
user account is not moved
but renamed only.

 Specification of this
property is required
only if you want to
move and optionally
rename the user
account to another
organizational unit
or container.

Domain
controller

Optional: The name of the
domain controller, used
to access to the domain,
container or
organizational unit where
the account is moved to
or where the account
exists in case of a rename
operation. This property
'helps' User Management
Resource Administrator to
access Active Directory.

New name The new name of the user
account. The name is the
name that identifies the
user account in Active
Directory e.g. the
'Common- Name'. If this
property is not specified,
the account is not
renamed. To rename
other names of user
accounts, use the action
'Edit user (AD)'.

 You only need to
specify this property
if you want to
rename the user
account, e.g. change
the common name.

See also:

Script Action: Move cross-domain (AD) on page 67

UMRA Help

UMRA Basics on page 3

Script Action: Move cross-domain (AD)

Function

Moves an existing user object (users and computer accounts) from an
OU in one domain to an OU in another domain.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts. When moving a user account to another domain,
several restrictions apply:

1. The source and destination domain must be in the same forest of
domains.

2. The destination domain must be in native mode.

Properties

The script action Move cross domain (AD) has the following properties:

Proper
ty
Name

Description Remarks

Source
object

The Source object
property is the LDAP name
of the object to be moved in
the original location (before
the move).

Important: In case the source domain
has multiple domain controllers, the
domain controller with the role of RID
master must be used to access the
source account. Access to the source
account is controlled by specifying a
binding string as part of the LDAP
name:

LDAP://server_rid_master.mydomai
n.com on page 63/
CN=<AccountToMove>,
OU=<SourceOU>,
DC=<mydomain>.DC=com.

UMRA Help

Target
containe
r

The Target container
property is used to specify
the full LDAP name of the
destination of the object.
The container can be an
organizational unit, domain
or general container (e.g.
Users). The container must
be specified using a server
binding string in DNS
format:
goldfish.marketing.TheFirm.
com. This type of
specification enforces the
move operation to use
Kerberos authentication
instead of NTLM.

New
name

New name only has to be
specified if the (common)
name of the user account
changes. If not, it can be left
unspecified.

See also:

Script Action: Move - rename user (AD) on page 63

UMRA Basics on page 3

Script Action: Get primary group

Function

Gets the primary group

Deployment

The user's primary group applies only to users who log on to the
network from a Macintosh client or those users running POSIX-
compliant applications. Unless you are using these services, the default
primary group is Domain Users.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

Active Directory
object

A data structure
representing the
Active Direcory object
for which the primary
group is updated.

NA This value can
only be specified
as a variable
resulting from a
previous script
action.

Primary group
name

The name of the
primary group (e.g.
DOMAIN_A\Students).

NA

Script Action: Set primary group (AD)

Function

Sets the primary group in an Active Directory environment.

Deployment

The user's primary group is only relevant for users who log on to the
network from a Macintosh client or who are running POSIX-compliant
applications. Unless you are using these services, there is no need to
change the primary group from Domain Users, which is the default
value.

Properties

Property
Name

Description Typical
setting

Remarks

Active Directory
object

A data structure
representing the
Active Direcory object
for which the primary
group is updated.

NA This value can
only be specified
as a variable
resulting from a
previous script
action.

Primary group
name

The name of the
primary group (e.g.
DOMAIN_A\Students).

NA

UMRA Help

4.1.4. Exchange

Exchange 2000/2003

Script Action: Create Exchange Mailbox (2003/2000)

Function

Creates a Exchange mailbox for an Active Directory user account. This
action supports MS Exchange versions 2003 and 2000.

Deployment

This action is typically used in a script that is intended to create new
users in Active Directory, after creation of the actual user account with
Script Action: Create User (AD) on page 3. It can also be used for modifying
existing accounts.

Properties

Property
Name

Description Typical setting Remarks

User
Object

Internal
application
object
representing
the user
account for
which a
mailbox must
be created.

%UserObject% The User Object must always
be specified as a variable. This
variable must have been set by
a previous script action. For
example the script action
Create user (AD) will by
default fill the variable
%UserObject% with the User
Object of the created user.

Exchange
server

The name of
the Exchange
server on
which the
mailbox is
created. It can
be specified
either in DNS-
style or in
NT4- style.

 %ExchangeServer%

UMRA Help

Mailbox
store

Optional: The
LDAP name of
the mailbox
store.

<not specified> A Mailbox store is required to
create an Exchange mailbox.
When this property is not
specified, User Management
Resource Administrator tries
to determine the mailbox
stores that exist on the
specified Exchange server.
When only one mailbox store
is found, this mailbox store is
used for the Exchange mailbox.
By default, only one mailbox
store is setup when MS
Exchange is installed. If
multiple mailbox stores exist
on the Exchange server, you
must explicitly specify this
property.

Domain
controller

Optional: The
name of the
Domain
controller
used to access
the Active
Directory.

 <not specified> Exchange information is stored
in Active Directory. Depending
on the logged on user account,
and the network domain
configuration, it may be
necessary to specify this
property. For instance, if you
are logged in a trusted NT4
domain and are creating
mailboxes in a Windows
2003/2000 environment, you
must specify the name of a
domain controller of the
Windows 2003/2000 domain
of the user account for this
property. This property is used
only to enable access to Active
Directory.

Alias Optional: The
Alias property
specifies the
Alias used for
E-mail address
generation.

 <not specified> By default E-mail addresses are
generated based on the name
of the user account. The value
is setup by MS Exchange
automatically.

UMRA Help

E-mail
addresses

Optional: The
explicit E-Mail
addresses for
the Exchange
mail box.

 By default E-mail addresses are
generated automatically when
the mail box is created. By
specifying this property you
can overrule this setting and
specify additional E-mail
addresses.

Overruling of automatically
generated addresses only
occurs for the E-mail types that
are explicitly set. That is, if
your Exchange server
configuration default
generates both SMTP and
X400 addresses, and the this
property specifies only SMTP
addresses, the X400 addresses
will still be generated as
specified on the Exchange
server itself.

Specify the E-mail address
using the format (E-mail-
type):(E-mail-Address). To
specify the primary address,
the E-mail-type must be in
capitals. There must be exactly
one primary E- mail address of
each E-Mail type when used.

Example:

SMTP:J.Smith@tools4ever.com
smtp:John@tools4ever.com

Auto-
update E-
mail
addresses

When this is
set to YES
Exchange will
automatically
generate E-
mail addresses
according to
the Exchange
recipient
policy for the
account.

YES

UMRA Help

Hide from
address
book

When set to
YES, the user's
mailbox does
not show in
address books.

NO

See also:

Script Action: Edit Exchange mailbox (2000/2003) on page 159

Script Action: Delete Exchange mailbox (2000/2003) on page 168

Script Action: Manage Exchange recipient mail addresses (2000/2003) on page
169

Script Action: Modify Exchange mailbox permissions on page 162

Script Action: Move Exchange mailbox on page 167

Help on help

UMRA Basics on page 3

Script Action: Edit Exchange mailbox (2000/2003)

Function

Edits the existing Exchange 2003/2000 mailbox of an user account. The
user account and mailbox must already exist. To edit additional
attributes of the user account, use the Script Action: Edit user (AD) on page
37.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts and mailboxes. For this action, the user account is
identified by a variable (default: %UserObject%). To execute this action
successfully, the variable must have a valid value. The variable is an
output variable of the Script Action: Get user (AD) on page 31. The Get User
action supports several ways to find the user and fill the variable.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

User Object A data
structure
representing
the user
account. The
property is
used to identify
the user
account for the
mailbox and is
normally
generated as a
variable by a
previous script
action
('Creating user
(AD)').

%UserObject%

Alias The Alias
property
specifies the
Alias used for
E-mail address
generation.

 By default E-mail addresses are
generated based on the name
of the user account. The value
is setup by MS Exchange
automatically.

UMRA Help

E-mail
addresses

The E-mail
addresses
specified for
the Exchange
mailbox. By
default, the E-
mail addresses
are generated
automatically
when the
mailbox is
created. By
specifying this
property you
can configure
additional E-
mail addresses.

 By default E-mail addresses are
generated automatically when
the mail box is created. By
specifying this property you
can overrule this setting and
specify additional E-mail
addresses.

Overruling of automatically
generated addresses only
occurs for the E-mail types that
are explicitly set. That is, if
your Exchange server
configuration default
generates both SMTP and
X400 addresses, and the this
property specifies only SMTP
addresses, the X400 addresses
will still be generated as
specified on the Exchange
server itself.

Specify the E-mail address
using the format (E-mail-
type):(E-mail-Address). To
specify the primary address,
the E-mail-type must be in
capitals. There must be exactly
one primary E-mail address of
each E-Mail type when used.

Example:

SMTP:J.Smith@tools4ever.com
smtp:John@tools4ever.com

Auto-update
E-mail
addresses

The E-mail
addresses for
the Exchange
mailbox can be
generated
according to
the recipient's
policy by
specifying this
option.

UMRA Help

Hide from
address book

The property
specifies
whether the
recipient is
displayed in
the address
book.

4.2.

See also:

Script Action: Create Exchange Mailbox (2003/2000) on page 156

Script Action: Delete Exchange mailbox (2000/2003) on page 168

Script Action: Manage Exchange recipient mail addresses (2000/2003) on page
169

Script Action: Modify Exchange mailbox permissions on page 162

Script Action: Move Exchange mailbox on page 167

Help on help

UMRA Basics on page 3

Script Action: Modify Exchange mailbox permissions (2000/2003)

Function

Modifies the permissions of an existing Exchange 2003/2000 mailbox.
The mailbox and user account must exist.

UMRA Help

Deployment

This action is typically used in a script that is intended to manage
existing user accounts and mailboxes. With this action permissions of

the mailbox can be added and removed. For this action, the user
account is identified by a variable (default: %UserObject%). To execute
this action successfully, the variable must have a valid value. The
variable is an output variable of the Script Action: Get user (AD) on page
31. The Get User action supports several ways to find the user and fill
the variable.

With this action you can perform the following functions:

1. Add permissions for another account to the mailbox.

2. Delete permission for a specific account from a mailbox

3. Set specific mailbox permissions

Properties

Property
Name

Description Typical
setting

Remarks

User Object An data structure
representing the user
account. The property is
used to identify the user
account for the mailbox
and is normally generated
as a variable by a
previous script action
('Creating user (AD)').

%UserObject% This property specifies
the mailbox that must
exist. The mailbox can
be created with other
actions. (see Script
Action: Create Exchange
Mailbox (2003/2000) on
page 156) for more
information.

Permission:
Delete
mailbox
storage

Set this property to 'Yes'
if you want to add the
permission 'Delete
mailbox storage'.

 One of the standard
permissions you can
add to the mailbox.

Permission:
Read
permissions

Set this property to 'Yes'
if you want to add the
permission 'Read
permissions'.

 One of the standard
permissions you can
add to the mailbox.

UMRA Help

Permission:
Change
permissions

Set this property to 'Yes'
if you want to add the
permission 'Change
permissions'.

 One of the standard
permissions you can
add to the mailbox.

Permission:
Take
ownership

Set this property to 'Yes'
if you want to add the
permission 'Take
ownership'.

 One of the standard
permissions you can
add to the mailbox.

Permission:
Full
mailbox
access

Set this property to 'Yes'
if you want to add the
permission 'Full mailbox
access'.

 One of the standard
permissions you can
add to the mailbox.

Permission:
Associated
external
account

Set this property to 'Yes'
if you want to add the
permission 'Associated
external account'.

 One of the standard
permissions you can
add to the mailbox. If
you specify this
permission, you must
also specify permission
Full mailbox access.

Use special
permissions

Set this property to 'Yes'
if you want to add a
permission entry
specified with the
properties 'Special
permission access mask',
'Special permission
inheritance' and 'Special
permission deny'.

 Only use the special
permissions if you
cannot use the
standard permissions.
When you add a special
permission, you also
need to specify the
properties: Special
permission access
mask and Special
permission
inheritance.

Special
permission
access
mask

The access mask used for
the access control entry
that is added to the
access control list of the
mailbox. If you want to
use special permissions,
set property 'Use special
permissions' to 'Yes'.

 See Use special
permissions.

UMRA Help

Special
permission
inheritance

The inheritance settings
used for the access
control entry that is
added to the access
control list of the
mailbox. If you want to
use special permissions,
set property 'Use special
permissions' to 'Yes'.

 See Use special
permissions.

Permission
deny flag

A flag indicating if the
specified permission is
granted or denied. Set to
'Yes' to deny access.
When not specified or set
to 'No', access is granted.

 Set this flag to 'Yes' if
the permission should
be denied instead of
granted. Normally you
only specify
permissions for a
mailbox to grant
access. You do not
need to explicitly deny
access to the mailbox.

Permission
account is
other
account
flag

A flag indicating if the
permissions are updated
for the account of the
mailbox or another
account. If set to 'Yes' a
permission entry is added
or removed for another
account then the account
of the mailbox. In this
case you must also
specify property
'Permission account
name' or 'Permission
account SID'.

 You can add or remove
permissions for the
user account of the
mailbox or another
account. If you don't
set this property to
'Yes', the specified
permissions are
updated for the
account of the mailbox.
If you want to update
permissions for another
account, you need to
set this property to Yes
and specify one of the
following properties:
Permission account
name or Permission
account SID to
identify the other user
account.

UMRA Help

Permission
account
name

The name of an account
for which an permission is
added or permission are
removed. If you want to
use this property, you
must also set the
property 'Permission
account is other account
flag'.

 See Permission
account is other
account flag.

Permission
account SID

The security identifier
(SID) of an account for
which an permission is
added or permission are
removed. If you want to
use this property, you
must also set the
property 'Permission
account is other account
flag'.

 See Permission
account is other
account flag.

Remove
account
permission
entries

A flag indicating if the
permissions must be
added or removed. If set
to 'Yes', the permissions
for the specified account
(properties: 'Permission
account is other account
flag' and 'Permission
account name' or
'Permission account SID')
are removed from the
mailbox access control
list.

 To remove permissions
from the mailbox, set
this flag to Yes. If
another account is
specified, the
permissions for this
account are removed
from the mailbox. If no
other account is
specified, the explicit
permissions for the
account of the mailbox
are removed.

See also:

Script Action: Create Exchange Mailbox (2003/2000) on page 156

Script Action: Delete Exchange mailbox (2000/2003) on page 168

Script Action: Manage Exchange recipient mail addresses (2000/2003) on page
169

Script Action: Move Exchange mailbox on page 167

UMRA Help

UMRA Basics on page 3

Script Action: Move Exchange mailbox

Function

Moves an existing Exchange 2003/2000 mailbox. The mailbox and user
account must exist.

Deployment

This action is typically used in a script that is intended to move the
mailbox of existing user account. For this action, the user account is
identified by a variable (default: %UserObject%). To execute this action
successfully, the variable must have a valid value. The variable is an
output variable of the Script Action: Get user (AD) on page 31. The Get User
action supports several ways to find the user and fill the variable.

Properties

Property
Name

Description Typical
setting

Remarks

User
Object

An data structure
representing the user
account. The property is
used to identify the user
account for the mailbox
and is normally
generated as a variable
by a previous script
action ('Creating user
(AD)').

%UserObject% This property specifies
the mailbox that must
exist (see Script Action:
Create Exchange Mailbox
(2003/2000) on page 156
for more information).

Mailbox
destination

The object distinguished
name of the destination
mailbox store

UMRA Help

Domain
controller

The (NETBIOS) name of
the domain controller
used to access the target
Exchange mailbox store.

Optional

See also:

Script Action: Create Exchange Mailbox (2003/2000) on page 156

Script Action: Delete Exchange mailbox (2000/2003) on page 168

Script Action: Manage Exchange recipient mail addresses (2000/2003) on page
169

Script Action: Modify Exchange mailbox permissions on page 162

UMRA Basics on page 3

4.3.

Script Action: Delete Exchange mailbox (2000/2003)

Function

Deletes the Exchange 2003 or Exchange 2000 mailbox of an existing user
account. The user account is specified by a variable (default:
%UserObject%). You can use the Script Action: Get user (AD) on page 31 to
find the user account and initialize this variable.

Deployment

This action is typically used in a script that is intended to delete the
mailbox of existing user account and possibly the user's resources and
the account itself. For this action, the user account is identified by a
variable (default: %UserObject%). To execute this action successfully,
the variable must have a valid value. The variable is an output variable of
the action Script Action: Get user (AD) on page 31. This action supports
several ways to find the user and fill the variable.

UMRA Help

Properties

Property
Name

Description Typical
setting

User Object A data structure representing the user
account. The property is used to identify
the user account for the mailbox and is
normally generated as a variable by the
Script Action: Get user (AD) on page 31.

%UserObject%

See also:

Script Action: Create Exchange Mailbox (2003/2000) on page 156

Script Action: Manage Exchange recipient mail addresses (2000/2003) on page
169

Script Action: Modify Exchange mailbox permissions on page 162

Script Action: Move Exchange mailbox on page 167

UMRA Basics on page 3

Script Action: Manage Exchange recipient mail addresses (2003/2000)

Function

Manages an Exchange mailbox for an Active Directory user account. This
action supports MS Exchange versions 2003 and 2000.

Deployment

This action is typically used in a script that is intended to manage
existing mailbox accounts.

UMRA Help

Properties

Propert
y Name

Descriptio
n

Typical setting Remarks

AD Object A data
structure
representing
the Active
Directory
object for
which you
want to
manage the
E-mail
addresses.

%ActiveDirectoryObject
%

This property is used to
identify the mail recipient.
You can obtain this variable
by using the following script
actions: Create user (AD),
Create contact (AD), Get
object (AD), Get user (AD).
The output variable for these
action must be set to
%ActiveDirectoryObject%

Target
address

The property
specifies the
delivery
address to
which e-mail
for this
recipient
should sent.
By specifying
this
property,
mail is
automaticall
y enabled for
the
recipient.

 If you specify this property,
you should not specify the
property 'Disable mail'.

UMRA Help

Disable
mail

With this
property you
can disable
mail to a
recipient.
When set to
'Yes' the
recipient can
no longer
receive mail
and all mail
addresses
are cleared.

No

Alias Optional:
The Alias
property
specifies the
Alias used
for E-mail
address
generation.

 By default E-mail addresses
are generated based on the
name of the user account.
The value is setup by MS
Exchange automatically.

UMRA Help

E-mail
addresses

Optional:
The explicit
E-Mail
addresses
for the
Exchange
mail box.

 By default E-mail addresses
are generated automatically
when the mail box is created.

Overruling of automatically
generated addresses only
occurs for the E-mail types
that are explicitly set. That is,
if your Exchange server
configuration default
generates both SMTP and
X400 addresses, and the this
property specifies only SMTP
addresses, the X400
addresses will still be
generated as specified on
the Exchange server itself.

Specify the E-mail address
using the format (E-mail-
type):(E-mail-Address). To
specify the primary address,
the E-mail-type must be in
capitals. There must be
exactly one primary E- mail
address of each E-Mail type
when used.

Example:

SMTP:J.Smith@tools4ever.co
m
smtp:John@tools4ever.com

UMRA Help

Auto-
update E-
mail
addresses

When this is
set to 'Yes'
Exchange
will
automaticall
y generate E-
mail
addresses
according to
the
Exchange
recipient
policy for the
account.

Yes

Hide from
address
book

When set to
'Yes', the
user's
mailbox does
not show in
address
books.

No

Restrict
receiving
message
size

When set to
'Yes',
messages
larger then
the specified
maximum
size will not
be recieved.

Maximu
m
receiving
message
size

Specifies the
maximum
size, in
kilobytes, of
a messages
that user or
group can
recieve.

UMRA Help

Restrict
sending
message
size

When set to
'Yes',
messages
larger then
the specified
maximum
size will not
be send.

Maximu
m
sending
message
size

Specifies the
maximum
size, in
kilobytes, of
a messages
that user or
group can
send.

See also:

Script Action: Create Exchange Mailbox (2003/2000) on page 156

Script Action: Delete Exchange mailbox (2000/2003) on page 168

Script Action: Modify Exchange mailbox permissions on page 162

Script Action: Move Exchange mailbox on page 167

UMRA Basics on page 3

Out-Of-Office

Script Action: Get Out-Of-Office info (Exchange 2000/2003)

Function

Retrieves the Out-Of-Office and forwarding information of a user. This
action can only be used for Exchange 2000 and Exchange 2003
environments. For Exchange 2007, use action 'Get Out-Of-Office info
(Exchange 2007)'.

UMRA Help

Deployment

This action is used to retrieve specific user related information from
Exchange and store them in script variables, so that the information can
be used by subsequent script actions.

Special Prerequisites

To execute this action, an Exchange profile must be configured for the
account that runs the software. If an Exchange profile does not exist, the
action will not work. For the UMRA Console and UMRA Service, different
procedures apply:

To configure an Exchange profile for the UMRA Console application:

1. Log on to the computer that runs UMRA Console with an
administrative account that has a mailbox on the Exchange server.

2. Install Microsoft Outlook (any version);

3. Start Outlook and setup a profile using Microsoft Exchange Server.
A profile called 'Outlook' is now created.

4. Exit Outlook;

5. Start UMRA Console
To configure an Exchange profile for the UMRA Service application:

1. Create an Exchange mailbox for the UMRA Service account;

2. Stop the UMRA Service;

3. Log on the the computer that runs the UMRA Service with the
account used by the UMRA Service (!). If you don't know the
password of the account, first edit the password and update the
password for the UMRA Service;

4. Install Microsoft Outlook (any version);

5. Start Outlook and setup a profile using Microsoft Exchange Server.
A profile called 'Outlook' is now created.

6. Exit Outlook;

7. Start the UMRA Service.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

Exchange
Profile
name

The name of the
Exchange profile used to
access the Exchange
server. The Exchange
profile must be the profile
of the account that runs
the software.

Outlook See Special
Prerequisites

User
Object

An data structure
representing the user
account. The property is
used to identify the user
account and is normally
generated as a variable by
a previous script action
(e.g. Script Action: Get
user (AD) on page 31).

%UserObject%

Output Properties

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default variable
name

Remarks

Out-Of-
Office
State

The Out-Of-Office state
of the user account. The
resulting output variable
is either true (Out-Of-
Office enabled) or false
(Out-Of-Office disabled).

%OutOfOfficeState%

UMRA Help

Out-of-
Office
message

The Out-Of-Office
message of the user
account. The resulting
output variable contains
the message that is sent
when Out-Of-Office is
enabled and an E-mail
message is received.

%OutOfOfficeText%

Auto-
Forward
state

The Out-Of-Office Auto-
Forward state of the
user account. The
resulting output variable
is either true or false.
When Out-Of-Office is
enabled, received
messages can be
forwarded to another
account (property value:
'true').

%AutoForwardState%

Auto-
Forward
email
address

The Out-Of-Office Auto-
Forward email address
of the user account. The
resulting output variable
contains the address of
the E-mail account to
which messages are
forwarded when Out-Of-
Office is enabled.

%AutoForwardEmail%

Remarks:

The action will report an error when the user account does not have a
mailbox or Exchange profile in the indicated Exchange environment

UMRA Help

Script Action: Set Out-Of-Office info (Exchange 2000/2003)

Function

Sets the Out-Of-Office and forwarding information of a user. This action
can only be used for Exchange 2000 and Exchange 2003 environments.
For Exchange 2007, use action 'Set Out-Of-Office info (Exchange 2007)'.

Deployment

This action is used to turn on or off the Out-Of-Office functionality of a
user. Optionally you can also specify whether incoming mail must be
forwarded to another email address.

Properties

Property Name Description Typical
setting

Remarks

Exchange Profile
name

The name of the
Exchange profile used
to access the Exchange
server. The Exchange
profile must be the
profile of the account
that runs the software.

Outlook See Script Action:
Get Out-Of-Office
info (Exchange
2000/2003) on
page 174 for more
information.

User Object

An data structure
representing the user
account. The property
is used to identify the
user account and is
normally generated as
a variable by a previous
script action (e.g. Script
Action: Get user (AD)
on page 31).

%UserObject%

UMRA Help

Out-Of-Office
state

Specify 'Yes' to enable
Out-Of-Office, 'No' to
disable Out-Of-Office.
Do not specify this
property if the current
value should not be
changed.

Out-of-Office
message

The Out-Of-Office
message that is used
for the specified
account.

 This is the text
that is sent by
Exchange in a Out-
Of-Office reply
message.

Auto-Forward
state

Specify 'Yes' to enable
Auto-Forward, 'No' to
disable. Do not specify
this property if the
current value should
not be changed. When
set to 'Yes', received
messages will be
forwarded to the
specified E-mail
address when Out-Of-
Office is enabled.

Auto-Forward E-
mail address

The users' Auto-
Forward E-mail
address. When Out-Of-
Office and Auto-
Forward are enabled,
received messages will
be forwarded to the
specified E-mail
address.

UMRA Help

Exchange 2007

User mailbox

Script Action: Create user and mailbox (Exchange 2007)

Function

Creates a new user in the Active Directory. The new user will be mailbox-
enabled. This means a mailbox for this new user will be created on the
specified Exchange server in the specified storage group.

Deployment

This action is typically used as core part of a script designed to create
users with a mailbox. In such a script this is usually the first major action
invoked. After creating the account, the script usually continues by
invoking actions to create home directories, home shares, group
memberships, etc.

Properties

Property
Name

Description Typical setting Remarks

Database
name

This
parameter
specifies
which
Exchange
database will
contain the
new user's
mailbox.

Mailbox Database

EXCHSERVER/Mailbox
Database

EXCHSERVER/First
Storage
GroupMailbox
Database

The Database
parameter specifies a
mailbox database on
an Exchange server. If
there are multiple
Exchange server,
make sure to include
the servername in
this parameter in
order to get the right
database. If there are
multiple storage
groups, specify the
storage group as well
in this parameter.

UMRA Help

Name

This
parameter
specifies the
name of the
new user.
This is the
name that
appears in
Active
Directory
Users and
Computers
as the
common
name. This is
also the user
name that
appears in
Recipient
Properties
on the User
Information
tab.

John Smith

The Name parameter
specifies the name of
the account. This is
the same attribute as
the 'Name' attribute
of an account in
Active Directory.

UMRA Help

Password

The
password
parameter
specifies the
initial
password for
the newly
created user.
Note that
the
password
must meet
password
complexity
requirement
s of the
domain.

test123

To create the same
password for all users
you can specify the
password here
directly. You can also
read the password
from an input file.

UMRA Help

User
principal
name

The 'User
principal
name'
parameter
specifies the
user
principal
name (UPN)
for this
mailbox. This
is the logon
name for the
user. The
UPN consists
of a user
name and a
suffix.
Typically the
suffix is the
domain
name where
the user
account
resides.

johnsmith@tools4eve
r.com

The UPN is the
preferred login name
for Active Directory
users. Users should
be using their UPN to
log on to the domain.
The UPN has the
format
account_name@dom
ain.com, where
account_name is the
UPN prefix and
domain.com is the
UPN suffix.

The UPN Prefix is
usually chosen to be
the same as the SAM-
Account-Name.
Typically the name
contained in
%UserName% is
generated by the
name generation
algorithm.

UMRA Help

Organization
al unit

The
'Organization
al unit'
parameter
specifies the
container
where the
user will be
created.
Specify the
organization
al unit with
the domain
name.

Tools4ever/Users

Specify the path of
the organizational
unit (OU) or
container relative to
the domain. To
specify OU's in OU's,
use the full path
relative to the
domain, separated by
slashes: OU/ChildOU.
Examples:
Tools4ever/students
or
Tools4ever/students/
group1.

UMRA Help

Alias

Optional
value. The
alias (mail
nickname) of
the user's
new mailbox.
The alias can
be a
combination
of characters
separated by
a period with
no
intervening
spaces. Do
not use
special
characters in
the alias. If
not
specified, the
alias will be
generated
automaticall
y.

JSmith

UMRA Help

Display name

Optional
value. The
display name
of the new
user created
with this
mailbox. The
display name
is the name
that appears
in the
Exchange
Managemen
t Console
under
Recipient
Configuratio
n. The
Display
Name also
appears in
Active
Directory
Users and
Computers
on the user
Properties
General Tab.

John Smith

If not set, the display
name will be set with
the 'Name' attribute
of this action.

UMRA Help

Domain
controller

Optional
value. The
name of the
domain
controller
used to write
this
configuration
change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ev
er.com..

If a new account is
created in a domain
with multiple domain
controllers, at first,
the account will only
be available at the
domain controller
where it is created.
When the domain
has synchronized all
domain controllers in
the domain, the
account will be
available at each
domain controller.
Until that time, if you
want to edit a just
created user account,
you should specify
the same domain
controller in the 'Edit
mailbox (Exchange
2007)' action.

First name

Optional
value: The
first name of
the user
account.

John

Initials

Optional
value: The
initials of the
user
account.

F

UMRA Help

Last name

Optional
value: The
last name of
the user
account.

Smith

Reset
password on
next logon

Optional
value. If the
'Reset
password on
next logon'
parameter is
set to 'Yes',
the user
must change
the
password at
the next
logon.

'Yes' or 'No'

UMRA Help

SamAccount
Name

Optional
value. This
parameter
specifies the
logon name
used to
support
clients and
servers
running
older
versions of
the
operating
system. This
attribute
must be less
than 20
characters to
support
older clients.
If not
specified,
Active
Directory will
create a
SamAccount
Name
automaticall
y, based on
the user
principal
name.

JohnSmith

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

UMRA Help

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description
Default
variable
name

Remarks

Alias

The alias
(mail
nickname) of
the user's
new mailbox.

Distinguished
name

Optional
value. This
parameter
returns the
distinguished
name of the
new user
mailbox.

Exchange
GUID

Optional
value. This
parameter
returns the
Exchange
GUID of the
new mailbox

Legacy
Exchange DN

Optional
value. This
parameter
returns the
Legacy
Exchange
Distinguished
Name of the
new mailbox.

UMRA Help

Script Action: Create (enable) mailbox (Exchange 2007)

Function

Create a new Exchange 2007 mailbox for an existing Active Directory
user account.

Deployment

This action is typically used as core part of a script designed to create
mailboxes for existing users. In such a script this is usually the first major
action invoked. After creating the account, the script usually continues
by invoking actions to create home directories, home shares, group
memberships, etc.

Properties

Propert
y Name

Descriptio
n

Typical setting Remark
s

Database
name

This
parameter
specifies
which
Exchange
database will
contain the
new mailbox
for the user.

Mailbox database, SERVERNAME\Mailbox
Database, SERVERNAME\Storage Group
Name\Mailbox Database or the GUID of
the database.

Identity This
parameter
specifies the
user or
InetOrgPerso
n of the new
mailbox.

(CN=jsmith,OU=sales,DC=tools4ever,DC=co
m), tools4ever.com\Jsmith,
JSmith@tools4ever.com or the GUID.

UMRA Help

Alias Optional
value. The
alias (mail
nickname) of
the user's
new mailbox.
The alias can
be a
combination
of characters
separated by
a period with
no
intervening
spaces. Do
not use
special
characters in
the alias. If
not
specified, the
alias will be
generated
automaticall
y.

JSmith

Domain
controller

Optional
value. The
name of the
domain
controller
used to write
this
configuration
change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com.

UMRA Help

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default
variable
name

Remarks

Alias The alias
(mail
nickname) of
the user's
new mailbox.

Exchange
GUID

Optional
value. This
parameter
returns the
Exchange
GUID of the
new mailbox

Legacy
Exchange
DN

Optional
value. This
parameter
returns the
Legacy
Exchange
Distinguished
Name of the
new mailbox.

UMRA Help

Script Action: Edit mailbox (Exchange2007)

Function

Edit the attributes of an existing mailbox.

Deployment

This action is typically used for editing the settings of mailboxes.
Previous values of the properties listed below will be overwritten. Use
$null to clear properties.

Properties

Property
Name

Description Typical setting Rema
rks

Identity The Identity
parameter identifies
the mailbox.

(CN=jsmith,OU=sales,DC=tools4ev
er,DC=com),
tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com or the
GUID.

Accept
messages
only from

Optional value. The
'Accept messages
only from'
parameter specifies
the mailbox users,
mail users and mail
contacts that can
send e-mail
messages to this
mailbox. Use
commas to specify
multiple values.

(CN=jsmith,OU=sales,DC=tools4ev
er,DC=com),
tools4ever.com\Jsmith,
JohnSmith, JSmith, John Smith,
JSmith@tools4ever.com or the
GUID.

UMRA Help

Alias Optional value. The
Alias parameter
specifies the alias
(mail nickname) of
the user. The alias
can be a
combination of
characters
separated by a
period with no
intervening spaces.
Do not use special
characters in the
alias.

JSmith

Anti spam
bypass
enabled

Optional value. The
'Anti spam bypass
enabled' parameter
specifies whether to
skip anti-spam
processing on this
mailbox.

'Yes', 'No'

Custom
attribute 1

Optional value. The
'Custom attribute 1'
parameter specifies
the value for the
mailbox attribute
CustomAttribute1.

Custom
attribute 2

Optional value. The
'Custom attribute 2'
parameter specifies
the value for the
mailbox attribute
CustomAttribute2.

Custom
attribute 3

Optional value. The
'Custom attribute 3'
parameter specifies
the value for the
mailbox attribute
CustomAttribute2.

UMRA Help

Custom
attribute 4

Optional value. The
'Custom attribute 4'
parameter specifies
the value for the
mailbox attribute
CustomAttribute2.

Custom
attribute 5

Optional value. The
'Custom attribute 5'
parameter specifies
the value for the
mailbox attribute
CustomAttribute2.

Deliver to
mailbox and
forward

Optional value. The
'Deliver to mailbox
and forward'
parameter specifies
whether messages
are sent to both this
mailbox and the
forwarding address.

Display name The 'Display name'
parameter specifies
the display name for
the user account
associated with this
mailbox. The display
name is used by
Microsoft Outlook.

John Smith

Domain
controller

Optional value. The
name of the domain
controller used to
write this
configuration
change to Active
Directory. Use the
fully qualified
domain name
(FQDN) of the
domain controller.

EXCHSERVER.tools4ever.com..

UMRA Help

Email
addresses

The 'Email
addresses'
parameter specifies
all the proxy
addresses of the
mailbox. It includes
the primary Simple
Mail Transfer
Protocol (SMTP)
address as one of
the proxy addresses.
Use commas to
specify multiple
values.

SMTP:John@tools4ever.com,
smtp:jsmith@tools4ever.com

Emailaddress
policy
enabled

The 'Emailaddress
policy enabled'
parameter specifies
whether the e-mail
address policy for
this mailbox is
enabled.

'Yes' or 'No'

External Out
of Office
options

The 'External Out of
Office options'
parameter specifies
the option for
sending an Out of
Office message to
external senders.
Use one of the
following values:
'External' and
'InternalOnly'.

External

UMRA Help

Forwarding
address

The 'Forwarding
address' parameter
specifies a
forwarding address.
If 'Deliver to mailbox
and forward' is set
to 'Yes', messages
that are sent to this
mailbox will be
forwarded to the
address specified.

domain.com/Sales/JSmith

Hidden from
address lists
enabled

The 'Hidden from
address lists
enabled' parameter
specifies whether
this mailbox is
hidden from other
address lists.

'Yes' or 'No'

Issue
warning
quota

The 'Issue warning
quota' parameter
specifies the mailbox
size at which a
warning message is
sent to the user.
Qualify the value
with one of the
following: B (bytes),
KB (kilobytes), MB
(megabytes), GB
(gigabytes) or
"unlimited". If this
attribute is set on a
mailbox, it overrides
the default value
that is set for this
attribute on the
mailbox database.

50MB

UMRA Help

Maximum
blocked
senders

The 'Maximum
blocked senders'
parameter specifies
the maximum
number of senders
that can be included
in the blocked
senders list. Blocked
senders are senders
that are considered
junk senders by the
mailbox user and are
used in junk e-mail
rules. This
parameter is only
validated when the
junk e-mail rules are
updated using
Outlook Web Access
or Web services.

5

Maximum
receive size

The 'Maximum
receive size'
parameter specifies
the maximum size of
messages that this
mailbox can receive.
Qualify the value
with one of the
following: B (bytes),
KB (kilobytes), MB
(megabytes), GB
(gigabytes) or
"unlimited".

50MB

UMRA Help

Maximum
safe senders

The 'Maximum safe
senders' parameter
specifies the
maximum number
of senders that can
be included in the
safe senders list.
Safe senders are
senders that are
trusted by the
mailbox user and are
used in junk e-mail
rules. This
parameter is only
validated when the
junk e-mail rules are
updated using
Outlook Web Access
or Web services.

15

Maximum
send size

The 'Maximum send
size' parameter
specifies the
maximum size of
messages that this
mailbox can send.
Qualify the value
with one of the
following: B (bytes),
KB (kilobytes), MB
(megabytes), GB
(gigabytes) or
"unlimited".

50MB

Name The 'Name'
parameter

specifies the Name
attribute for this
mailbox. The Name
attribute is used for
the common name
(CN) in Active
Directory.

John Smith

UMRA Help

Office The 'Office'
parameter specifies
the Microsoft Office
attribute for this
mailbox.

Primary
SMTP
address

The 'Primary SMTP
address' parameter
specifies the address
that external users
will see when they
receive a message
from this mailbox.
When this
parameter is used
the 'Email addresses'
parameter cannot
be specified because
'Email addresses'
includes the primary
SMTP address.

SMTP:jsmith@tools4ever.com

Prohibit send
quota

The 'Prohibit send
quota' parameter
parameter specifies
the mailbox size at
which the user
associated with this
mailbox can no
longer send
messages. Qualify
the value with one
of the following: B
(bytes), KB
(kilobytes), MB
(megabytes), GB
(gigabytes) or
"unlimited". If this
attribute is set on a
mailbox, it overrides
the default value
that is set for this
attribute on the
mailbox database.

50MB

UMRA Help

Prohibit send
receive
quota

The 'Prohibit send
receive quota'
parameter specifies
the mailbox size at
which the user
associated with this
mailbox can no
longer send or
receive messages.
Qualify the value
with one of the
following: B (bytes),
KB (kilobytes), MB
(megabytes), GB
(gigabytes) or
"unlimited". If this
attribute is set on a
mailbox, it overrides
the default value
that is set for this
attribute on the
mailbox database.

50MB

Recipient
limits

The 'Recipient limits'
parameter specifies
the maximum
number of recipients
per message to
which this mailbox
can send. Specify
either an integer or
"unlimited". If this
attribute is set on a
mailbox, it overrides
the default value
that is set for this
attribute on the hub
transport server.

unlimited

UMRA Help

Reject
messages
from

The 'Reject
messages from'
parameter specifies
the recipients from
whom messages will
be rejected. Use
commas to specify
multiple values.

domain.com/Sales/JSmith

Require
sender
authenticatio
n enabled

The 'Require sender
authentication
enabled' parameter
specifies whether
senders must be
authenticated.

'Yes' or 'No'

Retain
deleted
items for

The 'Retain deleted
items for' parameter
specifies the length
of time to keep
deleted items. To
specify a value,
enter it as a time
span: dd.hh:mm:ss
where d = days, h =
hours, m = minutes,
and s = seconds.

15:00:00

Retain
deleted
items until
backup

The 'Retain deleted
items until backup'
parameter specifies
whether to retain
deleted items until
the next backup.

'Yes' or 'No'

Retention
hold enabled

The 'Retention hold
enabled' parameter
specifies whether
retention hold is
enabled for MRM.
To set the start date
for retention hold,
use the 'Start date
for retention hold'
parameter.

'Yes' or 'No'

UMRA Help

Rules quota The 'Rules quota'
parameter specifies
the limit for the size
of rules for this
mailbox. Qualify the
value with one of
the following: B
(bytes), KB
(kilobytes), MB
(megabytes), GB
(gigabytes), TB
(terabytes).
Unqualified values
are treated as bytes.
The default value for
this parameter is 64
KB. The maximum
value for this
parameter is 256 KB.

128KB

SamAccount
Name

The
'SamAccountName'
parameter specifies
the user name for
earlier operating
systems such as
Windows NT 4.0,
Windows 98,
Windows 95, and
LAN Manager. The
parameter is used to
support clients and
servers running
older versions of the
operating system.
This attribute must
be less than 20
characters in length.

jsmith

UMRA Help

Simple
display name

The 'Simple display
name' parameter is
used on objects
where the name of
the object may be
displayed in an
environment that
does not support
Unicode characters.
The only supported
characters for the
SimpleDisplayName
parameter are ASCII
characters 26
through 126,
inclusively. These
characters are the
ones that are
typically found on
most U.S. English
keyboards.

John Smith

Start date for
retention
hold

The 'Start date for
retention hold'
parameter specifies
the start date for
retention hold for
MRM. To use this
parameter, the
'Retention hold
enabled' parameter
must be set to 'Yes'.

'Yes' or 'No'

UMRA Help

Use database
quota
defaults

The 'Use database
quota defaults'
parameter specifies
that this mailbox
uses the quota
attributes specified
for the mailbox
database where this
mailbox resides. The
quota attributes are:
'ProhibitSendQuota',
'ProhibitSendReceiv
eQuota',
'IssueWarningQuota'
and 'RulesQuota'.

'Yes' or 'No'

Use database
retention
defaults

The 'Use database
retention defaults'
parameter specifies
that this mailbox
uses the
MailboxRetention
attribute specified
for the mailbox
database where this
mailbox resides.

'Yes' or 'No'

User
principal
name

The 'User principal
name' parameter
specifies the user
principal name
(UPN) for this
mailbox. This is the
logon name for the
user. The UPN
consists of a user
name and a suffix.
Typically, the suffix
is the domain name
where the user
account resides.

jsmith@tools4ever.com

UMRA Help

Windows
emailaddress

The 'Windows
emailaddress'
parameter specifies
the Windows e-mail
address for this
mailbox. This
address is not used
by Exchange.

js@tools4ever.com

Script Action: Manage mailbox email addresses (Exchange 2007)

Function

Manage the email addresses for a mailbox. Email addresses can be
added or removed.

Deployment

This action is typically used to add or remove email addresses from the
specified mailbox. Use an Umra variable for the Emailaddress property
to add or remove that email address. If the Umra variable is a table or
list, the action will read all items in the table or list and removes or adds
these items to the mailbox. You can also edit the emailaddress property
of a mailbox with the Script Action: Edit mailbox (Exchange 2007) on page
194 action. Note that this action overwrites the property, adding one
emailaddress with this action clears the previous value of the property.

Properties

Propert
y Name

Description Typical setting Rema
rks

Identity The Identity parameter
identifies the mailbox.

'CN=jsmith,OU=sales,DC=tools4e
ver,DC=com',
'tools4ever.com\Jsmith', 'JSmith',
'JSmith@tools4ever.com' or the
GUID.

UMRA Help

Emailadd
ress

The Emailaddress
parameter specifies the
proxy address of the
mailbox. It includes the
primary Simple Mail
Transfer Protocol (SMTP)
address as one of the
proxy addresses. For
example:
smtp:JohnSmith@tools4e
ver.com". Use a table or
text list to specify
multiple values.

%EmailAddress%

Remove
address

With the 'Remove
address' parameter the
email address can be
removed instead of
added to the mailbox.

'Yes' or 'No'

Script Action: Set client access attributes (Exchange 2007)

Function

Set the client access-related attributes for Microsoft Exchange
ActiveSync, Microsoft Office Outlook Web Access, Post Office Protocol
version 3 (POP3), and Internet Message Access Protocol version 4rev1
(IMAP4) for a specified mailbox.

Properties

UMRA Help

Property Name Descri
ption

Typical setting Remarks

UMRA Help

Identity The
Identity
paramet
er
identifie
s the
mailbox.
This can
be the
Active
Director
y Object
ID or a
string
that
represe
nts the
GUID,
distingui
shed
name,
domain
or
account,
user
principal
name
(UPN),
legacy
Exchang
e
distingui
shed
name,
or
Simple
Mail
Transfer
Protocol
(SMTP)
address.

'CN=jsmith,OU=sales,DC=to
ols4ever,DC=com',
'tools4ever.com\Jsmith',
'JSmith',
'JSmith@tools4ever.com' or
the GUID.

UMRA Help

ActiveSyncAllowedDeviceID
s

This
paramet
er
accepts
a list of
device
IDs that
are
allowed
to
synchro
nize
with the
mailbox.

ActiveSyncDebugLogging This
paramet
er
specifies
whether
error
logging
is
enabled
for
mobile
devices.

ActiveSyncMailboxPolicy This
paramet
er
specifies
the
name of
the
Exchang
e
ActiveSy
nc
mailbox
policy
for the
mailbox.

UMRA Help

ActiveSyncEnabled This
paramet
er
enables
or
disables
Exchang
e
ActiveSy
nc.

HasActiveSyncDevicePartne
rship

This
paramet
er
specifies
whether
the
mailbox
has an
active
sync
device
partners
hip
establis
hed.

UMRA Help

IgnoreDefaultScope This
paramet
er
instructs
the
comma
nd to
ignore
the
default
recipien
t scope
setting
for the
Exchang
e
Manage
ment
Shell
and to
use the
whole
forest as
the
scope.
This
allows
the
comma
nd to
access
Active
Director
y
objects
that are
currentl
y not in
the
default
scope.

 This
parameter
can only be
used when
the
Exchange
Manageme
nt Shell
with SP1 is
installed.

Using this
parameter
introduces
the
following
restrictions
:

You cannot
use the
DomainCo
ntroller
parameter.
The
command
will use an
appropriat
e global
catalog
server
automatica
lly.

You can
only use
the DN for
the
Identity
parameter.
Other
forms of
identificati
on, such as
alias or
GUID are
not
accepted.

You cannot
use the

UMRA Help

ImapEnabled This
parameter
specifies
whether
the IMAP4
protocol is
enabled for
this
mailbox.

UMRA Help

ImapMessagesRetrievalMi
meFormat

This
paramet
er
specifies
the
format
of the
message
s that
are
retrieve
d from
the
server.
The
possible
values
are as
follows:

0:Text
Only

1:HTML
Only

2:HTML
and
Alternat
ive Text

3:Enrich
ed Text
Only

4:Enrich
ed Text
and
Alternat
ive Text

5:Best
Body
Format

3 or 0

UMRA Help

ImapUseProtocolDefaults This
paramet
er
specifies
whether
to use
protocol
defaults
for the
IMAP4
protocol
.

MAPIBlockOutlookNonCach
edMode

This
paramet
er
specifies
whether
Outlook
can be
used in
online
mode.

MAPIBlockOutlookRpcHttp This
paramet
er
specifies
whether
clients
can
connect
to
Outlook
by using
Outlook
Anywhe
re.

UMRA Help

MAPIBlockOutlookVersions This
paramet
er
specifies
whether
certain
versions
of
Outlook
are
blocked.

MAPIEnabled This
paramet
er
specifies
whether
the
MAPI
protocol
is
enabled
for the
mailbox.

OWAActiveSyncIntegration
Enabled

This
paramet
er
specifies
whether
Outlook
Web
Access
Exchang
e
ActiveSy
nc
mobile
options
are
enabled.

UMRA Help

OWAAllAddressListsEnable
d

This
paramet
er
specifies
whether
all
address
lists are
availabl
e in
Outlook
Web
Access.

OWACalendarEnabled This
paramet
er
specifies
whether
calendar
ing is
enabled
in
Outlook
Web
Access.

OWAChangePasswordEnabl
ed

This
paramet
er
specifies
whether
a user
can
change
their
passwor
d in
Outlook
Web
Access.

UMRA Help

OWAContactsEnabled This
paramet
er
specifies
whether
contacts
are
enabled
in
Outlook
Web
Access.

OWAEnabled This
paramet
er
enables
Outlook
Web
Access.

OWAJournalEnabled This
paramet
er
specifies
whether
the
Journal
folder
can be
accesse
d in
Outlook
Web
Access.

UMRA Help

OWAJunkEmailEnabled This
paramet
er
specifies
whether
manage
ment of
junk e-
mail is
enabled
in
Outlook
Web
Access.

OWANotesEnabled This
paramet
er
specifies
whether
Sticky
Notes
are
enabled
in
Outlook
Web
Access.

OWAPremiumClientEnable
d

This
paramet
er
specifies
whether
the
Outlook
Web
Access
Premiu
m
version
is
enabled.

UMRA Help

OWAPublicFoldersEnabled This
paramet
er
specifies
whether
the
viewing
of public
folders
is
enabled
in
Outlook
Web
Access.

 This
parameter
can only be
used when
the
Exchange
Manageme
nt Shell
with SP1 is
installed.

OWARecoverDeletedItemsE
nabled

This
paramet
er
specifies
whether
recover
y of
deleted
items is
enabled
in
Outlook
Web
Access.

 This
parameter
can only be
used when
the
Exchange
Manageme
nt Shell
with SP1 is
installed.

OWARemindersAndNotifica
tionsEnabled

This
paramet
er
specifies
whether
calendar
reminde
rs are
enabled
in
Outlook
Web
Access.

UMRA Help

OWARulesEnabled This
paramet
er
specifies
whether
rules
can be
accesse
d in
Outlook
Web
Access.
If this
paramet
er is set
to
$false,
server
rules
will
continu
e to
function
, but
cannot
be
modifie
d in
Outlook
Web
Access.

 This
parameter
can only be
used when
the
Exchange
Manageme
nt Shell
with SP1 is
installed.

UMRA Help

OWASMimeEnabled This
paramet
er
specifies
whether
viewing
of e-
mail
that is
encrypt
ed by
using
S/MIME
is
support
ed in
Outlook
Web
Access.

 This
parameter
can only be
used when
the
Exchange
Manageme
nt Shell
with SP1 is
installed.

OWASearchFoldersEnabled

This
paramet
er
specifies
whether
search
folders
are
enabled
in
Outlook
Web
Access

UMRA Help

OWASignaturesEnabled This
paramet
er
specifies
whether
the
signatur
e
feature
is
enabled
in
Outlook
Web
Access.

OWASpellCheckerEnabled This
paramet
er
specifies
whether
the
spelling
checker
is
enabled
in
Outlook
Web
Access.

OWATasksEnabled This
paramet
er
specifies
whether
tasks
are
enabled
in
Outlook
Web
Access.

UMRA Help

OWAThemeSelectionEnabl
ed

This
paramet
er
specifies
whether
theme
selectio
n is
enabled
in
Outlook
Web
Access.

OWAUMIntegrationEnable
d

This
paramet
er
specifies
whether
Unified
Messagi
ng (UM)
integrati
on is
enabled
in
Outlook
Web
Access.

UMRA Help

OWAUNCAccessOnPrivateC
omputersEnabled

This
paramet
er
specifies
whether
access
to
Window
s file
shares is
permitt
ed when
users
select
This is a
private
comput
er on
the
Outlook
Web
Access
logon
page.

UMRA Help

OWAUNCAccessOnPublicCo
mputersEnabled

This
paramet
er
specifies
whether
access
to
Window
s file
shares is
permitt
ed when
users
select
This is a
public
or
shared
comput
er on
the
Outlook
Web
Access
logon
page.

UMRA Help

OWAWSSAccessOnPrivateC
omputersEnabled

This
paramet
er
specifies
whether
Window
s
SharePo
int
Services
access is
permitt
ed when
users
select
This is a
private
comput
er on
the
Outlook
Web
Access
logon
page.

UMRA Help

OWAWSSAccessOnPublicCo
mputersEnabled

This
paramet
er
specifies
whether
Window
s
SharePo
int
Services
access is
permitt
ed when
users
select
This is a
public
or
shared
comput
er on
the
Outlook
Web
Access
logon
page.

PopEnabled This
paramet
er
specifies
whether
the
POP3
protocol
is
enabled
for a
mailbox.

UMRA Help

PopMessagesRetrievalMim
eFormat

This
paramet
er
specifies
the
format
of the
message
s that
are
retrieve
d from
the
server.
The
possible
values
are as
follows:

0:Text
Only

1:HTML
Only

2:HTML
and
Alternat
ive Text

3:Enrich
ed Text
Only

4:Enrich
ed Text
and
Alternat
ive Text

6: Best
Body
Format

0 or 1

UMRA Help

PopUseProtocolDefaults This
paramet
er
specifies
whether
to use
protocol
defaults
for the
POP3
protocol
.

ProtocolSettings This
paramet
er
specifies
the
protocol
settings.

UseRusServer This
paramet
er
instructs
the
comma
nd to
use the
specifie
d RUS
server
to get
and set
mailbox
and
Active
Director
y user
attribut
es.

UMRA Help

DomainController This
paramet
er
specifies
the fully
qualifie
d
domain
name
(FQDN)
of the
domain
controll
er that
writes
configur
ation
changes
to the
Active
Director
y
director
y
service.

Script Action: Disable mailbox (Exchange 2007)

Function

Disable the mailbox of an existing user or InetOrgPerson. The user
account associated with the mailbox will remain in Active Directory but
will no longer be associated with a mailbox.

Deployment

This action disables a mailbox. The user account will remain in the Active
Directory, but its mailbox properties will be removed. The mailbox will
remain in the Exchange database. It will appear in the Exchange
Management console under Microsoft Exchange, Recipient

Configuration, Disconnected Mailbox.

UMRA Help

With UMRA, use the action Script Action: List mailbox statistics (Exchange

2007) on page 326 and set the value of the Disconnected mailboxes only
to 'Yes' to view all the disconnected mailboxes.

Properties

Propert
y Name

Descriptio
n

Typical setting Remark
s

Identity This
parameter
specifies the
mailbox you
want to
disable.

(CN=jsmith,OU=sales,DC=tools4ever,DC=co
m), tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com or the GUID.

Domain
controller

The name of
the domain
controller to
use to write
this
configuratio
n change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com..

Script Action: Remove user - mailbox (Exchange 2007)

Function

Remove a user account that is associated with a particular mailbox in the
Active Directory directory service and to process the associated,
disconnected mailbox as directed by the specified parameters.

UMRA Help

Deployment

Use this action to remove the mailbox from the Exchange database and
its user account from Active Directory. By default, the mailbox object
will remain disconnected in the Exchange database for 30 days. To list all
disconnected mailboxes use action Script Action: List mailbox statistics

(Exchange 2007) on page 326 and set the value of the Disconnected

mailboxes only to 'Yes'. To remove the mailbox object immediately, set
the Permanent parameter of this action to 'Yes'.

Properties

Propert
y Name

Description Typical setting Remar
ks

Database
name

This parameter
specifies which
Exchange
database contains
the mailbox
object. This
parameter must
be used in
conjunction with
the
StoreMailboxIden
tity parameter.
The Database
parameter cannot
be used with the
Identity
parameter.

'Mailbox database',
'SERVERNAME\Mailbox Database' or
'SERVERNAME\Storage Group
Name\Mailbox Database'

UMRA Help

Identity The Identity
parameter
identifies the
mailbox object
that you want to
remove. The
Identity
parameter cannot
be used with the
Database
parameter.

'CN=jsmith,OU=sales,DC=tools4ever,DC
=com', 'tools4ever.com\Jsmith',
'JSmith', 'JSmith@tools4ever.com' or
the GUID.

Store
mailbox
identity

Optional value.
The 'Store
mailbox identity'
parameter
identifies the
mailbox object to
remove. The
StoreMailboxIden
tity parameter is
used in
conjunction with
the Database
parameter to
remove the
mailbox object
from the
Exchange
database. To
remove a
disconnected
mailbox from the
Exchange store,
use the Database
and 'Store
Mailbox Identity'
parameters. Use
the GUID of the
mailbox to specify
this parameter.

ca2c49e5-7536-49d0-83c5-
bff5cd82e383

UMRA Help

Domain
controlle
r

The name of the
domain controller
to use to write
this configuration
change to Active
Directory. Use the
fully qualified
domain name
(FQDN) of the
domain
controller.

EXCHSERVER.tools4ever.com..

Permane
nt

Optional value.
The Permanent
parameter, when
used in
conjunction with
the Identity
parameter,
disconnects the
mailbox from the
user, removes the
associated user
object from
Active Directory,
and removes the
mailbox object
from the
Exchange
database. When
set to 'No', the
mailbox object
remains in the
Exchange
database for 30
days, and then
will be deleted.
When the
mailbox is empty
it is always
deleted
immediately. The
default value is
'No'.

'Yes' or 'No'

UMRA Help

Script Action: Connect mailbox (Exchange 2007)

Function

Connect a disconnected mailbox to an existing user object in the Active
Directory.

Properties

Property
Name

Description Typical setting Remarks

Database The Database
parameter
specifies the
Exchange database
that contains the
mailbox to connect
a user to. If the
server name is not
specified in this
parameter, this
action will search
for the database
on the computer
that runs the
UMRA script.

Mailbox database,
SERVERNAME\Mailbox
Database,
SERVERNAME\Storage Group
Name\Mailbox Database or the
GUID of the database.

UMRA Help

Identity The Identity
parameter
specifies the
mailbox object in
the Exchange
database to
connect to an
Active Directory
user object. This
parameter does
not specify an
Active Directory
object.

/o=organization/ou=exchange
admin
group/cn=recipients/cn=jsmith,
John Smith or the GUID of the
database

Alias Optional value.
The Alias
parameter
specifies the alias
(mail nickname)
for the mailbox
after it is
connected. The
alias can be a
combination of
characters
separated by a
period with no
intervening spaces.
Do not use special
characters in the
alias.

JSmith

UMRA Help

Domain
controller

Optional value.
The
DomainController
parameter
specifies the
domain controller
used to write this
configuration
change to Active
Directory. Use the
fully qualified
domain name
(FQDN) of the
domain controller.

EXCHSERVER.tools4ever.com.

User Optional value.
The User
parameter
specifies the user
object in Active
Directory to
connect the
Exchange mailbox
object to. If this
parameter is not
specified, the
command will use
the
LegacyExchangeDN
and DisplayName
attributes of the
Exchange mailbox
object to find a
user account that
matches the
mailbox object. If it
cannot find a
unique match, it
will not connect
the mailbox.

JSmith, John Smith,
johnsmith@tools4ever.com

UMRA Help

Script Action: Move mailbox (Exchange 2007)

Function

Move mailboxes within your organization or between different
organizations.

Properties

Property
Name

Descriptio
n

Typical setting Remark
s

Identity The Identity
parameter
identifies the
mailbox.

(CN=jsmith,OU=sales,DC=tools4ever,DC=
com), tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com or the GUID.

Target
database

The 'Target
database'
parameter
specifies the
database to
which the
mailbox will
be moved. If
the server
name is not
specified, it
searches the
database on
the
computer
that
executes the
UMRA script.

'Mailbox database',
'SERVERNAME\Mailbox Database' or
'SERVERNAME\Storage Group
Name\Mailbox Database'.

UMRA Help

Allow
merge
parameter

Optional
value. The
'Allow merge
parameter'
specifies the
merging of
mailboxes if
one mailbox
already
exists. Use
this
parameter to
move a
mailbox
between
different
organization
s even if a
target
mailbox
already
exists. The
contents of
the mailbox
are merged
at the target.
This
parameter
cannot be
used if the
NTAccountO
U parameter
is used.

'Yes' or 'No'

UMRA Help

Bad item
limit

Optional
value. The
'Bad item
limit'
parameter
specifies the
number of
bad items to
skip. Use 0
to not skip
bad items.
The valid
input range
for this
parameter is
0 to
2,147,483,64
7.

15

Configurati
on only

The
'Configuratio
n only'
parameter
changes the
Exchange
server
location in
the Active
Directory
directory
service. Use
this
parameter to
direct the
mailbox to a
functional
server. The
mailbox
content is
not moved.

'Yes' or 'No'

UMRA Help

Domain
controller

Optional
value. The
name of the
domain
controller
used to write
this
configuratio
n change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com..

Script Action: Get mailbox permissions (Exchange 2007)

Function

Get the permissions of a mailbox. Multiple accounts can have access to a
mailbox. This action generates a table with rows describing accounts and
its access type.

Properties

Propert
y Name

Descriptio
n

Typical setting Remark
s

Identity The Identity
parameter
identifies the
mailbox.

(CN=jsmith,OU=sales,DC=tools4ever,DC=co
m), tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com or the GUID.

UMRA Help

User Optional
value: The
User
parameter
specifies the
user that has
permissions
on the
mailbox. If
not
specified,
the
complete
access rights
list of the
mailbox will
be returned.

JSmith, John Smith,
johnsmith@tools4ever.com or the GUID.

Domain
controller

Optional
value. The
name of the
domain
controller
used to
retrieve the
data from
Active
Directory
directory
service. Use
the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com..

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

UMRA Help

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default variable
name

Remarks

Mailboxpermissions The resulting
table with
rows
describing
accounts and
its access
type on that
mailbox.

%MailboxPermissions% The available
columns are:

User, Accessrights,
IsInherited, Deny
and
InheritanceType.

Script Action: Manage mailbox permissions (Exchange 2007)

Function

Manage the permissions of a mailbox by adding or removing access
permissions for user accounts on a mailbox. Permission can also be
removed for specific user accounts.

Properties

UMRA Help

Propert
y Name

Description Typical setting Remar
ks

Identity The Identity
parameter
specifies the
identity of the
mailbox that is
getting
permissions
added or
removed.

(CN=jsmith,OU=sales,DC=tools4ever,DC=
com), tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com or the GUID.

User Optional value.
The User
parameter
specifies the
user account
that the
permissions are
being granted
to or denied
from on the
other mailbox.
If not specified,
permissions are
granted to or
denied from the
user that is
implicitly
associated with
the mailbox by
using NT
AUTHORITY\SEL
F for the user.

(CN=jsmith,OU=sales,DC=tools4ever,DC=
com), tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com, 'John Smith' or
the GUID.

UMRA Help

Access
rights

The 'Access
rights' specifies
the target
permission.
Valid values
are: FullAccess,
SendAs,
ExternalAccoun
t, DeleteItem,
ReadPermission
,
ChangePermissi
on and
ChangeOwner.
If this
parameter is
not specified
and the
'Remove
permission' is
set to 'Yes', all
permissions of
the user
account will be
removed. Use
commas to
specify multiple
values.

ReadPermission, SendAs

Deny Optional value.
If set to 'Yes',
this parameter
indicates that
the specified
access rights
are to be added
to the list of
rights that are
explicitly
denied to the
indicated user.
The default
value is 'No'.

'Yes' or 'No'

UMRA Help

Remove
permissio
n

If set to 'Yes'
this parameter
specifies that
the right is to
be removed
from the list of
rights instead of
added. If the
'Deny'
parameter is
also specified,
the right is
removed from
the list of rights
that are
explicitly
denied. The
default value is
'No'.

'Yes' or 'No'

Domain
controller

Optional value.
The name of
the domain
controller used
to write this
configuration
update to
Active
Directory. Use
the fully
qualified
domain name
(FQDN) of the
domain
controller.

EXCHSERVER.tools4ever.com.

UMRA Help

Inheritan
ce type

Optional value.
Use this
parameter to
specify whether
permissions are
inherited to
folders within
the mailbox.
Valid values
are: None, All,
Descendents,
SelfAndChildren
, Children.

SelfAndChildren

Script Action: List mailboxes (Exchange 2007)

Function

Retrieve information about mailboxes. The action returns a table with
rows for each mailbox.

Deployment

Use this action to get an overview of mailboxes in Exchange. This action
provides three output properties. The simple, regular and advanced
table. The simple table contains the most important values of a mailbox.
The advanced table contains all properties, but therefore causes more
network traffic.

Properties

UMRA Help

Property
Name

Descriptio
n

Typical setting Remark
s

Database Optional
value. The
Database
parameter
specifies the
database
from which
to get the
mailbox. If
the server
name is not
specified in
this
parameter,
this action
will search
for the
database on
the
computer
that runs the
UMRA script.
This
parameter
cannot be
used in
conjunction
with the
Filter
parameter.

'Mailbox database',
'SERVERNAME\Mailbox Database',
'SERVERNAME\Storage Group
Name\Mailbox Database'

UMRA Help

Organization
al unit

Optional
value. The
'Organization
al unit'
parameter
specifies an
organization
al unit (OU),
and is used
to limit the
results. If this
parameter is
specified,
only
mailboxes in
the specified
container
will be
retrieved.
Use either
the OU or
the domain
name. If the
OU is used,
specify the
canonical
name of the
OU.

'Tools4ever.com/Management/Sales'

UMRA Help

Domain
controller

Optional
value. The
name of the
domain
controller
that retrieves
data from
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com

Filter Optional
value. The
Filter
parameter
specifies a
set of
attributes
that restricts
the
mailboxes
that are
returned by
the query.
This
parameter
cannot be
used in
conjunction
with the
'Database'
parameter.

Name -like '*Smith'

UMRA Help

Result size Optional
value. The
ResultSize
parameter
sets the
maximum
number of
results to
return. If all
mailboxes
should be
returned, use
"unlimited"
for the value
of this
parameter.
The default
value is
1000.

1000

Identity The Identity
parameter
identifies the
mailbox. If
this
parameter is
specified
only the
mailbox
associated
with the
particular
mailbox user
is returned.

CN=jsmith,OU=sales,DC=tools4ever,DC=
com, tools4ever.com\JSmith, JSmith
jsmith@tools4ever.com or the GUID

Sort by Optional
value. The
SortBy
parameter
sorts by a
single
attribute in
ascending
order.

Name

UMRA Help

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default
variable
name

Remarks

UserMailboxSim
ple

The resulting
table with
columns for
Name,
SamAccountNa
me and
DistinguishedN
ame for each
mailbox.

UserMailboxRe
gular

The resulting
table with
columns for
Name, Alias,
ServerName,
DisplayName,
SamAccountNa
me,
UserPrincipalN
ame,
PrimarySmtpA
ddress and
DistinguishedN
ame for each
mailbox.

%UserMailboxRe
gular%

UMRA Help

UserMailboxAd
vanced

The resulting
table with
many columns
for each
mailbox.

 The columns available are:

AcceptMessagesOnlyFrom,
Alias,
AntiSpamBypassEnabled,
CustomAttribute1,
CustomAttribute2,
CustomAttribute3,
CustomAttribute4,
CustomAttribute5,
DeliverToMailboxAndForwa
rd, DisplayName,
DistinguishedName,
EmailAddresses,
EmailAddressPolicyEnabled
, ExternalOofOptions,
ForwardingAddress,
HiddenFromAddressListsEn
abled, IssueWarningQuota,
MaxBlockedSenders,
MaxReceiveSize,
MaxSafeSenders,
MaxSendSize, Name,
Office,
PrimarySmtpAddress,
ProhibitSendQuota,
ProhibitSendReceiveQuota,
RecipientLimits,
RejectMessagesFrom,
RequireSenderAuthenticati
onEnabled,
RetainDeletedItemsFor,
RetainDeletedItemsUntilBa
ckup,
RetentionHoldEnabled,
RulesQuota,
SamAccountName,
SimpleDisplayName,
StartDateForRententionHol
d,
UseDatabaseQuotaDefaults
,
UseDatabaseRetentionDefa
ults, UserPrincipalName,
WindowsEmailAddress.

UMRA Help

Mail user

Script Action: Create mail user (Exchange 2007)

Function

Create a new mail user in the Active Directory directory service. A mail
user has no mailbox, but can receive mail. The mail received will be sent
to his 'External emailaddress'.

Properties

Property
Name

Description Typical setting Remark
s

External
emailaddress

The 'External
emailaddress'
parameter
specifies an e-mail
address outside of
the organization.
E-mail messages
sent to the mail-
enabled user are
sent to this
external address.

johnsmith@external.com

Name The Name
parameter
specifies the
common name
(CN) of the mail-
enabled user.

John Smith

User principal
name

The 'User
principal name'
parameter
defines the name
of a system user
in an e-mail
address format.

johnsmith@tools4ever.com

UMRA Help

Password The password
parameter
specifies the
initial password
for the newly
created mail user.
Note that the
password must
meet password
complexity
requirements as
set for the
domain.

test123

Organizational
unit

The
'Organizational
unit' parameter
specifies the
organizational
unit in which the
new mail user is
added.

tools4ever.com/Sales

Alias Optional value.
The email alias of
the mail user. The
alias can be a
combination of
characters
separated by a
period with no
intervening
spaces. Do not
use special
characters in the
alias.

JSmith

UMRA Help

Display name Optional value.
The 'Display
name' parameter
parameter
specifies the
name that will be
displayed in
Microsoft Outlook
for the mail user.

John Smith

First name Optional value.
The first name of
the mail user.

John

Initials Optional value.
The initials of the
mail user.

F

Last name Optional value.
The last name of
the mail user.

Smith

SamAccountNam
e

Optional value.
This parameter
specifies the
logon name used
to support clients
and servers
running older
versions of the
operating system.
This attribute
must be less than
20 characters to
support older
clients. If this
parameter is not
specified, Active
Directory will
create a
SAMAccountNam
e automatically,
based on the user
principal name.

JohnSmith

UMRA Help

Reset password
on next logon

Optional value. If
the 'Reset
password on next
logon' parameter
is set to 'Yes', the
user must change
the password at
the next logon.

'Yes', 'No'

Domain
controller

Optional value.
The name of the
domain controller
used to write this
configuration
change to Active
Directory. Use the
fully qualified
domain name
(FQDN) of the
domain
controller.

EXCHSERVER.tools4ever.com.
.

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default
variable
name

Remarks

Alias Optional
value. The
alias of the
mail contact.

UMRA Help

SamAccountName Optional
value. This
parameter
specifies the
logon name
used to
support
clients and
servers
running older
versions of
the operating
system.

Distinguished
name

Optional
value. This
parameter
returns the
distinguished
name of the
new mail
user.

GUID Optional
value. This
parameter
returns the
GUID of the
new mail
user.

Script Action: Enable mail user (Exchange 2007)

Function

Mail enable an existing user account in the Active Directory. A mail user
has no mailbox, but can receive mail. The mail received will be sent to
his 'External emailaddress'.

UMRA Help

Properties

Property
Name

Descriptio
n

Typical setting Remark
s

External
emailaddre
ss

The
'External
emailaddres
s' parameter
specifies an
e-mail
address
outside of
the
organization
. E-mail
messages
sent to the
mail-
enabled
user is sent
to this
external
address.

johnsmith@external.com

Identity This
parameter
specifies the
user that
will be mail-
enabled.

(CN=jsmith,OU=sales,DC=tools4ever,DC=c
om), tools4ever.com\Jsmith,
JSmith@tools4ever.com or the GUID.

UMRA Help

Alias Optional
value. The
email alias
of the user.
The alias
can be a
combination
of
characters
separated
by a period
with no
intervening
spaces. Do
not use
special
characters
in the alias.

JSmith

Domain
controller

Optional
value. The
name of the
domain
controller
used to
write this
configuratio
n change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com.

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

UMRA Help

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default
variable
name

Remarks

Alias Optional
value. The
email alias of
the user.

GUID Optional
value. This
parameter
returns the
GUID of the
new mail
user.

Legacy
Exchange
DN

Optional
value. This
parameter
returns the
Legacy
Exchange DN
of the new
mail user.

Script Action: Edit mail user (Exchange 2007)

Function

Edit the attributes of a mail enabled user by specifying the properties.

UMRA Help

Deployment

This action is typically used for editing the settings of mail users.
Previous values of the properties listed below will be overwritten. Use
$null to clear properties.

Properties

Property
Name

Description Typical setting Remar
ks

Identity The Identity
parameter
identifies the
mail enabled
user.

(CN=jsmith,OU=sales,DC=tools4ever,
DC=com), tools4ever.com\Jsmith,
JSmith, JSmith@tools4ever.com or
the GUID.

Accept
messages only
from

Optional value.
The 'Accept
messages only
from'
parameter
specifies the
mailbox users,
mail users and
mail contacts
that can send
e-mail
messages to
this mailbox.
Use commas to
specify multiple
values.

(CN=jsmith,OU=sales,DC=tools4ever,
DC=com), tools4ever.com\Jsmith,
JohnSmith, JSmith, John Smith,
JSmith@tools4ever.com or the GUID.

UMRA Help

Alias Optional value.
The Alias
parameter
specifies the
alias of the mail
enabled user.
The alias can be
a combination
of characters
separated by a
period with no
intervening
spaces. Do not
use special
characters in
the alias.

JSmith

Custom
attribute 1

Optional value.
The 'Custom
attribute 1'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e1.

Custom
attribute 2

Optional value.
The 'Custom
attribute 2'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e2.

UMRA Help

Custom
attribute 3

Optional value.
The 'Custom
attribute 3'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e2.

Custom
attribute 4

Optional value.
The 'Custom
attribute 4'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e2.

Custom
attribute 5

Optional value.
The 'Custom
attribute 5'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e2.

Display name The 'Display
name'
parameter
specifies the
display name of
the user.

John Smith

UMRA Help

Domain
controller

Optional value.
The name of
the domain
controller used
to write this
configuration
change to
Active
Directory. Use
the fully
qualified
domain name
(FQDN) of the
domain
controller.

EXCHSERVER.tools4ever.com..

Email
addresses

The 'Email
addresses'
parameter can
be used to
specify the e-
mail alias of the
mail user. All
valid Microsoft
Exchange 2007
e-mail address
types may be
used. Use
commas to
specify multiple
values.

SMTP:John@tools4ever.com,
smtp:jsmith@tools4ever.com

Emailaddress
policy enabled

The
'Emailaddress
policy enabled'
parameter
specifies
whether the e-
mail address
policy for this
mailbox is
enabled.

'Yes' or 'No'

UMRA Help

External email
address

The 'External
email address'
parameter
specifies
whether the e-
mail addresses
for the mailbox
will be
automatically
updated based
on the e-mail
address policies
defined. When
this parameter
is set to 'Yes',
the 'Primary
SMTP address'
or 'Windows
email address'
parameters
cannot be
changed.

smtp:jsmith@tools4ever.com

Grant send on
behalf to

The 'Grant send
on behalf to'
parameter
specifies the
distinguished
name (DN) of
recipients that
can send
messages on
behalf of this
user.

CN=jsmith,OU=sales,DC=tools4ever,
DC=com

Hidden from
address lists
enabled

The 'Hidden
from address
lists enabled'
parameter
specifies
whether the
user appears in
the address
lists.

'Yes' or 'No'

UMRA Help

Maximum
receive size

The 'Maximum
receive size'
parameter
specifies the
maximum size
of e-mail
messages that
can be received
by the mail
user, from 1
kilobyte (KB) to
2,097,151 KB. If
not specified,
there will be no
size
restrictions.
Qualify the
value with one
of the
following: B
(bytes), KB
(kilobytes), MB
(megabytes),
GB (gigabytes)
or "unlimited".

50MB

UMRA Help

Maximum
send size

The 'Maximum
send size'
parameter
specifies the
maximum size
of e-mail
messages that
can be sent by
the mail user,
from 1 KB to
2,097,151 KB. If
not specified,
there will be no
size
restrictions.
Qualify the
value with one
of the
following: B
(bytes), KB
(kilobytes), MB
(megabytes),
GB (gigabytes)
or "unlimited".

50MB

Name The 'Name'
parameter
specifies the
name of the
user.

John Smith

UMRA Help

Primary SMTP
address

The 'Primary
SMTP address'
parameter
specifies the
address that
external users
will see when
they receive a
message from
this mailbox. If
this parameter
is used, the
'Email
addresses'
parameter
cannot be used
because 'Email
addresses'
includes the
primary SMTP
address.

SMTP:jsmith@tools4ever.com

Recipient
limits

The 'Recipient
limits'
parameter
specifies the
maximum
number of
recipients for
messages from
this user.
Specify either
an integer or
"unlimited." If
this attribute is
set on a
mailbox, it
overrides the
default value
that is set for
this attribute
on the hub
transport
server.

unlimited

UMRA Help

Reject
messages
from

The 'Reject
messages from'
parameter
specifies the
recipients from
whom
messages will
be rejected.
Use commas to
specify multiple
values.

domain.com/Sales/JSmith

Require
sender
authentication
enabled

The 'Require
sender
authentication
enabled'
parameter
specifies
whether
senders must
be
authenticated.

'Yes' or 'No'

UMRA Help

SamAccountN
ame

The
'SamAccountNa
me' parameter
defines the
logon name
used to support
clients and
servers running
older versions
of the
operating
system, such as
Microsoft
Windows NT
4.0, Windows
98, Windows
95, and LAN
Manager. This
parameter
must be less
than 20
characters in
length.

jsmith

UMRA Help

Simple display
name

The 'Simple
display name'
parameter is
used on objects
where the
name of the
object may be
displayed in an
environment
that does not
support
Unicode
characters. The
only supported
characters for
the
SimpleDisplayN
ame parameter
are ASCII
characters 26
through 126,
inclusively.
These
characters are
the ones that
are typically
found on most
U.S. English
keyboards.

John Smith

User principal
name

The 'User
principal name'
parameter
specifies the
user principal
name (UPN) for
the mail user.

johnsmith@tools4ever.com

UMRA Help

Windows
emailaddress

The 'Windows
emailaddress'
parameter
specifies the
Windows e-
mail address
for this mail
user. This
address is not
used by
Exchange.

js@tools4ever.com

Script Action: Manage mail user email addresses (Exchange 2007)

Function

Manage the additional email addresses for a mail user. Email addresses
can be added or removed.

Deployment

This action is typically used to add or remove email addresses from the
specified mail enabled user. Use an Umra variable for the Emailaddress
property to add or remove that email address. If the Umra variable is a
table or list, the action will read all items in the table or list and removes
or adds these items to the mailbox. You can also edit the emailaddress
property of a mail user with the Script Action: Edit mail user (Exchange 2007)
on page 263 action. Note that this action overwrites the property,
adding one emailaddress with this action clears the previous value of the
property.

Properties

UMRA Help

Property
Name

Descriptio
n

Typical setting Remark
s

Identity The Identity
parameter
identifies
the mail
enabled
user.

'CN=jsmith,OU=sales,DC=tools4ever,DC=c
om', 'tools4ever.com\Jsmith', 'JSmith',
'JSmith@tools4ever.com' or the GUID.

Emailaddre
ss

The
Emailaddres
s parameter
specifies the
proxy
address of
the mail
enabled
user. It
includes the
primary
Simple Mail
Transfer
Protocol
(SMTP)
address as
one of the
proxy
addresses.
Use a table
or text list to
specify
multiple
values.

%EmailAddress%,
'smtp:JohnSmith@tools4ever.com'

UMRA Help

Remove
address

With the
'Remove
address'
parameter
the email
address can
be removed
instead of
added to
the mail
enabled
user.

'Yes' or 'No'

Script Action: Disable mail user (Exchange 2007)

Function

Disable a mail-enabled user and remove that object's Exchange
attributes from the Active Directory directory service.

Properties

Propert
y Name

Descriptio
n

Typical setting Remark
s

Identity This
parameter
specifies the
user to mail-
disable.

(CN=jsmith,OU=sales,DC=tools4ever,DC=co
m), tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com or the GUID.

UMRA Help

Domain
controller

The name of
the domain
controller to
use to write
this
configuratio
n change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com..

Script Action: Remove mail user (Exchange 2007)

Function

Remove a mail enabled user from the Active Directory directory service.

Properties

Propert
y Name

Descriptio
n

Typical setting Remark
s

Identity The Identity
parameter
identifies the
mail enabled
user.

'CN=jsmith,OU=sales,DC=tools4ever,DC=co
m', 'tools4ever.com\Jsmith', 'JSmith',
'JSmith@tools4ever.com' or the GUID.

UMRA Help

Domain
controller

The name of
the domain
controller to
use to write
this
configuratio
n change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com..

Script Action: List mail users (Exchange 2007)

Function

Retrieve information about mail users. The action returns a table with
rows for each mail user.

Deployment

Use this action to get an overview of mail users in Exchange. This action
provides three output properties. The simple, regular and advanced
table. The simple table contains the most important values of a mailbox.
The advanced table contains all properties, but therefore causes more
network traffic.

Properties

UMRA Help

Property
Name

Descriptio
n

Typical setting Remark
s

Organization
al unit

Optional
value. The
'Organization
al unit'
parameter
specifies an
organization
al unit (OU),
and is used
to limit the
results. Use
this
parameter to
return only
the mail
enabled
users in the
specified
container.
Specify
either the
OU or the
domain
name.

Tools4ever.com/Management/Sales

Domain
controller

Optional
value. The
name of the
domain
controller
that retrieves
data from
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com

UMRA Help

Filter Optional
value. The
Filter
parameter
specifies a
set of
attributes
that restricts
the results
that are
returned by
the query.

Name -like '*Smith'

Result size Optional
value. The
ResultSize
parameter
specifies the
maximum
number of
results to
return. To
return all
mail enabled
users that
match the
query, use
"unlimited"
for the value
of this
parameter.
The default
value is
1000.

1000

Identity The Identity
parameter
identifies the
mail enabled
user.

CN=jsmith,OU=sales,DC=tools4ever,DC=
com, tools4ever.com\JSmith, JSmith
jsmith@tools4ever.com or the GUID

UMRA Help

Sort by Optional
value. The
SortBy
parameter
sorts by a
single
attribute in
ascending
order.

Name

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Descriptio
n

Default
variable
name

Remarks

MailUserSi
mple

The resulting
table with
columns for
Name,
SamAccountN
ame and
Distinguished
Name for
each user.

UMRA Help

MailUserRe
gular

The resulting
table with
columns for
Name, Alias,
DisplayName,
SamAccountN
ame,
UserPrincipal
Name,
PrimarySmtp
Address and
Distinguished
Name for
each mail
user.

%MailUserRe
gular%

UMRA Help

MailUserAd
vanced

The resulting
table with
many
columns for
each mail
user.

 The columns available are:

AcceptMessagesOnlyFrom,
AddressListMembership, Alias,
CustomAttribute1,
CustomAttribute2,
CustomAttribute3,
CustomAttribute4,
CustomAttribute5, DisplayName,
DistinguishedName,
EmailAddresses,
EmailAddressPolicyEnabled,
ExchangeUserAccountControl,
ExchangeVersion, Extensions,
ExternalEmailAddress,
GrantSendOnBehalfTo, Guid,
HiddenFromAddressListsEnabled,
IsValid, LegacyExchangeDN,
MacAttachmentFormat,
MaxReceiveSize, MaxSendSize,
MessageBodyFormat,
MessageFormat, Name
ObjectCategory, ObjectClass,
OrganizationalUnit,
OriginatingServer, PoliciesExcluded,
PoliciesIncluded,
PrimarySmtpAddress,
ProtocolSettings, RecipientLimits,
RecipientType,
RecipientTypeDetails,
RejectMessgesFrom,RejectMessage
sFromDLMembers,
RequireSenderAuthenticationEnable
d, SamAccountName,
SimpleDisplayName, UMDtmfMap,
UseMapiRichTextFormat,
UsePreferMessageFormat,
UserPrincipalName, WhenChanged,
WhenCreated,
WindowsEmailAddress

UMRA Help

Mail contact

Script Action: Create mail contact (Exchange 2007)

Function

Create a new mail enabled contact. A new contact object will be created
in the Active Directory. This new contact will be mail enabled. Mail
received by this contact will be sent to its 'External emailaddress'.

Deployment

Properties

Property
Name

Description Typical setting Remarks

External
emailaddress

The 'External
emailaddress'
parameter
specifies an e-
mail address
outside of the
organization.
E-mail
messages sent
to the mail-
enabled
contact are
sent to this
external
address.

johnsmith@external.com

Name The Name
parameter
specifies the
common name
(CN) of the
mail contact.

John Smith

UMRA Help

Organizational
unit

The
'Organizational
unit'
parameter
specifies the
container
where the new
contact will be
created.
Specify the
organizational
unit with the
domain name.

tools4ever.com/Sales

Alias Optional
value. The
alias of the
mail contact.
The alias can
be a
combination
of characters
separated by a
period with no
intervening
spaces. Do not
use special
characters in
the alias.

JSmith

Display name Optional
value. The
'Display name'
parameter
parameter
specifies the
name that will
be displayed in
Microsoft
Outlook for
the mail
contact.

John Smith

UMRA Help

First name Optional
value. The first
name of the
mail contact.

John

Initials Optional
value. The
initials of the
mail contact.

F

Last name Optional
value. The last
name of the
mail contact.

Smith

Domain
controller

Optional
value. The
name of the
domain
controller
used to write
this
configuration
change to
Active
Directory. Use
the fully
qualified
domain name
(FQDN) of the
domain
controller.

EXCHSERVER.tools4ever.com..

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

UMRA Help

Property Description Default
variable
name

Remarks

Alias Optional
value. The
alias of the
mail contact.

Distinguished
name

Optional
value. This
parameter
returns the
distinguished
name of the
new mail
contact.

GUID Optional
value. This
parameter
returns the
GUID of the
new mail
contact.

Script Action: Enable mail contact (Exchange 2007)

Function

Mail enable an existing contact in the Active Directory. Mail received by
this contact will be sent to its 'External emailaddress'.

Deployment

Properties

UMRA Help

Property
Name

Descriptio
n

Typical setting Remark
s

External
emailaddre
ss

The
'External
emailaddres
s' parameter
specifies an
e-mail
address
outside of
the
organization
. E-mail
messages
sent to the
mail-
enabled
contact is
sent to this
external
address.

johnsmith@external.com

Identity This
parameter
specifies the
contact that
will be mail-
enabled.

(CN=jsmith,OU=sales,DC=tools4ever,DC=c
om), tools4ever.com\Jsmith,
JSmith@tools4ever.com or the GUID.

UMRA Help

Alias Optional
value. The
email alias
of the
contact. The
alias can be
a
combination
of
characters
separated
by a period
with no
intervening
spaces. Do
not use
special
characters
in the alias.

JSmith

Display
name

Optional
value. The
'Display
name' of the
mail
contact.

John Smith

UMRA Help

Domain
controller

Optional
value. The
name of the
domain
controller
used to
write this
configuratio
n change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com.

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default
variable
name

Remarks

Alias Optional
value. The
email alias of
the contact.

UMRA Help

GUID Optional
value. This
parameter
returns the
GUID of the
new mail
contact.

Script Action: Edit mail contact (Exchange 2007)

Function

Edit the attributes of a mail enabled contact.

Deployment

This action is typically used for editing the settings of mail contacts.
Previous values of the properties listed below will be overwritten. Use
$null to clear properties.

Properties

Property
Name

Description Typical setting Remar
ks

Identity The Identity
parameter
identifies the
mail enabled
contact.

(CN=jsmith,OU=sales,DC=tools4ever,D
C=com), tools4ever.com\Jsmith,
JSmith, JSmith@tools4ever.com or the
GUID.

UMRA Help

Accept
messages
only from

Optional value.
The 'Accept
messages only
from' parameter
specifies the
mailbox users,
mail users and
mail contacts
that can send e-
mail messages
to this mailbox.
Use commas to
specify multiple
values.

(CN=jsmith,OU=sales,DC=tools4ever,D
C=com), tools4ever.com\Jsmith,
JohnSmith, JSmith, John Smith,
JSmith@tools4ever.com or the GUID.

Alias Optional value.
The Alias
parameter
specifies the
alias of the mail
enabled
contact. The
alias can be a
combination of
characters
separated by a
period with no
intervening
spaces. Do not
use special
characters in
the alias.

JSmith

Custom
attribute 1

Optional value.
The 'Custom
attribute 1'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e1.

UMRA Help

Custom
attribute 2

Optional value.
The 'Custom
attribute 2'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e2.

Custom
attribute 3

Optional value.
The 'Custom
attribute 3'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e2.

Custom
attribute 4

Optional value.
The 'Custom
attribute 4'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e2.

Custom
attribute 5

Optional value.
The 'Custom
attribute 5'
parameter
specifies the
value for the
mailbox
attribute
CustomAttribut
e2.

UMRA Help

Display
name

The 'Display
name'
parameter
specifies the
display name of
the contact.

John Smith

Domain
controller

Optional value.
The name of the
domain
controller used
to write this
configuration
change to
Active
Directory. Use
the fully
qualified
domain name
(FQDN) of the
domain
controller.

EXCHSERVER.tools4ever.com..

Email
addresses

The 'Email
addresses'
parameter can
be used to
specify the e-
mail alias of the
mail contact. All
valid Microsoft
Exchange 2007
e-mail address
types may be
used. Use
commas to
specify multiple
values.

SMTP:John@tools4ever.com,
smtp:jsmith@tools4ever.com

UMRA Help

Emailaddre
ss policy
enabled

The
'Emailaddress
policy enabled'
parameter
specifies
whether the e-
mail addresses
for the mailbox
will be
automatically
updated based
on the e-mail
address policies
defined.

'Yes' or 'No'

External
email
address

The 'External
email address'
parameter
specifies
whether the e-
mail addresses
for the mailbox
will be
automatically
updated based
on the e-mail
address policies
defined. When
this parameter
is set to 'Yes',
the 'Primary
SMTP address'
or 'Windows
email address'
parameters
cannot be
changed.

smtp:jsmith@tools4ever.com

UMRA Help

Grant send
on behalf to

The 'Grant send
on behalf to'
parameter
specifies the
distinguished
name (DN) of
recipients that
can send
messages on
behalf of this
contact.

CN=jsmith,OU=sales,DC=tools4ever,D
C=com

Hidden
from
address lists
enabled

The 'Hidden
from address
lists enabled'
parameter
specifies
whether the
contact appears
in the address
lists.

'Yes' or 'No'

Maximum
receive size

The 'Maximum
receive size'
parameter
specifies the
maximum size
of e-mail
messages that
can be received,
from 1 kilobyte
(KB) to
2,097,151 KB. If
not specified,
there will be no
size restrictions.
Qualify the
value with one
of the following:
B (bytes), KB
(kilobytes), MB
(megabytes), GB
(gigabytes) or
"unlimited".

50MB

UMRA Help

Maximum
recipient
per
message

The 'Maximum
recipient per
message'
parameter
specifies the
maximum
number of
recipients for
messages from
this mail
contact.

50

Maximum
send size

The 'Maximum
send size'
parameter
specifies the
maximum size
of e-mail
messages that
can be sent,
from 1 KB to
2,097,151 KB. If
not specified,
there will be no
size restrictions.
Qualify the
value with one
of the following:
B (bytes), KB
(kilobytes), MB
(megabytes), GB
(gigabytes) or
"unlimited".

50MB

Name The 'Name'
parameter
specifies the
name of the
contact.

John Smith

UMRA Help

Primary
SMTP
address

The 'Primary
SMTP address'
parameter
specifies the
address that
external users
will see when
they receive a
message from
this mailbox. If
this parameter
is used, the
'Email
addresses'
parameter
cannot be used
because 'Email
addresses'
includes the
primary SMTP
address.

SMTP:jsmith@tools4ever.com

Reject
messages
from

The 'Reject
messages from'
parameter
specifies the
recipients from
whom messages
will be rejected.
Use commas to
specify multiple
values.

domain.com/Sales/JSmith

Require
sender
authenticati
on enabled

The 'Require
sender
authentication
enabled'
parameter
specifies
whether
senders must be
authenticated.

'Yes' or 'No'

UMRA Help

Simple
display
name

The 'Simple
display name'
parameter is
used on objects
where the name
of the object
may be
displayed in an
environment
that does not
support
Unicode
characters. The
only supported
characters for
the
SimpleDisplayN
ame parameter
are ASCII
characters 26
through 126,
inclusively.
These
characters are
the ones that
are typically
found on most
U.S. English
keyboards.

John Smith

Windows
emailaddre
ss

The 'Windows
emailaddress'
parameter
specifies the
Windows e-mail
address for this
mail contact.
This address is
not used by
Exchange.

js@tools4ever.com

UMRA Help

Script Action: Manage mail contact email addresses (Exchange 2007)

Function

Manage the additional email addresses for a mail contact. Email
addresses can be added or removed.

Deployment

This action is typically used to add or remove email addresses from the
specified mail contact. Use an Umra variable for the Emailaddress
property to add or remove that email address. If the Umra variable is a
table or list, the action will read all items in the table or list and removes
or adds these items to the mailbox. You can also edit the emailaddress
property of a mail contact with the Script Action: Edit mail contact (Exchange

2007) action. Note that this action overwrites the property, adding one
emailaddress with this action clears the previous value of the property.

Properties

Property
Name

Descriptio
n

Typical setting Remark
s

Identity The Identity
parameter
identifies
the mail
contact.

'CN=jsmith,OU=sales,DC=tools4ever,DC=c
om', 'tools4ever.com\Jsmith', 'JSmith',
'JSmith@tools4ever.com' or the GUID.

UMRA Help

Emailaddre
ss

The
Emailaddres
s parameter
specifies all
the proxy
addresses of
the mail
contact. It
includes the
primary
Simple Mail
Transfer
Protocol
(SMTP)
address as
one of the
proxy
addresses.

%EmailAddress%,
'smtp:JohnSmith@tools4ever.com'

Remove
address

With the
'Remove
address'
parameter
the email
address can
be removed
instead of
added to
the mail
contact.

'Yes' or 'No'

Script Action: Disable mail contact (Exchange 2007)

Function

Disable a mail-enabled contact and remove that object's Exchange
attributes from the Active Directory directory service.

UMRA Help

Deployment

Properties

Propert
y Name

Descriptio
n

Typical setting Remark
s

Identity This
parameter
specifies the
contact to
mail-disable.

(CN=jsmith,OU=sales,DC=tools4ever,DC=co
m), tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com or the GUID.

Domain
controller

The name of
the domain
controller to
use to write
this
configuratio
n change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com..

Script Action: Remove mail contact (Exchange 2007)

Function

Remove a mail enabled contact from the Active Directory directory
service.

UMRA Help

Properties

Propert
y Name

Descriptio
n

Typical setting Remark
s

Identity The Identity
parameter
identifies the
mail enabled
contact.

'CN=jsmith,OU=sales,DC=tools4ever,DC=co
m', 'tools4ever.com\Jsmith', 'JSmith',
'JSmith@tools4ever.com' or the GUID.

Domain
controller

The name of
the domain
controller to
use to write
this
configuratio
n change to
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com..

Script Action: List mail contacts (Exchange 2007)

Function

Retrieve information about mail contacts. The action returns a table
with rows for each mail contact.

Deployment

Use this action to get an overview of mail contacts in Exchange. This
action provides three output properties. The simple, regular and
advanced table. The simple table contains the most important values of
a mail contact. The advanced table contains all properties, but therefore
causes more network traffic.

UMRA Help

Properties

Property
Name

Description Typical setting Remar
ks

Organizatio
nal unit

Optional value.
The
'Organizational
unit' parameter
specifies an
organizational
unit (OU), and is
used to limit
the results. Use
this parameter
to return only
the mail
enabled
contacts in the
specified
container.
Specify either
the OU or the
domain name.

Tools4ever.com/Management/Sales

Domain
controller

Optional value.
The name of
the domain
controller that
retrieves data
from Active
Directory. Use
the fully
qualified
domain name
(FQDN) of the
domain
controller.

EXCHSERVER.tools4ever.com

UMRA Help

Filter Optional value.
The Filter
parameter
specifies a set
of attributes
that restricts
the results that
are returned by
the query.

Name -like '*Smith'

Recipient
type details

Optional value.
The 'Recipient
type details'
parameter
specifies the
type of
recipients that
are returned.
For this action,
the available
recipient type
details are:
MailContact or
MailForestCont
act.

MailContact

Result size Optional value.
The ResultSize
parameter
specifies the
maximum
number of
results to
return. To
return all mail
contacts that
match the
query, use
"unlimited" for
the value of this
parameter. The
default value is
1000.

1000

UMRA Help

Identity The Identity
parameter
identifies the
mail contact.

CN=jsmith,OU=sales,DC=tools4ever,D
C=com, tools4ever.com\JSmith,
JSmith jsmith@tools4ever.com or the
GUID

Sort by Optional value.
The SortBy
parameter sorts
by a single
attribute in
ascending
order.

Name

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Descriptio
n

Default
variable
name

Remarks

MailContactSi
mple

The
resulting
table with
columns for
Name,
DisplayNam
e and
Distinguishe
dName for
each
contact.

UMRA Help

MailContactR
egular

The
resulting
table with
columns for
Name,
DisplayNam
e and
Distinguishe
dName,
Alias,
Organization
alUnit,
SimpleDispla
yName for
each mail
contact.

%MailContact
Regular%

UMRA Help

MailContactA
dvanced

The
resulting
table with
many
columns for
each mail
contact.

 The columns available are:

AcceptMessagesOnlyFrom,
AcceptMessagesOnlyFromDLMem
bers, AddressListMembership,
Alias, CustomAttribute1,
CustomAttribute2,
CustomAttribute3,
CustomAttribute4,
CustomAttribute5, DisplayName,
DistinguishedName,
EmailAddresses,
EmailAddressPolicyEnabled,
ExchangeVersion, Extensions,
ExternalEmailAddress,
GrantSendOnBehalfTo, Guid,
HiddenFromAddressListsEnabled,
IsValid, LegacyExchangeDN,
MacAttachmentFormat,
MaxReceiveSize,
MaxRecipientPerMessage,
MaxSendSize,
MessageBodyFormat,
MessageFormat, Name
ObjectCategory, ObjectClass,
OrganizationalUnit,
OriginatingServer,
PoliciesExcluded, PoliciesIncluded,
PrimarySmtpAddress,
RecipientType,
RecipientTypeDetails,
RejectMessgesFrom,RejectMessag
esFromDLMembers,
RequireSenderAuthenticationEnab
led, SimpleDisplayName,
UMDtmfMap,
UseMapiRichTextFormat,
UsePreferMessageFormat,
WhenChanged, WhenCreated,
WindowsEmailAddress

UMRA Help

User

Script Action: List users (Exchange 2007)

Function

Retrieve all users in the forest that match the specified conditions. All
results are returned in a table with one row for each user account.
Various return tables are available with different columns.

Deployment

Use this action to get an overview of users. This action provides three
output properties. The simple, regular and advanced table. The simple
table contains the most important values of a user. The advanced table
contains all properties, but therefore causes more network traffic.

Properties

Property
Name

Descriptio
n

Typical setting Remark
s

Organization
al unit

Optional
value. The
'Organization
al unit'
parameter
returns users
only from
the specified
organization
al unit (OU).

Tools4ever.com/Management/Sales

UMRA Help

Filter Optional
value. The
Filter
parameter
specifies a
set of
attributes
that restricts
the users
that are
returned by
the query.

Title -like '*Manager'

Domain
controller

Optional
value. The
name of the
domain
controller
that retrieves
data from
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com

UMRA Help

Result size Optional
value. The
ResultSize
parameter
sets the
maximum
number of
results to
return. If all
users should
be returned,
use
"unlimited"
for the value
of this
parameter.
The default
value is
1000.

1000

Identity The Identity
parameter
identifies the
users. If this
parameter is
specified,
only the
specified
user is
returned.

CN=jsmith,OU=sales,DC=tools4ever,DC=
com, tools4ever.com\JSmith, JSmith
jsmith@tools4ever.com or the GUID

Sort by Optional
value. The
SortBy
parameter
sorts by a
single
attribute in
ascending
order.

Name

UMRA Help

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default
variable name

Remarks

UserTableSimple The resulting
table with
columns for
Name,
SamAccountNa
me and
DistinguishedNa
me for each
user.

UserTableRegula
r

The resulting
table with
columns for
Name,
SamAccountNa
me,
DistinguishedNa
me,
RecipientType,
UserPrincipalNa
me and Sid for
each user.

%UserTableRegul
ar%

UMRA Help

UserTableAdvan
ced

The resulting
table with many
columns for
each user.

 The columns available
are:

AssistantName, City,
Company,
CountryOrRegion,
Department,
DirectReports,
DisplayName,
DistinguishedName,
ExchangeVersion, Fax,
FirstName, Guid,
HomePhone, Identity,
Initials,
IsSecurityPrincipal,
IsValid, LastName,
Manager, MobilePhone,
Name, Notes,
ObjectCategory,
ObjectClass, Office,
OriginatingServer,
OtherFax,
OtherHomePhone,
OtherTelephone, Pager,
Phone,
PhoneticDisplayName,
PostalCode
PostOfficeBox,
RecipientType,
RecipientTypeDetails,
ResetPasswordOnNextL
ogon,
SamAccountName, Sid,
SidHistory,
SimpleDisplayName,
StateOrProvince,
StreetAddress, Title,
UMDialPlan,
UMDtmfMap,
UserPrincipalName,
WebPage,
WhenChanged,
WhenCreated,
WindowsEmailAddress.

UMRA Help

Contact

Script Action: List contacts (Exchange 2007)

Function

Retrieve all contacts from Active Directory that match the specified
conditions. All results are returned in a table with one row for each
contacts. Various return tables are available with different columns.

Deployment

Use this action to get an overview of contacts. This action provides three
output properties. The simple, regular and advanced table. The simple
table contains the most important values of a contact. The advanced
table contains all properties, but therefore causes more network traffic.

Properties

Property
Name

Descriptio
n

Typical setting Remark
s

Organization
al unit

Optional
value. The
'Organization
al unit'
parameter
returns
contacts only
from the
specified
organization
al unit (OU).

Tools4ever.com/Management/Sales

UMRA Help

Filter Optional
value. The
Filter
parameter
specifies a
set of
attributes
that restricts
the contacts
that are
returned by
the query.

Title -like '*Manager'

Domain
controller

Optional
value. The
name of the
domain
controller
that retrieves
data from
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller.

EXCHSERVER.tools4ever.com

UMRA Help

Result size Optional
value. The
ResultSize
parameter
sets the
maximum
number of
results to
return. If all
contacts
should be
returned, use
"unlimited"
for the value
of this
parameter.
The default
value is
1000.

1000

Identity The Identity
parameter
identifies the
contacts. If
this
parameter is
specified,
only the
specified
contact is
returned.

CN=jsmith,OU=sales,DC=tools4ever,DC=
com, tools4ever.com\JSmith, JSmith
jsmith@tools4ever.com or the GUID

Sort by Optional
value. The
SortBy
parameter
sorts by a
single
attribute in
ascending
order.

Name

UMRA Help

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default variable
name

Remarks

ContactTableSimpl
e

The resulting
table with
columns for
Name,
DisplayName
and
DistinguishedNa
me for each
contact.

ContactTableRegul
ar

The resulting
table with
columns for
Name,
DisplayName,
DistinguishedNa
me,
RecipientType,
and Identity for
each contact.

%ContactTableRegul
ar%

UMRA Help

ContactTableAdvan
ced

The resulting
table with many
columns for
each contact.

 The columns
available are:

AssistantName,
City, Company,
CountryOrRegion,
Department,
DirectReports,
DisplayName,
DistinguishedNam
e,
ExchangeVersion,
Fax, FirstName,
Guid, HomePhone,
Identity, Initials,
IsValid, LastName,
Manager,
MobilePhone,
Name, Notes,
ObjectCategory,
ObjectClass,
Office,
OriginatingServer,
OrganizationalUnit
, OtherFax,
OtherHomePhone,
OtherTelephone,
Pager, Phone,
PhoneticDisplayNa
me, PostalCode
PostOfficeBox,
RecipientType,
RecipientTypeDeta
ils,
TelephoneAssistan
t,
SimpleDisplayNam
e,
StateOrProvince,
StreetAddress,
Title, UMDialPlan,
UMDtmfMap,
WebPage,
WhenChanged,
WhenCreated.

UMRA Help

Distribution group

Script Action: Create distribution group (Exchange 2007)

Function

Create a new distribution group of the following types: 'Mail-enabled
universal security group', 'Universal distribution group'. To run the New-
DistributionGroup cmdlet, the account you use must be delegated the
following: 'Exchange Recipient Administrator role', 'Account Operator
role for the applicable Active Directory containers'..

Properties

Property Name Description Remarks

Name This parameter specifies the name for
the new distribution group. The value
that is specified in the Name
parameter is also used for
DisplayName if the DisplayName
parameter is not specified. The Name
value can't exceed 64 characters.

SAM Account Name This parameter specifies the name for
clients of the object that are running
older operating systems. The
SamAccountName parameter is
displayed in Active Directory and the
Exchange Management Console in the
Group name (pre-Windows 2000)
field.

Type Optional Value. This parameter
specifies the group type that will be
created in Active Directory. The
group's scope is always Universal.
Valid values are 'Distribution' or
'Security'.'Distribution' is the default
value.

UMRA Help

Alias Optional value. This parameter can be
used to specify the alias of the
distribution group. The Alias
parameter is then used to generate
the primary SMTP e-mail address of
the object. The value of Alias can't
contain spaces. If Alias is not specified,
the value of SAMAccountName is used
to generate the primary SMTP e-mail
address, with any spaces converted to
underscores.

Display name Optional value. This parameter can be
used to specify the name of the
distribution group in the Exchange
Management Console and in the
Exchange GAL. If the DisplayName
parameter is not specified, the value
of the Name parameter is used for
DisplayName.

Managed by Optional value. This parameter can be
used to specify the name of the
mailbox user, mail-enabled group, or
mail-enabled contact that appears in
the Managed by tab of the Active
Directory object. You can use any of
the following values for this
parameter: Distinguished name (DN),
Canonical name, GUID, Name, Display
name, Legacy Exchange DN and
Primary SMTP e-mail address.

OrganizationalUnit Optional value. This parameter
specifies where to create the
distribution group in Active Directory
by using canonical name syntax.

Domain controller Optional value. To specify the fully
qualified domain name (FQDN) of the
domain controller that writes this
configuration change to Active
Directory, include the
DomainController parameter.

UMRA Help

GUID Optional value. This parameter returns
the GUID of the new mail distribution
group.

Output
parameter

Legacy Exchange DN Optional value. This parameter returns
the Legacy Exchange DN of the new
mail distribution group.

Output
parameter

Script Action: Enable distribution group (Exchange 2007)

Function

This action is used to mail enable an existing universal group. To run this
action, the account you use must be delegated the "Exchange Recipient
Administrator" role.

Properties

Property
Name

Description Typical setting Rema
rks

Identity The Identity
parameter specifies
the identity of the
distribution group
in one of the
following forms:

 * GUID

 * DN

 *
Domain\Account
Name

'CN=jsmith,OU=sales,DC=tools4e
ver,DC=com',
'tools4ever.com\Jsmith' or the
GUID.

Alias The Alias
parameter specifies
the e-mail alias of
the group.

UMRA Help

DisplayName The DisplayName
parameter specifies
the display name of
the distribution
group. A display
name is typically
the same as the
Domain\Account
Name.

PrimarySmtpA
ddress

Use this parameter
to specify the
primary SMTP
address for the
distribution group.
By default, the
primary SMTP
address is
generated based on
the default e-mail
address policy. If
you specify a
primary SMTP
address by using
this parameter, the
cmdlet will set the
EmailAddressPolicy
Enabled attribute
of the distribution
group to $false,
and the e-mail
addresses of this
distribution group
will not be
automatically
updated based on
e-mail address
policies.

UMRA Help

DomainControl
ler

To specify the fully
qualified domain
name (FQDN) of
the domain
controller that
writes this
configuration
change to Active
Directory, include
the
DomainController
parameter in the
command.

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default
variable name

Remarks

GUID The GUID of the
existing mail
distribution
group.

Legacy
Exchange DN

This parameter
returns the
Legacy
Exchange DN of
the existing
mail
distribution
group.

UMRA Help

Script Action: Edit distribution group (Exchange 2007)

Function

Use this action to modify the settings of an existing distribution group.
Distribution groups are used to consolidate groups of recipients into a
single point of contact for e-mail messages. Distribution groups cannot
be used to assign permissions to network resources in the Active
Directory directory service. Use this action to overwrite existing settings
or to add new settings for an existing distribution group. To run this
action, the account you use must be delegated the following: 'Exchange
Recipient Administrator role'.

All properties of the action are described in the action property dialogs.

Script Action: Disable distribution group (Exchange 2007)

Function

This action is used to remove mail capabilities from an existing mail-
enabled group. To run this action, the account you use must be
delegated the "Exchange Recipient Administrator" role.

All properties of the action are described in the action property dialogs.

Script Action: Remove distribution group (Exchange 2007)

Function

This action deletes an existing distribution group from the Active
Directory directory service. To run the action successfully, the account
used must be delegated the following:

UMRA Help

 Exchange Recipient Administrator role
 Account Operator role for the applicable Active Directory

containers

All properties of the action are described in the action property dialogs.

Script Action: List distribution groups (Exchange 2007)

Function

Retrieve information about distribution groups. The action returns a
table with rows for each distribution group. To run the action
successfully, the account you use must be delegated one of the
following: 'Exchange View-Only Administrator role'.

All properties of the action are described in the action property dialogs.

Mailbox

Script Action: List mailbox statistics (Exchange 2007)

Function

Retrieve information about mailboxes. The action returns a table
containing information such as the size of a mailbox, the number of
messages and the last time it was accessed.

Properties

UMRA Help

Property
Name

Descriptio
n

Typical setting Remark
s

Database Optional
value. The
Database
parameter
specifies the
name of the
mailbox
database.
When a
value is
specified for
the
Database
parameter,
the
Exchange
Managemen
t Shell
returns
statistics for
all the
mailboxes
on the
database
specified. Do
not use this
parameter
in
conjunction
with the
'Server'
parameter.

'Mailbox database',
'SERVERNAME\Mailbox Database' or
'SERVERNAME\Storage Group
Name\Mailbox Database'

UMRA Help

Server Optional
value. The
Server
parameter
specifies the
server from
which you
want to
obtain
mailbox
statistics.
Use for
example:
the Fully
qualified
domain
name or the
NetBIOS
name. When
a value for
the Server
parameter is
specified,
the action
returns
statistics for
all the
mailboxes
on all
databases
on the
specified
server.
Otherwise,
the action
returns
logon
statistics for
the local
server. Do
not use this
parameter
in
conjunction
with the
'Database'
parameter.

'servername.tools4ever.com' or
'SERVERNAME'

UMRA Help

Disconnecte
d mailboxes
only

Optional
value. With
the
'Disconnecte
d mailboxes
only'
parameter
the resulting
table will
contain only
disconnecte
d mailboxes.

'Yes' or 'No'

Above size
limit only

Optiona
value. With
the 'Above
size limit
only'
parameter
the resulting
table will
contain only
the
mailboxes
with a
mailbox size
above the
specified
value.
Qualify the
value with
one of the
following: B
(bytes), KB
(kilobytes),
MB
(megabytes)
or GB
(gigabytes).

20MB

UMRA Help

Above item
number
only

Optional
value. With
the 'Above
item
number
only'
parameter
the resulting
table will
contain only
the
mailboxes
with a
number of
items above
the specified
value.

100

Identity The Identity
parameter
identifies
the mailbox.
If this
parameter is
specified,
only the
mailbox that
is associated
with the
specified
user, is
returned.

CN=jsmith,OU=sales,DC=tools4ever,DC=c
om, tools4ever.com\JSmith, JSmith
jsmith@tools4ever.com or the GUID

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

UMRA Help

Property Description Default
variable
name

Remarks

Mailbox The resulting table
with columns for
DisplayName,
Identity,
MailboxGUID,
DatabaseName,
StorageGroupName,
ServerName,
LegacyDN,
ItemCount,
TotalItemSize,
DisconnectDate and
StorageLimitStatus
for each mailbox.

Exchange server

Script Action: List mailbox databases (Exchange 2007)

Function

Retrieve one or more mailbox database objects from a storage group,
server or organization. The action returns a table with rows for each
mailbox database.

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Server Optional
value. The
Server
parameter
specifies the
name of the
server from
which to
retrieve
mailbox
database
information. If
this parameter
is specified,
the command
will retrieve
information
about all of
the mailbox
databases on
that
server.Use the
Fully qualified
domain name
or the
NetBIOS
name.

'servername.tools4ever.com',
'SERVERNAME'

UMRA Help

Storage
group

Optional
value. The
'Storage
group'
parameter
specifies the
name of the
storage group
from which to
retrieve
mailbox
database
information. If
this parameter
is specified,
the command
will retrieve
information
about all of
the mailbox
databases on
the storage
group.

'EXCHSERVER\First Storage
Group', 'First Storage Group'

Domain
controller

Optional
value. The
name of the
domain
controller that
retrieves data
from Active
Directory. Use
the fully
qualified
domain name
(FQDN) of the
domain
controller you
want to use.

EXCHSERVER.tools4ever.com

UMRA Help

Identity Optional
value. The
Identity
parameter
identifies the
mailbox
database.

'EXCHSERVER\First Storage
Group\Mailbox Database',
'EXCHSERVER\Mailbox
Database', 'First Storage
Group\Mailbox Database'

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

Property Description Default
variable
name

Remarks

DatabaseTable The resulting
table with
columns for
Name,
StorageGroupNa
me, Server,
DistinguishedNa
me, Identity and
Description for
each mailbox
database.

%DatabaseTabl
e%

UMRA Help

DatabaseTableAdva
nced

The resulting
table with many
columns for each
mailbox
database.

 The columns available
are:

Name,
StorageGroupName,
Server,
DistinguishedName,
Identity, Description,
Organization,
ExchangeLegacyDN,
EdbFilePath,
PublicFolderDatabase,
AdministrativeGroup,
IssueWarningQuota,
ProhibitSendReceiveQ
uota,
ProhibitSendQuota,
WhenChanged,
WhenCreated,
ExchangeVersion.

Out-Of-Office

Script Action: Get Out-Of-Office info (Exchange 2007)

Function

Retrieve the Out Of Office settings of a mailbox on Exchange 2007. The
action returns all properties of the Out Of Office settings dialog in
Outlook 2007.

This action can only work properly with Exchange Web Services. Learn
how to use this action by reading topic Using the Exchange Web Services

with UMRA on page 7

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Session ID The
Powershell
session id. You
dan create a
powershell
session ID by
adding the
'Setup
Powershell
Agent server
session' to
your script. Do
not forget to
release the
Powershell
session with
the 'Release
Powershell
Agent server
session' action

%PowershellAgentSessionId% In the Action tree,
navigate to
Powershell - Agent
service session -
Setup Powershell
Agent server session.

Email
address

The email
address of the
mailbox on
the Exchange
server

jsmith@tools4ever.com

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

UMRA Help

Property Description Default
variable name

Remarks

Out Of
Office
state

The Out Of
Office state of
the specified
mailbox.
Possible values
are: Disabled,
Enabled,
Scheduled

Out Of
Office
internal
reply

The Out Of
Office internal
reply text of
the specified
mailbox. Note
that this text is
created with
HTML to keep
its formatting.

Out Of
Office
scheduled
start date

The Out Of
Office
scheduled start
date of the
specified
mailbox.

Out Of
Office
scheduled
end date

The Out Of
Office
scheduled end
date of the
specified
mailbox.

Out Of
Office
external
reply state

The Out Of
Office external
reply state of
the specified
mailbox.
Possible values
are: None,
Known, All.

 When 'None' is specified, only
the contacts within your
organization are receiving the
message. If 'Known' is specified,
the external text is only send to
the users which are in your
'Contacts' folder in Outlook.

UMRA Help

Out Of
Office
external
reply text

The Out Of
Office external
reply text of
the specified
mailbox. Note
that this text is
created with
HTML to keep
its formatting.

Script Action: Set Out-Of-Office info (Exchange 2007)

Function

Set the Out Of Office settings of a mailbox on Exchange 2007. The action
sets all properties of the Out Of Office settings dialog in Outlook 2007.

This action can only work properly with Exchange Web Services. Learn
how to use this action by reading topic Using the Exchange Web Services

with UMRA on page 7

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Session ID The
Powershell
session id. You
dan create a
powershell
session ID by
adding the
'Setup
Powershell
Agent server
session' to
your script. Do
not forget to
release the
Powershell
session with
the 'Release
Powershell
Agent server
session' action

%PowershellAgentSessionId% In the Action tree,
navigate to
Powershell - Agent
service session -
Setup Powershell
Agent server session.

Email
address

The email
address of the
mailbox on
the Exchange
server

jsmith@tools4ever.com

Out Of
Office
state

The Out Of
Office state of
the specified
mailbox.
Possible
values are:
Disabled,
Enabled,
Scheduled

UMRA Help

Out Of
Office
internal
reply

The Out Of
Office internal
reply text of
the specified
mailbox. Note
that this text is
created with
HTML to keep
its formatting.

 Outlook will accept
text that has no
HTML format,
previous formatting
will be erased
though!

Out Of
Office
scheduled
start date

The Out Of
Office
scheduled
start date of
the specified
mailbox.

 Note that the end
date cannot be
before the scheduled
start date. No error
will occur, but the
End Date, Start Date
and Out Of Office
State are not set!

Out Of
Office
scheduled
end date

The Out Of
Office
scheduled end
date of the
specified
mailbox.

 Note that the end
date cannot be
before the scheduled
start date. No error
will occur, but the
End Date, Start Date
and Out Of Office
State are not set!

Out Of
Office
external
reply state

The Out Of
Office external
reply state of
the specified
mailbox.
Possible
values are:
None, Known,
All.

UMRA Help

Out Of
Office
external
reply text

The Out Of
Office external
reply text of
the specified
mailbox. Note
that this text is
created with
HTML to keep
its formatting.

 Outlook will accept
text that has no
HTML format,
previous formatting
will be erased.

4.3.2. File System

Script Action: Create Directory

Function

Creates a directory on a (NTFS) file system. For the directory, you can
setup the permissions as well. Additionally, you can create a share for
the directory.

Deployment

This action is typically used in a script that is intended to create new
users in Active Directory or NT4 domains, after creation of the actual
user account with Script Action: Create User (AD) on page 3 or Script Action:

Create User (no AD) on page 68 . This action is then used to create for
example the home directory and share for that user in the file system. It
can however also be used in any other context.

Properties

Property
Name

Description Typical
setting

Remarks

Computer The computer
name on which
the directory is
created

%HomeServer% See the Remarks section below.

UMRA Help

Parent path The relative
path to the
parent
directory of
the directory
to be created

users See the Remarks section below.
The path has the form <share
name>\<subdir1>\...
Example: users\students\2004

Directory
name

The name of
the directory
to be created

%UserName% See the Remarks section below.
The directory will be created as a
sub-directory of the specified
parent path.

Always
create
unique
directory

Add a number
to the
directory name
before creating
the directory, if
a directory
with the
original name
does already
exist.

Yes

Security Specifies the
(NTFS) access
rights on the
Directory

Set by special
dialog

Specifies the access rights for
different users on the directory.
It is possible to use variables to
construct the names.

It is also possible to use a
variable that contains the SID of
a user instead of a user name.
When creating a user with the
script action Create User, the SID
of the user is exported to the
variable %UserSid% by default.
This variable can be used inside
the dialog to refer to the just
created user.

Share the
directory

Specifies if the
directory must
be shared.

No

UMRA Help

Share name The name by
which the
directory is
shared.

%UserName%
or
%UserName%$

In order to create a hidden
share, specify a $ as the last char
of the name

Share
permissions

The
permissions of
the share (!) of
the new
directory. If
this property is
not specified,
the default
settings apply.

 If the permissions of the share
are not specified, the share
permissions are set to full
control for everyone.

Share user
limit

Specifies the
number of
users who can
connect to the
shared folder
at one time. If
this property is
not specified,
the number is
set to
unlimited.

 If not specified, an unlimited
number of user connections is
accepted.

Remarks

A directory is always created in a parent directory. The directory can be
created on a remote or the local computer. The parent directory must

be accessible in order to successfully create the directory. Further, the
user running the application must have sufficient access rights for the
parent directory to create the directory and setup the share and
permissions. The parent directory has the following format (specified
using property names):

 Computer\Parent path

The field Computer specifies the name of the computer in NETBIOS of
DNS-style. The Parent path specifies the name of a share and eventually
a directory on the Computer. The table below shows some examples. In
this table the following columns are shown:

UMRA Help

Computer: property of the action;
Parent path: property of the action:
Local path on specified computer: The logical drive path of the resulting
total path of the parent directory. This path is relative to the specified
computer.
Resulting total path of parent directory: The target directory is created
in this directory. Using this specification, the parent path can be access
from a remote computer.
Comments: Description of this example entry.

Compute
r name

Parent
path

Local path
on
specified
computer

Resulting total
path of parent
directory

Comments

SERVER_A Users G:\Users \\SERVER_A\Users The directory
G:\Users is
shared as
Users on the
computer.

SERVER_A Users\Sale
s

G:\Users\Sale
s

\\SERVER_A\Users\Sal
es

The directory
G:\Users is
shared as
Users on the
computer. The
directory Sales
is a
subdirectory of
this directory.

SERVER_A Sales G:\Users\Sale
s

\\SERVER_A\Sales The directory
G:\Users\Sale
s is shared as
Sales on the
computer.

UMRA Help

SERVER_A G$\Users G:\Users \\SERVER_A\G$\Users The local drive
G:\ on the
computer is
shared as G$
(administrative
share). The
directory Users
is a
subdirectory of
logical drive
G:\.

Script Action: Get file/directory info

Function

Using the Get file / directory info script action, specific info regarding a
file or directory can be retrieved (e.g. to check whether a file or
directory exists or not) and used in subsequent script actions.

Properties

Property
Name

Description Typical
setting

Remarks

Target
file/directory

The name of the
target file or
directory.

Can be
specified using
the full UNC
path
(recommended)
or local path
(local to the
UMRA service
or UMRA
console
application)

Output only property

File/dir exists
flag

When specified,
the output
variable value is
set to YES if the
file or directory
exists.

 Output only property

UMRA Help

Is directory flag When specified,
the output
variable value is
set to YES if the
target path
identifies a
directory.

 Output only property

Attributes When specified,
the output
variable is set
equal to the
attribute mask
of the file or
directory.

 Output only property

Creation time When specified,
the output
variable is set to
the creation
time of the file
or directory.

 Output only property

Last access
time

When specified,
the output
variable is set to
the last access
time of the file
or directory.

 Output only property

Last write time When specified,
the output
variable is set to
the last write
time of the file
or directory.

 Output only property

Size When specified,
the output
variable is set to
the size of the
file in bytes

 Output only property.
Meaningless value in case
of directories.

UMRA Help

Error if not
found

Set this property
to "Yes" if this
action should
produce an
error in case the
file or directory
does not exist.

 Default value is
"No"

Output only property

Script Action: Copy directory

Function

Copies the contents of one directory to another directory. The source
and destination directory can reside on different computers. A number
of options are available: create the destination directory, setup
permissions, copy permissions etc.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts and move for instance home directories. By
combining the action Copy directory and Delete directory on page 357 the
Move directory action can be implemented. Besides copying the files and
directories, the security permissions can be setup for the destination
directories and files. For the permissions, three options are available:

1. Copy security settings from source directory: All permissions
settings are copied for each individual file and directory. To
select, set the property Copy security option to Yes and property
Setup security option to No.

2. Setup security settings for destination directories and files:
Initialize the security settings for the destination files and
directories. The security settings of the source directories and
files are not used. Instead, you can specify the new security
settings for the destination files and directories. To select, set
the property Copy security option to No and property Setup

security option to Yes and specify the security settings with
property Security.

UMRA Help

3. No configuration: The copy operation is executed but not
security settings are explicitly setup. The security settings of the
destination directory and files are determined by the security
settings of the destination parent directory and inheritance
rules. To select, set the property Copy security option to No and
property Setup security option to No. This is the default option.

Properties

Property
Name

Description Typic
al
setti
ng

Remark
s

Source
directory

The name of source directory. The source
directory can be specified in two ways: For local
directories: <logical
drive>\\<directory>\\<directory> etc.

Example: 'C:\\UserData\\Marketing'.

For remote and local directories:
\\\\<computer>\\ <share>\\
<directory>\\ <directory>.

Example: '\\\\SERVER_A\\Users\\Data'. The
source directory must exist.

UMRA Help

Destinatio
n
directory

The name of destination directory. The
destination directory can be specified in two
ways: For local directories: <logical
drive>\\<directory>\\<directory> etc.

Example: 'C:\\UserData\\Marketing'. For
remote and local directories:
\\\\<computer>\\<share>\\<directory>
\\<directory>. Example:
'\\\\SERVER_A\\Users\\Data'. If the
destination directory does not exist, it can be
created.

 If the
destinatio
n
directory
does not
exist, it
can be
created
by setting
property
Create
destinatio
n
directory
to Yes.
This will
create the
full path if
necessary
.

Create
destinatio
n
directory

A flag indicating that the destination directory
must be created if it does not exist. Default
value: 'Yes'.

Yes If not
specified,
the
default
value Yes
is applied.

Copy
subdirecto
ries

Specify 'Yes' to copy the complete directory
tree, including subdirectories and files, and
subdirectories of subdirectories.

Yes If not
specified,
the
default
value Yes
is applied.

Copy
directories
, no files

Specify 'Yes' to copy directories only, no files.
Default value: 'No'. If you specify 'Yes', no files
are copied, only the directory tree is copied to
the destination directory.

No If not
specified,
the
default
value No
is applied.

UMRA Help

Use
backup
and
restore
privileges

A flag indicating that backup and restore
privileges must be used to copy the directory.
This property is required in case the logged on
user has no access rights to the directories and
files that must be copied. The logged on user
must have the corresponding access rights
configured on the target computer to use these
privileges successfully. Default value: 'Yes'.

Yes If not
specified,
the
default
value Yes
is applied.
The
access
rights are
configure
d using
policies.
Dependin
g on the
environm
ent,
Domain
security,
Domain
Controller
Security
or Local
Security
policies
apply.
The
backup
and
restore
privileges
are
configure
d by
settings
the
Backup
files and
directorie
s and
Restore
files and
directorie
s policies
of the
User
Rights
Assignme
nt for the
logged on

UMRA Help

Continue
on error

A flag indicating that the copy directory action
must continue if an error occurs when copying a
file or directory. Default value: 'Yes'.

Yes If set to
Yes the
copy
action
continues
, but an
error will
be
reported
and is
returned
by the
action.

Overwrite
existing
files

A flag indicating that existing destination files
must be overwritten if they already exist. If you
specify 'No' instead, an error is generated and
the file is not overwritten. Default value: 'Yes'.

Yes

Copy
security
option

Copy security settings from the source directory
and files to the destination directory and files.
The security settings include the access rights,
owner and auditing settings. If the security is not
explicitly specified, the security settings of the
destination parent directory determine the new
security settings.

 See
Deployme
nt
section.

Setup
security
option

Setup the security settings for the target
directory and files. The security settings include
the access rights, owner and auditing settings.
The security settings are specified with the
property Security settings. If the security is not
explicitly specified, the security settings of the
destination parent directory determine the new
security settings.

 See
Deployme
nt
section.

UMRA Help

Security The new security settings for the target directory
and files. If you want to use this option, you
must set the value of property 'Setup security
option' to 'Yes'.

 This
property
is only
used
when the
value of
property
Setup
security
option is
set to Yes.
For more
informati
on, see
Security -
Overview
on page
754.

See also:

Script Action: Create Directory on page 341

Script Action: Delete directory on page 357

Script Action: Rename file or directory

Function

Renames the name of a file or a directory (e.g. a home directory for a
user)

Deployment

This action is typically used in a script that is intended to manage
existing user accounts. With this action you can rename a home
directory for a user or to move user files to a different location.

UMRA Help

Properties

Property Name Description Typical setting Remarks

Source file /
directory

The full path of the
original file or
directory

Destination file /
directory

The full path of the
destination file or
directory

 Both for files and
directories, the
target directory
must exist.

Allow the move to
different volume
flag

Allows moving the
file to a different
volume. The
default value is
"Yes"

Yes This option can
only be used for
files, not for
directories.

Delay rename until
reboot flag

Specifies that the
file should not be
moved until the
operating system
has been
restarted. The
default value is
"No".

No

Replace existing
file flag

Replaces the
fdestination file if
it already exists.
The default value
is "Yes".

Yes This option can
only be used for
files, not for
directories.

Flush before
return flag

The script action
remains active
until the move has
been completed
and the data
written to disk.
The default value
is set o "No."

UMRA Help

Script Action: Setup Security

Function

This script action sets up the security access rights for a directory, file or
directory tree using the Access Control List.

Deployment

This function is used in a network environment to mass apply security
settings or to apply security settings as part of a delegation project.
Setting the security using the Setup Security script action in UMRA is
essentially the same as setting the security using Windows 2000/2003
access control (ACL), with the one major difference that in UMRA you
can use variables for the target directories and files. This allows you for
instance to set the security settings for a whole range of user directories
in one sweep.

Properties

Property
Name

Description Typic
al
settin
g

Remarks

Target
directory
or file

The name of the source directory or file.
The source directory can be specified in two
ways.

For local directories: <logical
drive>\<Directory>\<Directory> etc.

For remote and local directories:
\\<computer>\<share>\<directory>\<direct
ory>.

Example: "\\SERVER_A\Users\Data".

 The source
directory
must exist.
The name of
the file or
directory
should not
include any
wildcard
characters.

Security The new security settings for the target
directory and / or files. Note that the
original security settings will be overwritten.

UMRA Help

Propagatio
n mode

Specify "Yes" to set up the security settings
for a typical user account home directory.
The ACE settings of the specified target
directory are explicitly set to the specified
value and then propagated to all child
directories and subdirectories. All children
will inherit the ACE settings of the specified
target directory.

 Mode to
choose when
running
Windows
2000 or
higher
versions.

Recursive
mode

Specify "Yes" to set up the security settings
for the whole directory tree, including the
specified directory, subdirectories and files,
subdirectories of subdirectories, etc. For all
directories and files of the directory tree,
the security settings are set identically. The
main difference with the propagation mode
is that all children of the specified directory
will have explicit ACE settings.

 Note that
you cannot
have both
"Protected
propagation
mode" and
"Recursive
mode" set to
"Yes". This
option is
suitable for
Windows NT
environment
s.

Use
backup
and
restore
priviliges

A flag indicating that backup and restore
privileges must be used to set up the
security settings. This property is required in
case the logged on user has no access rights
to the directories and files that must be
copied. The logged on user must have the
corresponding access rghts configured on
the target computer.

No Only certain
users have
restore and
backup
privileges.
This option
will only
work
properly if
these
privileges
have been
explicitly set
for the
currently
logged-in
account.

UMRA Help

Continue
on error

A flag indicating that the action must
continue with the next file or directory if an
error occurs when editing the permissions
of a file or directory.

Yes

Script Action: Delete file(s)

Function

Deletes the specified file or files. The file name specification can include
wildcards (* or ?).

Deployment

This script action is typically used as part of a cleanup action (e.g.
deleting temporary files or deleting files from a user profile directory).

Properties

Property
Name

Description Typical
setting

Remarks

File path The full path of the fille(s). The path
should start with a logical drive
(e.g. G:\) or share name
\\<Computer>\<Share>. The path
name may contain the wildcard
characters * and ?.

Include
subdirectories
(recursive)

If this property is set to "Yes", all
files in the child subdirectories of
<File path> will be deleted as well.

No

Use backup
and restore
privileges

A flag indicating that backup and
restore priviliges must be used to
delete the files. This property is
required in case the logged on user
has no access rights for the
directories and files that must be
deleted. If this option is set to
"Yes", the logged on account must
have rights for "Restore files and
directories" and "Back up files and
directories" in the local policy.

 No Only needs to
be set to "Yes"
if currently
logged on
user does not
have sufficient
rights to
delete the
specified
filles.

UMRA Help

Ignore error No

Backup and restore priviliges

In Windows NT/2000/XP you must have Backup and Restore privileges
to delete the required files. Add backup and restore privileges. If you use
a local system account to delete files, this account should have the
necessary privileges for deleting files or this script action will fail.

To check an account's privilege , you can:

1. Click " Start->Control Panel->Administrative Tools->Domain

Security Policy".

2. Expand the Local Policies folder. Select User Rights Assigment .

3. The user account should be specified under the policies "Restore

files and directories" and "Back up files and directories".

See also:

Script Action: Delete directory on page 357

Script Action: Delete directory

Function

Deletes the directory tree, including all files and subdirectories.
Optionally, you can delete the specified directory itself. The directory
tree is specified by a single directory name. The name must have the
syntax: \\\\COMPUTER\\Share\\Directory_To_Delete or
DRIVE:\\Directory\\Directory_To_Delete (local drive). If the directory to
delete corresponds with a remote share
(\\\\COMPUTER\\Shared_Dir_To_Delete), you can use the
administrative share (\\\\COMPUTER\\DRIVE$) to delete the directory
tree.");

Deployment

This action is typically used in a script that is intended to remove user
accounts and all of the associated resources. More generally, the action
can be used to delete one or more directory trees. To access the
directory that must be deleted, a share is used. In case the specified
directory must be deleted as well, and the directory is specified as

UMRA Help

\\SERVERNAME\ShareName, the specified share cannot be used to
delete the directory. In this case, another share must be used to delete
the directory. By default, the administrative share (\\SERVERNAME\C$,
\\SERVERNAME\D$) is then used to delete the directory. If this share
cannot be used, an error occurs.

Properties

Property
Name

Description Typica
l
settin
g

Directory
name

The name of the directory tree to delete.
All files, directories and subdirectories will
be deleted from the specified directory.
Optionally, you can delete the specified
directory itself. The directory name must
have the syntax:
\\\\COMPUTER\\Share\\Directory_To_Del
ete or
DRIVE:\\Directory\\Directory_To_Delete.
If the directory to delete corresponds with
a remote share
(\\\\COMPUTER\\Shared_Dir_To_Delete),
you can use the administrative share
(\\\\COMPUTER\\DRIVE$) to delete the
directory tree.

Delete
directory
option

A flag indicating if the specified directory
itself (property: 'Directory name') must be
deleted.

No If not
specified,
the default
value No is
applied.

Delete read-
only files and
directories

A flag indicating if read-only files and
directories must be removed as well.
Default value: TRUE. To delete the read-
only files and attributes, the read-only
attribute is reset first.

Yes If not
specified,
the default
value Yes is
applied.

UMRA Help

Always use
administrativ
e share

A flag indicating that the administrative
share must be used to delete the
directory. The administrative share is by
default only used if the specified directory
must be deleted and the directory
corresponds with a share (Syntax:
\\\\COMPUTER\\Shared_Dir_To_Delete).

No If not
specified,
the default
value No is
applied.

Never use
administrativ
e share

A flag indicating that the administrative
share should not be used to delete the
directory. The administrative share is by
default only used if the specified directory
must be deleted and the directory
corresponds with a share (Syntax:
\\\\COMPUTER\\Shared_Dir_To_Delete).

No If not
specified,
the default
value No is
applied.

UMRA Help

Use backup
and restore
privileges

A flag indicating that backup and restore
privileges must be used to delete the
directory. This property is required in case
the logged on user has no access rights to
the directories and files that must be
deleted. The logged on user must have
the corresponding access rights
configured on the target computer to use
these privileges successfully.

No If not
specified,
the default
value Yes is
applied. The
access rights
are
configured
using
policies.
Depending
on the
environmen
t, Domain
security,
Domain
Controller
Security or
Local
Security
policies
apply. The
backup and
restore
privileges
are
configured
by settings
the Backup
files and
directories
and
Restore
files and
directories
policies of
the User
Rights
Assignmen
t for the
logged on
user
account.

UMRA Help

Ignore error A flag indicating that errors must be
ignored when a directory tree is deleted.

No This flag can
be used to
prevent
error
messages
when a
directory for
instance
does not
exist.

See also:

Script Action: Create Directory on page 341

Script Action: Copy directory on page 347

Script Action: Create share

Function

Creates a share on a directory or disk. Using this function you can set the
share permission and user limit as well.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts and move user home directories. When you use
Script Action: Copy directory on page 347 no share is created. When you
want to share a directory, the Create share action should be applied. A
share is typically used to connect to network data that should be
available for a group of users.

UMRA Help

Properties

Propert
y Name

Description Typical
setting

Remarks

Share
path

The full path of the directory that is
going to be shared. Both remote and
local directories can be shared.

The share path can be specified in two
ways: For local directories:
<logical_drive>\<directory>\<directory>
etc. Example: 'C:\UserData\Marketing'.
For remote and local directories:
\\<computer>\<share>\<directory>\<dir
ectory>. Example:
'\\SERVER_A\Users\Data'. The directory
which is going to be shared must exist.

%SharePath
%

Share
name

The name given to the share. The name
must be unique with respect to other
shares on the computer.

%ShareNam
e%

You should
always use a
name that is
easily
identified.
An user
homedirect
ory for
example
would be
easily
identified by
the
username.

UMRA Help

Make
share
name
unique

Makes the share name unique. A share
name must always be unique, when the
share name is not unique the share will
not be created.

 A number is
added to
make the
share name
unique. The
number
starts with 1
and will
increase till
an unique
name is
found.
When this
property is
not set the
share will
not be
created
when the
share name
already
exists.

Share
permissio
ns

The permissions of the share (!) of the
new directory. If this property is not
specified, the default settings apply.

 If the
permissions
of the share
are not
specified,
the share
permissions
are set to
full control
for
everyone.

User limit Specifies the number of users who can
connect to the shared folder at one time.
If this property is not specified, the
number is set to unlimited.

 If not
specified, an
unlimited
number of
user
connections
is accepted.

UMRA Help

See also:

UMRA Basics on page 3

Script Action: Delete share on page 366

Script Action: Edit share on page 364

Script Action: Edit share

Function

Edits the properties of an existing share. Using this function you can also
add comments for a share.

Deployment

This action is typically used in a script that is intended to manage
existing user accounts and move user home directories.

Properties

Property
Name

Description Typical
setting

Remarks

Computer Name of the computer
maintaining the share
you want to edit

Share name The name of the share
that must be updated.
Note that the name of
the share is not
necessarily equal to the
name of the shared
directory.

%ShareName% This is the name given
to the share you want
to edit.

Share
comment

Here you can add a
comment for the shared
folder. The comment
can only contain text
and is an optional field.

UMRA Help

User limit Specifies the number of
users who can connect
to the shared folder at
one time. If this
property is not specified,
the existing settings will
apply.

 If not specified, the
existing settings for the
share will apply

Share
permissions

The new permissions for
the share If this property
is not specified, the
existing settings apply.

 If the permissions of
the share are not
specified, the share
permissions are set to
full control for
everyone.

Cache
parameter

The parameter specifies
the caching of the
contents of the share
available to users who
are offline. Possible
values:

 0 : Cache only specified
files and programs
(default);

16 : Cache files and
programs opened by
users;

32 : Cache files and
programs opened by
users (optimized for
performance);

48 : Disable caching.

0,16,32 or 48 If the parameter is not
specified, the cache
settings are not
updated.

See also:

UMRA Basics on page 3

Script Action: Create share on page 361

Script Action: Delete share on page 366

UMRA Help

Script Action: Delete share

Function

Deletes a share from a directory or disk. This action only removes the
share of a directory or disk, it does not remove the directory or disk. Use
Script Action: Delete directory on page 357 to delete a directory.

Deployment

This action is typically used in a script that is intended to remove a users
account in Active Directory or NT4 domains, after removing of the actual
user account with Script Action: Delete user (AD) on page 55 or Script Action:

Delete user (no AD) on page 86. This action is then used to remove for
example the share on the home directory. It can however also be used in
any other context.

Properties

Property
Name

Description Remarks

Computer The name of the
computer that
maintains the share.

The name of the computer can be
specified in NETBIOS or DNS-style (e.g.
SERVER_A, server_a.my_domain.com)

Share name The name by which
the shared directory
is identified.

In order to remove a hidden share, specify
a $ as the last char of the name. The share
name is not necessarily the name of the
shared directory.

Ignore error When this flag is set
to 'Yes' and the
specified share can
not be deleted, no
error will be
generated.

This option can be used to prevent the
script form stopping when an error is
generated.

See also:

UMRA Basics on page 3

UMRA Help

Script Action: Create share on page 361

Script Action: Edit share on page 364

Script Action: List files and/or directories

Function

This script action creates a table with files and / or directories. The result
is stored in an output variable.

Deployment

This script action will typically be used in a delegation project with
multiple forms to obtain file and directory info and display the result in a
form table. Project A will contain this script action. In Project B, you
need to define Project A as an initial project. Before the form of project
B is generated, the script of project A is executed and the result is stored
in a user defined variable. This variable can then be used in the form
fields in project B (e.g. in a generic table Variable).

Setting up the script action

Name Description Typical
setting

Remarks

Path Path to the directory
of which you want to
collect the underlying
files and/or
directories.

User defined If you use the browse
button, select a file within
the target directory and
clear the file name.

Include
files

Set this option to
"No" if you do not
want to include files.

Yes

Include
directories

Set this option to
"No" if you do not
want to include
directories.

Yes

UMRA Help

Include
subdirs

Set this option to
"No" if you do not
want to include
subdirectories.

Yes

Use
backup
privileges

 A flag indicating that
backup and restore
privileges must be
used to set up the
security settings. This
property is required in
case the logged on
user has no access
rights to the
directories and files
that must be copied.
The logged on user
must have the
corresponding access
rights configured on
the target computer.

No

Output
variable

 User defined

For each returned user object in the variable %FileDirs% (or any other
name you may have given to this output variable), the following columns
are included:

Column Description

Full path Full path to the file or directory

Size (bytes) Size of the file in bytes

Size (MB) Size of the file in MB

Directory Specifies if the object is a directory (Yes/No)

Hidden Specifies if the file is hidden

Read only Specifies if the files is Read only

Attributes Specifies the attribute mask of the file or directory.

Creation time Creation time of the file or directory.

Access time Last access time of the file or directory.

UMRA Help

Write time Last write time of the file or directory.

Name Name of the file or directory

If you want to use the content of the variable in a generic table, you
need to set up a generic table of the Variable type. In the setup
procedure, you can select the column template Files and or directories
list which includes the above mentioned columns.

See also:

Script Action: Get file/directory info on page 345

4.3.3. Other actions

Script Action: Execute Command Line

Function

Executes a Windows command line on the local computer that runs User
Management. The command line can contain any number of arguments,
including variables.

Deployment

This action is typically used in a script that is intended to create new
users in Active Directory or NT4 domains, usually as one of the last script
commands issued. This action is then for instance used to copy some
standard files in the user's home directory, or perform some other site
specific batch commands related to the just created account.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

Command
Line

The command line that
must be executed

 The command line starts
with a name of a file that
can be executed (.exe .bat
etc), followed by options
as required by the specific
command. It may be
required to specify the
complete path the the file
to be executed.

Wait until
terminated

Specifies whether or not
User Management waits
for the command to
finish before it continue
with the next action of
the script.

Yes When set to Yes, the
execution of the script is
suspended until the
command has finished,
either successfully or
unsuccessfully

Show
command
window

Specifies whether a
command window must
show.

No

Output
variable

Name of the variable
containing the output
generated by the
executed command line.

User defined

UMRA Help

Remove
carriage-
return-line-
feed

An option (Yes/No) to
remove ending carriage-
return-line-feed
characters from the
value of the Output
variable

 Often, the output of a
command line ends with
(one or more) carriage
return line feed
characters. These
characters are not used by
subsequent actions that
use the variable. By setting
this property to 'Yes', the
characters will be
removed. Note that only
the ending characters are
removed. The default
value (or when not
specified) of this property
is 'No'.

Output
buffer size

Optional: When
specified, the
application reserves a
buffer of the specified
size in bytes to store the
output data in a
variable. By default (not
specified), the maximum
size is 10240 bytes. If the
real output data size
exceeds the limit, the
data is not stored.
Example value: 250000.

Do not
show in log
file

Optional: Specify 'Yes' to
prevent the command
line from being shown in
the log file.

not specified
(implies
'No')

Script Action: Count licensed - domain/OU accounts

Function

Calculates the number of user accounts in the domains or organizational
units for which a licence is configured and compares the actual numbers
with numbers allowed for the specific license.

UMRA Help

Deployment

This action is typically used in a script that is executed on a regular basis,
for instance by the UMRA scheduler, in order to warn the administrator
when the number of accounts in the network approach the values as
specified in the license. This way the network administrator can be
notified of expected future license violations, and take appropriate
actions to prevent this situation.

Properties

Property
Name

Description Typical
setting

Remarks

Available The number
of user
accounts that
can be
created
before the
count for the
license is
exceeded.

 Output only

The number shown is the number
for the domain or organizational
unit with the least number of
available user accounts. The name of
this domain or organizational unit is
listed in the Domain/OU property

Domain/OU The domain
or
organizational
unit for which
a license is
configured,
which has
the smallest
number of
available user
accounts

 Ouput only

Account
License
count table

A table
containing
license usage
information
for all
conrfigured
licenses

 Output only

UMRA Help

Account License count table

For each UMRA license as specified in the license configuration of
UMRA, a row is added to the table. The table has the following
information:

Domain/OU

The domain of organizational unit as specified by the license

Maximum

The number of user accounts allowed by the license in this domain or
organizational unit.

In Use

The number of user accounts currently counted in this domain or
organizational unit.

Available

The number of user accounts that can be created in this domain or
organizational unit before the license is exceeded.

Remarks

When the a project that contains this action is run in a console mass
project, the license situation of the console is collected. In order to
collect licence information from a UMRA service, use this action in a
project that is executed by the specific server of interest.

4.3.4. Windows computer services

Script Action: List services status

Function

With this script action, the name and status of services and drivers
installed on a computer are collected and stored in an output variable.
Once you have collected these data, you can manage the listed services
using the Execute service command script action.

UMRA Help

Deployment

Although this script action can be used in all UMRA modules, the most
common usage would be an F&D implementation to collect and manage
services. This would require two projects, Project A and Project B.
Project A will contain the script action List services status to retrieve the
services information. In Project B you define the columns you wish to
display and the associated actions (Stop service, Start service, etc.)

Properties

Property
Name

Description Typical
setting

Remarks

Computer The name of the
computer where
the services /
drivers have
been installed

Include
services

Select "No" if
you do not wish
to include the
name and status
of services in the
output table.

Default value is
"Yes"

 Optional

Include
drivers

Select "Yes" if
you wish to
include the
name and status
of drivers in the
output table.

Default value is
"No"

Optional

Include non-
stopped

Select "No" if
you do not wish
to include
services and
drivers that are
NOT in the
stopped state

Default value is
"Yes"

Optional

UMRA Help

Include
stopped

Select "No" if
you do not wish
to include
services and
drivers that are
in the stopped
state

Default value is
"Yes"

Optional

Include
configuration
info

Select "Yes" if
you wish to
include
configuration
info in the
output table.

Default value is
"No"

Optional - If "Yes" is
selected, the columns
"startup type" (text),
"startup type" (Code),
"binary file" and "logon as"
will be added to the output
table

Services table %ServicesTable%
is the default
name of the
output variable
containing the
list of services

 %ServicesTable%

The output variable (by default %ServicesTable%) may contain the
following columns:

Column name (key name) Description

Computer Name of the computer where the
drivers / services are installed

Internal name Key name for the service

Name A Windows service has two names. The
long name you see in the Control Panel
is the display name of the service. The
internal shorter name of the serivce is
called the key name.

Status (text) Returned as text

UMRA Help

Status (code) Returned as code

1 - Service stopped

2 - Service start pending

3 - Service stop pending

4 - Service running

5 - Service continue pending

6 - Service pause pending

7 - Service error

Process ID

Svc type (text) Returned as text

Svc type (code) Returned as code

1 - Kernel driver

2 - File System Driver

16 - Own Process

32 - Shared Process

Interactive Yes or No

Please note that a Windows service has two names. The long name as
shown in the Control Panel is the display name of the service. The
internal, shorter name of the service is called the key name. When you
specify the name of a column, the key name must be used.

It is also possible to retrieve the configuration details of each service. If
this option is selected, the following columns will be added:

Column name (key name) Description

Startup type (text) Returned as text

Startup type (code) Returned as code

0 - Boot start

1 - System start

2 - Auto start

3 - Demand start

4 - Disabled

Binary file

Logon as

UMRA Help

Script Action: Execute service command

Function

Using the Execute service command, you can set Windows service
settings.

Deployment

This action is typically used in combination with the Script Action: List

services status on page 373 to collect and manage services. In Forms &
Delegation, you will typically create two projects: one to collect the
services and one to manage these.

Properties

Property
Name

Description Typical setting Remarks

Computer Name of the
computer
where the
services are
running

%ComputerName%. In Forms & Delegation, this
variable is passed from the
project where the services are
collected using the List
services script action.

Service
name

Name of the
service

%ServiceName% In Forms & Delegation, this is
the name of the service that
is selected by the end- user in
the form. When the user
selects no service, the
variable is empty.

Start
service

Sets the value
for Start
service to
"Yes" . If the
service has
already
started,
nothing will
happen

%ServiceCommand% Configure according to the
desired service action.

UMRA Help

Stop
service

Sets the value
for Stop
service to
"Yes" . If the
service has
already
started,
nothing will
happen

%ServiceCommand% Configure according to the
desired service action.

Restart
service

Sets the value
for Restart
service to
"Yes" . If the
service is
running, it
will be
stopped first.

%ServiceCommand% Configure according to the
desired service action.

Wait for
status
completion

If set, the
action will not
complete
until the
service has
the requested
state or if the
time-out
period has
expired.

Time-out
(seconds)

Time-out
specified in
seconds.
Used in
conjunction
with "Wait for
status
completion"
property.

See also:

Script Action: Configure service on page 379

UMRA Help

Script Action: Configure service

Function

With this script action, services can be configured. This script action
should be used in combination with the List services script action which
collects a table of services.

Deployment

This action is typically used for (delegating) management of services.

Properties

Property Name Description Remarks

Computer Name of the computer
where the service is
running

Service name Name of the service. Note that the name of the
service is not equal to the
display name of the service.

Set manual
startup type

Set this property to "Yes"
to set the startup type of
the service to "Manual"

Set Automatic
startup type

Set this property to "Yes"
to set the startup type of
the service to
"Automatic"

Disable service Set this property to "Yes"
to disable the service

Log on as Local
System account

Set this property to "Yes"
to let the service log on to
the "Local System
account" rather than the
user account. Set to "No"
to let the service log on to
a user account.

Logon account
name

The name of the logon
account assigned to the
service.

UMRA Help

Logon account
password

Password of the logon
account assigned to the
service.

See also:

Script Action: List services status on page 373

Script Action: Execute service command on page 377

4.3.5. Managing printers and printer queues

Script Action: List printer documents

Function

This action collects the list with printer documents from a specified
printer. The data are stored in the output variable %DocumentsTable%.

Deployment

With User Management Resource Administrator (UMRA) you can let the
helpdesk manage printer queues and print jobs. Individual print jobs can
be paused, restarted, resumed and deleted. The printer spooler service
itself can be restarted.

Although this script action can be used in all UMRA modules, the most
common usage will be an F&D project in which a print job for a
particular printer can be selected. The user can then press a button to
pause, restart, resume or delete the print job.

Properties

Property
Name

Descriptio
n

Typical setting Remark
s

Printer Name of the
printer or
print server
queue.

Syntax is
\\<ComputerName>\<PrinterName
>

UMRA Help

DocumentsTabl
e

Table
containing
the
document
info for the
selected
printer or
printer queue

%DocumentsTable% Optional

The output variable (by default %DocumentsTable%) may contain the
following columns:

Column name
(key name)

Description

DocumentID ID number of the document

Document Name of the document

Status (text)

Owner

Pages (total) Total number of pages in the print job.

Pages printed Contains the number of pages printed

Submitted Time when the job was submitted to the print queue

Position in queue Contains the position of this print job in the print queue.

Priority (text) Priority of the print job

Priority (code) Priority of the print job

Printer Name of the printer

Computer Computer name

Data type

Status (code)

See also:

UMRA tables on page 9

UMRA Help

Script Action: Execute print job command

Function

Using the Execute print job command script action , you can pause,
restart, resume or delete printer jobs. To do this, you need to specify the
job ID of the printer job which can be obtained using the script action
Script Action: List printer documents on page 380.

Deployment

This action is typically used in combination with the List printer

documents script action to collect the documents in the printer queue.

If you use this script within the Forms & Delegation module, you will
typically create two projects: one to collect a list of printer documents
and one to manage these.

Properties

Property
Name

Description Typical setting Remarks

Printer The name of
the printer or
printer
queue.

 Syntax:
\\ComputerName\PrinterName

Job id ID number of
the target
print job

 %jobid% The job ID number
can be obtained
using the Script
Action: List printer
documents on page
380.

Pause
print job

Set the value
of this
property to
"Yes" to
pause the
print job

 Default setting is "No"

UMRA Help

Restart
print job

Set the value
of this
property to
"Yes" to
restart the
print job

 Default setting is "No"

Resume
print job

Set the value
of this
property to
"Yes" to
resume the
print job

 Default setting is "No"

Delete
print job

 Set the value
of this
property to
"Yes" to
delete the
print job

 Default setting is "No"

4.3.6. LDAP directory services

Script Action: Setup LDAP session

Function

This script action is used to initialize a secure or not secure LDAP session
with the LDAP Server. The session parameters are stored in a variable
that is used in subsequent UMRA LDAP actions.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

LDAP server The name of the host
running the LDAP
server. The name
must be specified
using the TCP/IP
address or DNS name.
Optionally, the name
can be followed by a
colon (:) and port
number.

%LdapServer%

LDAP port The TCP/IP port
number of the LDAP
server to which to
connect. This
property is ignored if
the property LDAP
server includes a port
number. If not
specified, the default
port is used.

Optional For non-secure LDAP,
the default LDAP port is
389, for secure LDAP
(SSL), the default port is
636.

UMRA Help

SSL encryption
flag

If set to "Yes", the
session will use SSL
encryption to
communicate. In this
case, appropriate SSL
certificates need to
be installed on both
the LDAP client and
server side. If set to
"No", the action will
establish a plain TCP
connection and use
plain text (no
encryption).

No It is strongly
recommended to use
SSL encryption. To
implement this option,
SSL certificates need to
be installed on both the
LDAP Client and Server.
The methods how to do
this, largely depends on
the implementation of
the operating system
and directory service.
For Microsoft Active
Directory, Novell
eDirectory and Linux
OpenLDAP the exact
implementations are
described in the
document Manage LDAP
directory services with
UMRA which is available
in the document library
on the Tools4ever
website. For other
systems, a similar
approach must be used.

User name The user name used
to connect to the
LDAP server. If this
property is not
specified, no users
are authenticated and
you will not be able to
execute other LDAP
actions.

 The format and exact
name depends on the
directory service.

User password The password for the
user specified in
property User name.
Note that by default,
the password is
stored with
encryption.

Usually the
result of the
Generate
password
script action.

If a value is entered
manually, it will be
encrypted automatically
as soon as you enter OK.

UMRA Help

Ldap session An internal data
structure
representing the
resulting LDAP
session. This property
is an "output only"
property and is
generated
automatically. This
property is used as
input for other LDAP
script actions.

Script Action: Load LDAP modification data

Function

This script action is used to initialize all the attributes and attributes
values that are required to update the directory service item. The exact
attributes and values used vary for each directory service and are
determined by the directory service schema;

Deployment

When a directory service is updated to create a new item or update an
existing item, the operation is always specified by one or more
attributes, the attribute value(s) and the type of attribute value
modification: add, delete or replace.

To support this mechanism, the script action Load LDAP modification
data is used. All attributes, attribute values and value modification types
are specified using this action. The result is stored in a variable that
holds all the attribute information. The variable is then used in the
action to:

1. Create the item with action Script Action: Add directory service object

(LDAP) on page 387 or,

2. Update the item with the script action Script Action: Modify

directory service object (LDAP) on page 388.

The action Load LDAP modification data does not communicate with the
LDAP Server, that is, no session variable is required.

UMRA Help

The LDAP modification data window is used to specify the LDAP
modification data.

 Example of specifying the LDAP modification data.

In the example shown above, the data is stored in variable %LdapData%.
The data holds the modification values for 5 attributes: objectClass, sn,
givenName, homePhone and userPassword. The names of the attributes
are specified using their LDAP names as specified in the schema of the
directory service. The values for each attribute can be specified using
variables. Each attribute can have one or more values.

Script Action: Add directory service object (LDAP)

Function

The action is used to add a new item to the directory service. The item is
identified by its name that must be unique. All other parameters of the
item are specified by its attributes. Before you can use this script action,
the following actions must have been executed:

 Script Action: Setup LDAP session on page 383: Used to store the
session (data) in a variable which is then used as input for
other LDAP script actions.

 Script Action: Load LDAP modification data on page 386: Used to
initialize the attributes and attribute values for the new
directory service item.

UMRA Help

Properties

Property
Name

Description Typical setting

LDAP
session

A data structure representing a
session with the LDAP server.
The property is initialized with
action Setup LDAP session and
passed to this action using a
variable.

The default variable name is
%LdapSession%

Object
name

The distinguished name of the
object to modify. Example:
CN=John Smith, OU=Marketing,
DC=tools4ever, DC=com.

Object
data

All attributes and values to add
the object. The property must be
specified as a variable name.
This variable is generated by
script action Script Action: Load
LDAP modification data on page
386.

Script Action: Modify directory service object (LDAP)

Function

This action is used to update one or more attributes of an existing
directory service item. The item is identified by its name (Object name)
that is specified as a distinguished name. Before you can use this script
action, the following actions must have been executed:

1. Script Action: Setup LDAP session on page 383: The session (data) is
stored in a variable that is used in this action.

2. Script Action: Load LDAP modification data on page 386: Initialize the
attributes and attribute values for the new directory service
item.

UMRA Help

Properties

Property
Name

Description Typical setting

LDAP
session

A data structure representing a
session with the LDAP server.
The property is initialized with
action Setup LDAP session and
passed to this action using a
variable.

The default variable name is
%LdapSession%

Object
name

The distinguished name of the
object to modify. Example:
CN=John Smith, OU=Marketing,
DC=tools4ever, DC=com.

Object
data

All attributes and values to add
the object. The property must be
specified as a variable name.
This variable is generated by
script action Script Action: Load
LDAP modification data on page
386.

Script Action: Delete directory service object (LDAP)

Function

This script action is used to delete an existing directory service item.
Before you can use this script action, an LDAP session must have been
initialized using the Script Action: Setup LDAP session on page 383

UMRA Help

Properties

Property
Name

Description Typical setting

LDAP
session

A data structure representing a
session with the LDAP server.
The property is initialized with
Script Action: Setup LDAP
session on page 383 and
passed to this action using a
variable.

The default variable name is
%LdapSession%.

Object to
delete

The distinguished name of the
object to be deleted. Example:
CN=John Smith,
OU=Marketing, DC=tools4ever,
DC=com. If the item to delete
does not exist, an error occurs.

Script Action: Rename directory service object (LDAP)

Function

This action is used to change the distinguished name of an entry in the
directory service. The action is available only when using an LDAP
session with LDAP version 3.

Properties

Property name Description Typical setting

LDAP session A data structure representing a
session with the LDAP server.

%LdapSession%

Current name The distinguished name of the
existing entry to be renamed.

Example: CN=John Smith,
OU=Marketing, DC=tools4ever,
DC=com.

UMRA Help

New RDN The new relative distinguished
name of the entry to be renamed.

Example: CN=James Smith.

The relative distinguished name
should not contain the name of
the container. If the property is
not specified, the directory entry is
not renamed but can be moved to
another parent container as
specified with the property New
parent.

New parent The new distinguished name of the
parent of the entry to be renamed.

Example: OU=Marketing,
DC=tools4ever, DC=com. This
property can be used to move the
directory entry to another
container. If this property is not
specified, the directory entry is not
moved to another container.

Delete old name A flag indicating if the old relative
distinguished name should be
deleted. Set to FALSE if the old
relative distinguished name should
be retained.

Default value is
TRUE

Script Action: Search LDAP

The LDAP Search window is used to specify the LDAP search.

Session

The variable representing the LDAP Session that is initialized with action
Setup LDAP session.

Result

The name of the variable that is used to store the result of the search.
The search result is always stored as a table. The variable does not need
to exist when the action is executed. If it does exist, the old value is
overwritten.

UMRA Help

Base (DN)

The distinguished name of the directory service tree where the search
should start. The search is executed at the specified base, and optionally
in the immediate or all subtrees of the directory service.

Filter

The specification of the filter to perform the search. The standard search
specification according to RFC2254 can be used to execute the search.

Scope

Base only Limits the search to the specified base only. The maximum
number of matching directory service items is 1.

One level The search is performed in all entries of the first level below the
base entry, excluding the base entry.

Subtree The search is performed in the base entry and all levels below
the base entry.

Options

Time out
interval

When enabled, the specified value is the time-out value of
the LDAP search and the operation time. If disabled, no
time-out value is used.

Size limit When enabled, the maximum number of matching values
is limited to the specified value. When disabled, the
maximum number of items is not limited.

4.3.7. Lotus Notes

Script Action: Get certifier

Function

Accesses a Lotus Notes certifier from its ID file, and creates an internal
data structure representing the certifier. Required for any subsequent
action that need access to a certifier.

UMRA Help

Deployment

Typically used before using a script action that registers or renames a
person in Lotus Notes. For example the Script Action:Register person on
page 396 requires access to a certifier in order to be able to certify the
new created person.

Properties

Property
Name

Description Typical setting Remarks

Certifier
ID file

The path to
the Lotus
Notes
certifier ID
file that
contains the
desired
certifier.

C:\Lotus\Domino\data\cert.id. The File must be
accessible in the
UMRA module
(service or console)
that runs the script.

UMRA Help

Certifier
password

The
encrypted
password of
the id file.

 The Id file is
protected by a
password. Specify
here the password
required to unlock
the Id file.

The property
configuration
window can
automatically
encrypt the entered
password. Only the
encrypted value is
stored in this action.

 If the password is
specified by means
of a variable instead
of specified directly,
it must be encrypted
first. Use the action
Script Action: Set
encrypted variable on
page 546 to create
an encrypted
variable.

UMRA Help

Expiration
date

The
expiration
date of new
certificates
that will be
generated
when this
certifier is
used to
create
certificates.

 Input property. Any
certificates
generated with the
resulting certifier
object variable will
expire at the
specified time. If this
property is not
specified, an
expiration date of 2
years from the
current time is used.

If a variable is used
to specify the
Expiration date, it
must be an UMRA
date-time variable,
and not a text
variable.

If the certifier is used
to register a person,
this date
consequently
specifies the
expiration date of
the user account.

Certifier The resulting
certifier
variable.

%NotesCertifier% This variable will
contain the resulting
certifier object. Use
this variable in
subsequent actions
that require a
certifier object as
input.

UMRA Help

Script Action: Register person

Function

Creates and registers an new person in Lotus Notes.

Deployment

Typically used as part of a script to create new users and resources in
Lotus Notes

Properties

Propert
y Name

Descripti
on

Typical setting Remarks

Certifier Variable
containing
a object
that
represents
the Lotus
Notes
certifier
that will
create the
certificate
(sign the
user id) for
the new
person.

%NotesCertifier% Mandatory

Use the action Script Action: Get
certifier on page 392 to obtain the
certifier object before using it in
this action.

Basics -
Registrat
ion
server

The name
of the
Lotus
Domino
registratio
n server.

servername/domino
organization

Mandatory

This is the complete name of the
server as known within Lotus
Notes/Domino environment, not
the name of the server as known
by the OS hosting the Domino
service(s).

UMRA Help

Basics -
First
name

The First
name of
the user.

%FirstName% Typically the variable
%FirstName% is read from a
import file specifying the users to
create, or specified in a UMRA
form.

Basics -
Middle
name

The
Middle
name of
the user.

%MiddleName% Typically the variable
%MiddleName% is read from a
import file specifying the users to
create, or specified in a UMRA
form.

Basics -
Last
name

The Last
name of
the user.

%LastName% Typically the variable
%LastName%is read from a import
file specifying the users to create,
or specified in a UMRA form.

Basics -
Short
name

A short
name
representi
ng the
new user.

Not specified Optional.

A short name in the format
FirstInitialLastName is
automatically created as you
enter the user's name. For
example, JSmith is the short
name for John Smith. You can
modify this field to overrule
this setting.

Basics -
Passwor
d

A
password
for the
new user
ID.

%Password% Passwords are usually
automatically generated in
advance with the action Script
Action: Generate password on page
565, and exported to a file with
action Script Action: Export
Variables on page 559 .

UMRA Help

Basics -
Passwor
d Quality
Scale

A level for
the
Password
Quality
scale.

Not specified Optional value between 0
(weakest) and 16 (strongest)

Default value is 8

See the Lotus Notes/domino
documentation for more
information.

Basics -
Mail
system

The mail
system
that is
used by
this new
Person.

Lotus Notes If not specified, or set to "none",
no mail system is configured for
the new account.

For the exact options see the drop
down list in the specific action
property in the UMRA console
application.

Basics -
Create
Notes ID

flag if a
Lotus
Notes ID
must be
generated
for this
person.

Yes Typically this is specified as "YES".
if not Specified

Mail -
Mail
server

The Name
of the Mail
Server.

 The name of the mail server, as
known within Lotus Notes.

If not specified the same name as
the registration server is used.

Mail -
Mail file
name

The name
of the mail
database
file of the
person.

 Optional.

If not specified, the path and
file name are set to
mail/firstinitial><first7character
soflastname>.nsf.

UMRA Help

Mail -
Mail file
template

The name
of the
template
used for
the mail
database.

 optional

If not specified the domino server
chooses a default template.

Mail -
Mail file
owner
access

The level
of access
that the
mail file
owner has
to the mail
database.

Not specified Optional.

values: Designer, Editor or
Manager.

If not configured, the user has the
default "editor with delete
docurments" access to their
database.

This option may for example be set
to "Editor", to prevent users from
deleting documents from their
own mail database.

It cannot be used to explicitly set
"Editor with delete documents",
since only the most global access
settings can be specified here.

Mail -
Mail
forward
address

address to
forward
the mail
to.

Not specified When specifiing, Include the
domain names for this person. eg.
John Smith@Acme@External.

Note that the mail will not also be
send to the original mailbox when
a forwarding address is specified.

Mail -
Create
mail file
in
backgrou
nd

Specifies
whether
mail files
should be
created in
the
backgroun
d
(Yes/No).

No Optional. If set to Yes, the mail file
will be created in the background
by the Lotus Notes adminp
process. This will speed up the
registration process, but the mail
functionality of the created
accounts is not immediately
available.

UMRA Help

Mail -
Mail ACL
manager

Specifies
the
account
that is
allowed to
manage
access
control of
the user's
mail
database.

Not specified Optional.

If not configured the Lotus Notes
default settings apply.

Mail -
Quota
limit
(MB)

The size
limit (MB)
of the
user's mail
database.

 Optional.

If not configured, no limit applies.

Mail -
Warning
threshol
d

The Size in
MB above
which
Lotus
Notes
issues a
warning
message.

Mail -
Create
full text
index

Specifies if
a full text
index of
the mail
database
should be
created
(Yes/No).

No Optional. If set to Yes, a full text
index will be maintained for the
mail database.

Address -
Internet
Address

The
internet
email
address
assigned
to the new
person.

 Optional.

UMRA Help

ID Info -
Store ID
in
Domino
directory

Specifies
wether
the the
userID
should be
stored in
the
Domino
Directory.

Yes

ID Info -
Store ID
in file

Specifies
the
location
where to
store the
users ID
file

 Users may need access to (a copy
of) this file in order to be able to
login.

ID Info -
Id file
name

The file
name
including
the full
path to
the file
that
should be
created

In file (default location:
<datadirectory>\ids\people\us
er.id). Click Set ID file to change
path.

Id Info -
Security
type USA

The
setting
determine
s the
encryption
strength(Y
es/N0)

Yes Choose either North American
(Yes) or International (No). The
security type determines the type
of ID file created and affects
encryption when sending and
receiving mail and encrypting data.
North American is the stronger of
the two types.

This field only is only used when
the property "Basics - Create
Notes ID" is set to "Yes".

UMRA Help

Groups -
Groups

The
Groups of
which the
new
person
should
become a
member

 Separate Multiple groups with a ;
character.

Other -
Profile
name

The name
of a R5
user
profile to
assign

Not specified This is generally not used in newer
versions of Lotus notes, as it
cannot be used if you are using
policies

Other -
location

Departem
ental or
geographi
cal
location of
the user

Other -
Organiza
tional
unit

The
organizati
onal unit
of the user

 Optional.

A word that distinguishes two
users who have the same name
and are certified by the same
certifier ID.

Other -
Commen
t

A
comment
about the
user,
regarding
the user's
registrati
on.

UMRA Help

Other -
Local
admin
name

The name
of a user
who has
Author
access to
the
Domino
Directory
but who
does not
have the
UserModi
fier role.
This
setting
allows
the local
administr
ator to
edit
Person
documen
ts.

 Optional

Limited
client
flag

 Not defined Optional.

Desktop
client
flag

UMRA Help

Internet
passwor
d flag

Specify
"Yes" to
store the
specified
password
(additional
ly) for use
as the
internet
password.

Enforce
short
name
uniquen
ess flag

Specify
"Yes" to
enforce
uniquenes
s of the
short
name.

Prompt
on
duplicate
person

Indicates
the action
to take on
duplicate
person.

 Select one of the following values

"Error on a duplicate person
(default)"

"Skip de person registration"

"Update the existing addressbook
registration"..

Error if
ID file
exists

 "YES "
Specifies
that the
UMRA
script
action
must fail,
and the
user must
not be
created, if
the ID file
does
already
exists
(Yes/No)

Yes

UMRA Help

Person
Docume
nt

Specifies
the UMRA
variable in
which
should be
stored the
resulting
Person
Document
created as
result of
this
"Register
Person"
script
action.

%PersonDocument% Output only.

Variable name can be specified on
the Out tab only.

The resulting variable can be used
in any subsequent script action
that requires a person document
as input.

Script Action: Register person (advanced)

Function

Creates and registers an new Person in Lotus Notes. It allows to specify
some advanced settings, for instance to allow creating a roaming person
in Lotus Notes.

If none of the new persons to create should be roaming, and you do not
need the advanced options you can use Script Action: Register person on
page 396 instead.

Deployment

Typically used as part of a script to create new persons and resources in
Lotus Notes

Properties

UMRA Help

Proper
ty
Name

Descriptio
n

Typical setting Remarks

Certifier Variable
containing a
object that
represents
the Lotus
Notes
certifier that
will create
the
certificate
(sign the
user id) for
the new
person.

%NotesCertifier% Mandatory

Use the action Script Action: Get
certifier on page 392 to obtain the
certifier object before using it in
this action.

Basics -
Registrat
ion
server

The name of
the Lotus
Domino
registration
server.

servername/domino
organization

Mandatory

This is the complete name of the
server as known within Lotus
Notes/Domino environment, not
the name of the server as known
by the OS hosting the Domino
service(s).

Basics -
First
name

The First
name of the
user.

%FirstName% Typically the variable
%FirstName% is read from a
import file specifying the users to
create, or specified in a UMRA
form.

Basics -
Middle
name

The Middle
name of the
user.

%MiddleName% Typically the variable
%MiddleName% is read from a
import file specifying the users to
create, or specified in a UMRA
form.

Basics -
Last
name

The Last
name of the
user.

%LastName% Typically the variable
%LastName%is read from a
import file specifying the users to
create, or specified in a UMRA
form.

UMRA Help

Basics -
Short
name

A short
name
representing
the new
user.

Not specified Optional.

A short name in the format
FirstInitialLastName is
automatically created as you
enter the user's name. For
example, JSmith is the short
name for John Smith. You can
modify this field to overrule
this setting.

Basics -
Passwor
d

A password
for the new
user ID.

%Password% Passwords are usually
automatically generated in
advance with the action Script
Action: Generate password on
page 565, and exported to a file
with action Script Action: Export
Variables on page 559

Basics -
Passwor
d Quality
Scale

A level for
the
Password
Quality
scale.

Not specified Optional value between 0
(weakest) and 16 (strongest)

Default value is 8

See the Lotus Notes/domino
documentation for more
information.

UMRA Help

Basics -
Passwor
d
Encrypti
on
strength

The
encryption
key that
protects the
Notes keys
that are
stored in the
user ID file is
derived from
the
password.
The stronger
the
encryption
strength of
the
password,
the stronger
the
encryption
key that
protects the
Notes keys.

Base strength on
RSA key Size

There are three options to
choose from:

 Base strength on RSA key
size - encryption strength is
determined by the size of
the RSA key stored in the ID
file. If the RSA key size is
less than 1024 bits, the
password encryption
strength is 64 bits; if RSA
key size is 1024 or greater,
the password key size is 128
bits.

 Compatible with all releases
(64 bits)

 Compatible with 6.0 and
later (128 bits)

Basics -
Mail
system

The mail
system that
is used by
this new
Person.

Lotus Notes If not specified, or set to "none",
no mail system is configured for
the new account.

For the exact options see the
drop down list in the specific
action property in the UMRA
console application.

UMRA Help

Basics -
Internet
passwor
d flag

Specify YES
for this
option to set
an Internet
password
that is
stored in
each user's
Person
document
and gives
users access
to Internet
services.

Basics -
Enable
roaming

Creates
roaming
capabilities
for this
person
(Yes/No).

Yes Optional.

If set to Yes, it will create roaming
capabilities for this person.

Basics -
Create
Notes ID

flag if a
Lotus Notes
ID must be
generated
for this
person.

Yes Typically this is specified as "YES".
if not Specified.

Mail -
Mail
server

The Name of
the Mail
Server.

 The name of the mail server, as
known within Lotus Notes

If not specified the same name as
the registration server is used.

Mail -
Mail file
name

The name of
the mail
database file
of the
person.

 Optional.

If not specified, the path and
file name are set to
mail/firstinitial><first7charact
ersoflastname>.nsf.

UMRA Help

Mail -
Mail file
templat
e

The name of
the template
used for the
mail
database.

 optional

If not specified the domino server
chooses a default template.

Mail -
Mail file
owner
access

The level of
access that
the mail file
owner has to
the mail
database.

Not specified Optional.

values: Designer, Editor or
Manager.

If not configured, the user has the
default "editor with delete
docurments" access to their
database.

This option may for example be
set to "Editor", to prevent users
from deleting documents from
their own mail database.

It cannot be used to explicitly set
"Editor with delete documents",
since only the most global access
settings can be specified here.

Mail -
Mail
forward
address

address to
forward the
mail to.

Not specified When specifying, Include the
domain names for this person.
eg. John Smith@Acme@External.

Note that the mail will not also be
send to the original mailbox when
a forwarding address is specified.

Mail -
Create
mail file
in
backgro
und

Specifies
whether
mail files
should be
created in
the
background
(Yes/No).

No Optional. If set to Yes, the mail
file will be created in the
background by the Lotus Notes
adminp process. This will speed
up the registration process, but
the mail functionality of the
created accounts is not
immediately available.

UMRA Help

Mail -
Mail ACL
manager

Specifies the
account that
is allowed to
manage
access
control of
the user's
mail
database.

Not specified Optional.

If not configured the Lotus Notes
default settings apply.

Mail -
Quota
limit
(MB)

The size limit
(MB) of the
user's mail
database.

 Optional.

If not configured, no limit applies.

Mail -
Warning
threshol
d

The Size in
MB above
which Lotus
Notes issues
a warning
message.

Mail -
Create
full text
index

Specifies if a
full text
index of the
mail
database
should be
created
(Yes/No).

No Optional. If set to Yes, a full text
index will be maintained for the
mail database.

Mail -
Mail file
replicas

Specifies the
servers on
which the
replica(s) of
the users's
mail files are
stored.

 Optional.

This option only applies to
clustered servers. Separate
multiple servers with the ;
character.

UMRA Help

Mail -
Create
file
replicas
in
backgro
und

Specifies
that the file
replica's
should be
created in
the
background(
Yes/No).

 Optional.

Address
-
Internet
Address

The internet
email
address
assigned to
the new
person.

 Optional.

ID Info -
Public
key
specifica
tion

Specifies the
length of the
Public key
used for the
User ID.

Id Info -
Security
type
USA

The setting
determines
the
encryption
strength(Yes
/N0).

Yes Choose either North American
(Yes) or International (No). The
security type determines the type
of ID file created and affects
encryption when sending and
receiving mail and encrypting
data. North American is the
stronger of the two types.

This field only is only used when
the property "Basics - Create
Notes ID" is set to "Yes".

ID Info -
Store ID
in
Domino
directory

Specifies
wether the
the userID
should be
stored in the
Domino
Directory.

Yes

UMRA Help

ID Info -
Store ID
in file

Specifies the
location
where to
store the
users ID file.

 Users may need access to (a copy
of) this file in order to be able to
login.

ID Info -
ID file
name

The file
name
including the
full path to
the file that
should be
created.

In file (default location:
<datadirectory>\ids\people\us
er.id). Click Set ID file to
change path.

Groups -
Groups

The Groups
of which the
new person
should
become a
member.

 Separate Multiple groups with a ;
character.

Roaming
- Server
name

The server
on which the
roaming files
are to be
stored.

servername/tools4e
ver

Optional.

This is the complete name of the
server as known within Lotus
Notes/Domino environment, not
the name of the server as known
by the OS hosting the Domino
service(s).

Roaming
- Replica
Servers

Specify the
server name
to replicate
the roaming
files to.
Seperate
multiple
server
names with
';'.

CN=servername/O=
tools4ever

Specify the distinguished name of
the roaming replica server name!
The following format will NOT
work: servername/tools4ever'!
Use format
'CN=servername/O=tools4ever'
instead.

UMRA Help

Roaming
- Create
roaming
replica
databas
es in
backgro
und

Specifies if
the roaming
databases
must be
created in
the
background
by the
Domino
Administrati
on Process.

 If 'Roaming - Create files in
background' is set to 'Yes', this
option must be set to 'Yes' as
well. If the 'Roaming - Create files
in background' is set to 'No' or is
not specified, you can set this
property to 'Yes' and 'No'

Roaming
-
Subdirec
tory
name

The folder
that contains
the users
roaming
information.

 Optional.

The path must be relative to the
server's data directory. The
default value is
"roaming\<shortname of the
person>.

Roaming
- Create
files in
backgro
und

Specifies if
the roaming
files must be
created in
the
background
by the
Domino
Administrati
on Process.

YES If set to YES, the existence of any
roaming files may not be
assumed when calling any
subsequent script actions. Note
that when set to Yes, the
'Roaming - Create replica
databases in background' must
be set to Yes as well!

Roaming
- Clean-
up
setting

Specifies the
way client
side roaming
files are
cleaned up.

 Default value: "Do not clean-up"

Possible values:

"Clean-up at Notes shutdown"

"Clean-up periodically"

"Do not clean-up"

"Prompt user for clean-up".

UMRA Help

Roaming
- Clean-
up
period

Number of
days (1-365)
after which
the roaming
users data
directory will
be removed
on the local
machine.

Not specified This setting is used when the
clean-up setting is configured as
"Clean up periodically". It is
ignored otherwise.

Other -
Profile
name

The name of
a R5 user
profile to
assign.

Not specified This is generally not used in
newer versions of Lotus Notes,
as it cannot be used if you are
using policies.

Other -
location

Department
al or
geographical
location of
the user.

Other -
Organiza
tional
unit

The
organization
al unit of the
user.

 Optional.

A word that distinguishes two
users who have the same name
and are certified by the same
certifier ID.

Other -
Commen
t

A comment
about the
user,
regarding
the user's
registration
.

UMRA Help

Other -
Local
admin
name

The name
of a user
who has
Author
access to
the Domino
Directory
but who
does not
have the
UserModifi
er role. This
setting
allows the
local
administrat
or to edit
Person
documents.

 Optional.

Other -
Preferre
d
Languag
e

The
language
that the user
prefers to
use

 Optional

Limited
client
flag

Select yes to
generate a
Lotus Notes
person with
a 'Lotus
Notes Mail'
license

Not specified Optional.

Desktop
client
flag

UMRA Help

Enforce
short
name
uniquen
ess flag

Specify "Yes"
to enforce
uniqueness
of the short
name.

Prompt
on
duplicat
e mail
file

Indicates the
action to
take on a
duplicate
mail file.

 Select one of the following values

"Error on a duplicate mail file
(default)"

"generate unique mail file name"

"replace existing mail file"

"skip de person registration".

Prompt
on
duplicat
e
roaming
directory

Indicates the
action to
take on a
duplicate
roaming
directory.

 Select one of the following
values:

"Error on a duplicate roaming
directory(default"

"Generate unique roaming
directory name"

"Skip the person registration".

Prompt
on
duplicat
e person

Indicates the
action to
take on
duplicate
person .

 Select one of the following values

"Error on a duplicate person
(default)"

"Skip de person registration"

"Update the existing addressbook
registration".

Error if
ID file
exists

 "YES "
Specifies
that the
UMRA script
action must
fail, and the
user must
not be
created, if
the ID file
does already
exists
(Yes/No).

Yes

UMRA Help

Person
Docume
nt

Specifies the
UMRA
variable in
which
should be
stored the
resulting
Person
Document
created as
result of this
"Register
Person"
script action.

%PersonDocument
%

Output only.

Variable name can be specified
on the Out tab only.

The resulting variable can be
used in any subsequent script
action that requires a person
document as input.

Script Action: Edit person

Function

Modifies information contained in a specific person document in a Lotus
Notes database.

Properties set to "Not specified" will not be modified.

Deployment

Typically used as part of a script to modify person properties for existing
users, or to specify additional properties after registering a person.

Properties

UMRA Help

Property
Name

Descriptio
n

Typical
setting

Remarks

Person
Document

Variable
containing an
object that
represents
the Person
document to
modify.

%PersonDocu
ment%

or

%NotesDocu
ment%

Mandatory

The most general way to obtain the
the document variable is with Script
Action: Get document on page 454,
often in combination with Script
Action: Search document on page
464. Make sure that the Document is
a correct person document.

Alternatively, when modifying a
person that you have just registered
with Script Action: Register person
on page 396, a variable containing
the person document of the just
created person is automatically
created by that action.

Make sure that the name of the
variable specified here as input
matches the name of the variable
generated .

Basics -
First name

The First
name of the
user.

Basics -
Middle
name

The Middle
name of the
user.

Basics -
Last name

The Last
name of the
user.

UMRA Help

Basics -
User name

The users
hierarchical
name and
other
variations.

Not specified Do not modify this field without a
good understanding of the
consequences for the Lotus Notes
user.

Changing the hierarchical name
will not change the certifier for
the user ID

Do not modify this field if you
want to move the user in the
domino hierarchy, use Script

Action: Move person on page 434
instead.

separate multiple names by ;
character.

Basics -
Personal
title

The personal
title of the
person.

 For example one of

Dr.;Miss.;Mr.Mrs.;Ms.;prof.

Basics -
Generatio
nal
qualifier

The
generational
qualifier of
the person.

 For example one of

I;II;III;Jr.;Sr.

Basics -
Preferred
language

The language
that the user
prefers to
use.

Mail - Mail
system

The mail
system that is
used by this
new Person.

 For the exact options see the drop
down list in the specific action
property in the UMRA console
application.

Mail -
Domain

The mail
domain the
person is
associated
with.

UMRA Help

Mail - Mail
server

The Name of
the Mail
Server.

 The name of the mail server, as
known within Lotus Notes

If not specified the same name as the
registration server is used.

Mail - Mail
file

The name of
the mail
database file
of the
person.

 Optional.

If not specified, the path and file
name are set to
mail/firstinitial><first7characterso
flastname>.nsf.

Mail -
cc:Mail
post office

The name of
the cc:Mail
post office

Mail -
cc:Mail
user name

Mail -
cc:Mail
location

specifies if
the user is
local or
remote at the
cc:Mail post
office.

 Possible values:

"local"

"Remote"

Mail -
Forwardin
g address

Address to
forward the
mail to.

 When specifiing, Include the domain
names for this person. eg. John
Smith@Acme@External.

Note that the mail will not also be
send to the original mailbox when a
forwarding address is specified.

Mail -
Internet
address

The users
complete
internet
address

UMRA Help

Mail -
Format
preferenc
e for
incoming
mail

The
preferred
format for
incoming
mail.

 one of

"keep in sender's format"

"Prefers MIME"

"Prefers Notes Rich Text"

Only applies to Lotus Notes, POP, or
IMAP mail.

Mail -
Encrypt
incoming
mail

Specifies that
incoming
mail must be
encrypted
(Yes/No).

 Only applies to Lotus Notes, POP, or
IMAP mail.

Real-Time
Collaborati
on -
Sametime
server

The
hierarchical
name of the
Sametime
server.

Work -
Title

Work -
Company

Work -
Departme
nt

Work -
Employee
ID

Work -
Location

Work -
Manager

Work -
Office
phone

Work -
FAX phone

UMRA Help

Work -
Cell phone

Work -
Pager
number

Work -
Assistant

Company -
Street
address

Company -
City

Company -
State/prov
ince

Company -
Zip/postal
code

Company -
Country

Company -
Office
number

Home -
Street
address

Home -
City

Home -
State/prov
ince

Home -
Zip/postal
code

Home -
Country

UMRA Help

Home -
Phone

Home -
FAX phone

Home -
Spouse

Home -
Children

Miscellane
ous-
Comments

Miscellane
ous- Other
X400
address

Miscellane
ous -
Calendar
domain

Miscellane
ous - Web
page

Miscellane
ous -
Phonetic
name

Roaming -
Clean-up
setting

Specifies the
way client
side roaming
files are
cleaned up.

 Default value: "Do not clean-up"

Possible values:

"Clean-up at notes shutdown"

"Clean-up periodically"

"Do not clean-up"

"Prompt user for clean-up".

UMRA Help

Roaming -
Clean-up
Interval

Number of
days (1-365)
after which
the roaming
users data
directory will
be removed
on the local
machine.

not specified This setting is used when the clean-
up setting is configured as "Clean up
periodically". It is ignored otherwise.

Administra
tion -
Owners

Hierarchical
name of the
owner of the
document.
This is the
account that
has the right
to edit this
document, if
he has
Author
access to the
database.

 Usually this is the Same User ID as
this very document describes.

Administra
tion -
administra
tors

Hierarchical
name of
users with
Author
access to the
database, but
do not have
the
UserModifier
role in the
database
ACL. If
specified
here this
allows them
to edit this
document.

 You can specify groups, roles(within
square brackets[]) and wildcards(for
example */sales/acme). Separate
multiple entries with commas

UMRA Help

Administra
tion -
Allow
foreign
directory
synchroniz
ation

Allow the
users name
to be sent to
foreign
directories(Y
es/No).

 Enter Yes to allow a users name to be
sent to foreign directories; for
example a cc:Mail post office
directory.The default setting in Lotus
Notes is Yes, which means cc:Mail
users can lookup Lotus Notes users
as if they where cc:Mail users and
send mail to them. If you do not
want cc:Mail users to send mail to a
particular Lotus Notes user, set it to
No for that Lotus Notes user.

Password
Managem
ent -
Check
password

When set to
Yes, the user
is required to
enter a
password to
authenticate
with servers
that have
password
checking
enabled.

Password
managem
ent -
Required
change
interval

The number
of days at
which the
user must
provide a
new
password to
authenticate

Password
managem
ent -
Grace
period

The number
of days after
a required
change
interval in
which the
users is still
allowed to
connect with
the old
password.

UMRA Help

Password
managem
ent -
Change
internet
password
on next
login

Force the
user to
change the
Internet
password on
the next
login.

Policy
Managem
ent -
Assigned
policy

Policy
Managem
ent -
Setup
profile(s)

Client
informatio
n - Notes
client
license

The client
licenses that
this particular
user has.

Ignore
empty
variable
specificati
ons

When set to
'Yes', UMRA
tries to
identify
variables (by
checking for
%-enclosed
names). If a
variable is
found and
the value is
empty text or
does not
exist, the
Lotus Notes
property is
not updated.

UMRA Help

Script Action: Rename person

Function

Renames a person, without changing its current certifier

Deployment

Typically used as part of a script to manage users and resources in Lotus
Notes

Properties

Property
Name

Description Typical setting Remarks

Certifier Variable
containing a
object that
represents the
current Lotus
Notes certifier of
the person.

%NotesCertifier% Mandatory

Use the action Script
Action: Get certifier on
page 392 to obtain the
certifier object before
using it in this action.
Make sure that it is
the same certifier as
used when the person
was last registered.

UMRA Help

Person
document

Variable
containing an
object that
represents the
Person
document to
rename.

%PersonDocument%

or

%NotesDocument%

Mandatory

The most general way
to obtain the the
document variable is
with Script Action: Get
document on page
454, often in
combination with
Script Action: Search
document on page
464. Make sure that
the Document is a
correct person
document.

Alternatively, when
modifying a person
that you have just
registered with Script
Action: Register person
on page 396, a
variable containing the
person document of
the just created
person is
automatically created
by that action.

Make sure that the
name of the variable
specified here as input
matches the name of
the variable
generated.

First name The new first
name of the user.

Middle name The new middle
name of the user.

UMRA Help

Last name The new last
name of the user.

Organizational
unit

A short name
representing the
new user.

 Optional.

A word that
distinguishes two
users who have the
same name and are
certified by the
same certifier ID.

Remarks

The new hierarchical name of the user generated by Lotus Notes will be:

<name generated by Lotus Notes from first,middle,last
name>/[<Organizational unit>/]<hierarchical name of the certifier>.

For example, with a certifier called Sales/Tools4ever, the resulting
name may be Mike.G.Smith/ou1/sales/Tools4ever

Script Action: Recertify person

Function

Recertifies a person.

When a UserID is created, it is signed by a certifier. This signature has an
expiration date, after which te userID cannot be used anymore to logon.
Recertfication allows to change this expiration date.

Deployment

Typically used as part of a script to manage users and resources in Lotus
Notes

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Certifier Variable containing
a object that
represents the
current Lotus Notes
certifier of the
person.

%NotesCertifier% Mandatory

Use the action Script
Action: Get certifier on
page 392 to obtain the
certifier object before
using it in this action.
Make sure that it is the
same certifier as used
when the person was
last registered.

UMRA Help

Person
document

Variable
containing an
object that
represents the
Person document
of the person to
recertify.

%PersonDocument%

or

%NotesDocument%

Mandatory, unless the
Person name value is
specified in which case
it may be omitted.

The most general way
to obtain the the
document variable is
with Script Action: Get
document on page 454,
often in combination
with Script Action:
Search document on
page 464. Make sure
that the Document is a
correct person
document.

Alternatively, when
modifying a person that
you have just registered
with Script Action:
Register person on page
396, a variable
containing the person
document of the just
created person is
automatically created
by that action.

Make sure that the
name of the variable
specified here as input
matches the name of
the variable generated.

Script Action: Delete person

Function

Deletes a person and optionally the persons mail files from Lotus Notes.

UMRA Help

Deployment

Typically used as part of a script to manage users and resources in Lotus
Notes

Properties

Property
Name

Description Typical setting Remarks

Person
document

Variable containing
an object that
represents the
Person document
of the person to
delete.

%PersonDocument%

or

%NotesDocument%

Mandatory.

The most general
way to obtain the
the document
variable is with
Script Action: Get
document on page
454, often in
combination with
Script Action: Search
document on page
464. Make sure that
the Document is a
correct person
document.

Make sure that the
name of the variable
specified here as
input matches the
name of the variable
generated by the Get
Document action

Delete
mailfile

Specifies whether the
persons mail
database must be
deleted(Yes/No).

 The administration
process will create
Approve mail file
deletion request for
the users mail files.

UMRA Help

Delete
mailfile
replicas

Specifies whether the
replica's of the
persons mailfile must
be deleted.

Delete
immediately

Specifies whether the
user account must be
deleted from the
database
immediately(Yes/No).

 Immediately remove
these users name
from this domino
directory;
Administration
request will be
created to remove
their names from
acl's, name fields etc.

If NO is specified, all
actions will be done
by means of
administration
requests.

Script Action: Move person

Function

Moves a person in the Lotus Notes hierarchy by registering the person
with an different certifier.

Important note: This action can only be used if the person is located in
an organization, not if the person is located in an organizational unit.
To move a person that is located in an organizational unit, use action
Move person (advanced) instead.

Deployment

Typically used as part of a script to manage users and resources in Lotus
Notes.

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Certifier Variable containing
an object that
represents the
current Lotus Notes
certifier of the
person.

%NotesCertifier% Mandatory

Use the action Script
Action: Get certifier on
page 392 to obtain the
certifier object before
using it in this action.
Make sure that it is the
same certifier as used
when the person was
last registered.

Person
document

Variable
containing an
object that
represents the
Person document
of the person to
move.

%PersonDocument%

or

%NotesDocument%

Mandatory

The most general way
to obtain the the
document variable is
with Script Action: Get
document on page 454,
often in combination
with Script Action:
Search document on
page 464. Make sure
that the Document is a
correct person
document.

Make sure that the
name of the variable
specified here as input
matches the name of
the variable generated.

New
Certifier

Variable containing
an object that
represents the new
Lotus Notes
certifier of the
person

 Mandatory

Use the action Script
Action: Get certifier on
page 392 to obtain the
certifier object before
using it in this action.

UMRA Help

Remarks:

 If you want to move the person to a organizational unit on which there
is no direct certifier, first move the person to the closest certifier above
the desired unit in the hierarchy, and then use Script Action: Rename

person on page 428 to specify the relative unit name.

Script Action: Move person (advanced)

Function

Moves a person in the Lotus Notes hierarchy by registering the person
with an different certifier. This action is more general, compared to
action Move person, e.g. a person can be moved from an organization or
organizational unit to another organization or organizational unit. With
the Move person action, a person can only be moved if the person is
currently located in an organization.

Deployment

Typically used as part of a script to manage users and resources in Lotus
Notes.

Important note: If the person is registered with the certifier of an
organizational unit, the current certifier of the person must be specified
by the certifier file of the parent organization of the organizational unit,
and not with the certifier file of the organizational unit itself.

See Lotus Notes example projects (on page 54) for an example project that
uses this action.

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Person
document

Variable
containing an
object that
represents the
Person
document of
the person to
move.

%NotesDocument%

or

%PersonDocument%

Mandatory

The most general
way to obtain
the the
document
variable is with
Script Action: Get
document on
page 454, often
in combination
with Script
Action: Search
document on
page 464. Make
sure that the
Document is a
correct person
document.

Make sure that
the name of the
variable specified
here as input
matches the
name of the
variable
generated.

UMRA Help

Domino
Directory
Database

Variable
containing an
object that
represents the
Domino
Directory
Database of
the person to
be moved.
The Domino
Directory
Database is
the Directory
Service
database of
Lotus Notes.

%NotesDatabase% Mandatory

The most general
way to obtain the
variable is with
script action Get
Database. on
page 449 Make
sure that the
name of the
variable specified
here as input
matches the
name of the
variable
generated.

Admin
Request
Database

Variable
containing an
object that
represents the
administration
request
database
(admin4.nsf)
of the Domino
server on
which the
request is
executed.

%AdminRequestDatabase% Mandatory

The most general
way to obtain the
variable is with
script action Get
Database. on
page 449 Make
sure that the
name of the
variable specified
here as input
matches the
name of the
variable
generated

UMRA Help

Current
(parent)
certifier file
name

The name of
the ID file that
contains the
current
certifier of the
person. If the
person is
located
directly in an
organization,
specify the
certifier ID file
of the
organization.
Important
note: If the
person is
located in an
organizational
unit, specify
the parent
certifier of the
organization.

C:\LotusNotes\Ids\cert.id Mandatory

Password of
current
(parent)
certifier file

The password
of the file
specified for
property
Current
(parent)
certifier file
name.

 Mandatory

Note that the
password is
stored in an
encrypted
format.

Target certifier
file name

The name of
the ID file that
contains the
certifier of the
target
organization
or
organizational
unit.

C:\LotusNotes\Ids\TheOu.id Mandatory

UMRA Help

Password of
target certifier
file

The password
of the file
specified for
property
Target
certifier file
name.

 Mandatory

Note that the
password is
stored in an
encrypted
format.

Script Action: Generate recovery password

Note: This action only works with Lotus Notes client software version 7. The
action supports all versions of the Lotus Notes Domino server. On computers
on which Lotus Notes client software 6.x.x is installed, this action cannot be
used.

Function

Generate a recovery password from a recovery authority. This is the first
step to reset the password of an existing ID file.

Deployment

With special configuration settings, it is possible to reset the password
of an Lotus Notes ID file with UMRA actions. The procedure is as follows:

1. The ID-file of the person of which the password must be reset,
must be registered using a certifier that contains recovery
information. The recovery information consists of a list of recovery
authorities, e.g. accounts that can be used to generate recovery
passwords.

2. With action Generate recovery password a recovery password is
generated. Dependent on the certifier recovery information, one or
more recovery password are required to reset the password of an
ID-file.

3. With action Recover ID file, the password is reset using the
generated recovery passwords.

Once the password is reset, one can access the Lotus Notes data of the
person using the modified ID-file.

UMRA Help

In a typical Lotus Notes environment that allows password reset of user
ID files, a single recovery authority is used. The ID files are stored in a
central location and the name and password of the recovery authority ID
are known and specified in UMRA (encrypted). When a user forgets his
password, a recovery password is generated using the recovery
authority ID, password and the user's ID file. Next, the ID file is
recovered.

Properties

Property
Name

Description Typical setting Remarks

Recovery
authority
ID file

The ID file of the
person that is
specified as a
recovery authority
for the certifier. A
recovery password
is generated for this
person.

Recovery
authority
password

The password of
the specified
Recovery
authority ID file.
The password is
stored in an
encrypted format.

ID file to
recover

The ID file for which
the password must
be reset.

Recovery
password

The output recovery
password,
generated by this
action.

output:
%RecoveryPassword%

UMRA Help

Script Action: Recover ID file

Note: This action only works with Lotus Notes client software version 7. The
action supports all versions of the Lotus Notes Domino server. On computers
on which Lotus Notes client software 6.x.x is installed, this action cannot be
used.

Function

Recover an ID file using a recovery password. This is the last step to reset
the password of an existing ID file.

Deployment

With special configuration settings, it is possible to reset the password
of an Lotus Notes ID file with UMRA actions. The procedure is as follows:

1. The ID-file of the person of which the password must be reset,
must be registered using a certifier that contains recovery
information. The recovery information consists of a list of recovery
authorities, e.g. accounts that can be used to generate recovery
passwords.

2. With action Generate recovery password a recovery password is
generated. Dependent on the certifier recovery information, one or
more recovery password are required to reset the password of an
ID-file.

3. With action Recover ID file, the password is reset using the
generated recovery passwords.

Once the password is reset, one can access the Lotus Notes data of the
person using the modified ID-file.

In a typical Lotus Notes environment that allows password reset of user
ID files, a single recovery authority is used. The ID files are stored in a
central location and the name and password of the recovery authority ID
are known and specified in UMRA (encrypted). When a user forgets his
password, a recovery password is generated using the recovery
authority ID, password and the user's ID file. Next, the ID file is
recovered.

Properties

UMRA Help

Property
Name

Description Typical
setting

Remarks

ID file to
recover

The name of the ID
file to recover. The ID
file identifies the
registered person
that has forgotten his
password.

Recovery
passwords

A single column table
that holds all the
recovery passwords
needed to reset the
password.

 If only a single recovery
password is required,
the table only contains a
single value.

New
password

The new password of
the person.

Script Action: Set Internet password

Function

Specifies the Internet password for a person.

Deployment

Typically used as part of a script to manage users and resources in Lotus
Notes

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Person
document

Variable
containing an
object that
represents the
Person document
of the person to
move.

%PersonDocument%

or

%NotesDocument%

Mandatory

The most general way
to obtain the the
document variable is
with Script Action: Get
document on page 454,
often in combination
with Script Action:
Search document on
page 464. Make sure
that the Document is a
correct person
document.

Make sure that the
name of the variable
specified here as input
matches the name of
the variable generated.

Internet
password

The users Internet
password.This
password is used
when accessing the
Domino Server via
internet protocols
such as HTTP,
POP3, LDAP or
IMAP.

Script Action: Set quota

Function

This action will set a limit on the size of a Lotus Notes database.

Deployment

This action is typically used to set quota's on a users mailbox.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

Registration
server

The name of the
server on which the
database is located.

 If not specified, the local
computer is used (local
meaning the computer that
executes the script).

Database
path/name

The path and
filename of the
database.

 If the property
Registration server is
specified, the database
path is relative to the
Domino data directory on
the server. Otherwise it
should be a fully qualified
path name.

Database
Quota

The Maximum size in
MB that the database
is allowed to grow to.

 When the value 0 is
specified, the database size
is not limited by means of a
quota.

Warning
threshold

The Warning
threshold in MB.

 A value of 0 implies that no
warning will be issued.

Script Action: Get quota

Function

This action will retrieve the quota and size information of a Lotus Notes
database.

Deployment

This action is typically used to get quota's from users mailbox.

Properties

UMRA Help

Property
Name

Description Typical
setting

Remarks

Database
filename

The name of the Lotus Notes
database file. If the Domino server
is running on the same computer as
UMRA, specify the file relative to
the Domino data directory, e.g.
mail\\john.nsf. If the database is
maintained on another computer,
specify (1) the Domino server name,
(2) separator !! followed by (3) the
database file path. Example:
Server/Domain!!mail\\Jonh.nsf.

Warning
threshold

The database size warning threshold
in kbytes. This is an output only
property.

Size limit The database size limit in kbytes.
This is an output only property.

Current size The current size of the database in
kbytes. This is an output only
property.

Script Action: Configure Out-Of-Office

Function

Configures the Lotus Notes Out-Of-Office settings of a Lotus Notes
person (user).

Deployment

Normally the Out-Of-Office settings are controlled by the user himself.
When the user is Out-Of-Office, he or she enables the Out-Of-Office
agent so that incoming mail messages initiate an automatic response. In
special circumstances, for instance when an employee leaves the
company, there might be a need to let other people configure Out-Of-
Office settings, or to configure Out-Of-Office automatically.

UMRA Help

This action assumes that the default Out-Of-Office agent of Lotus Notes
is used. The action either enables or disables the out-of-office functions
and can also be used to configure the Out-Of-Office parameters.

Properties

Property
Name

Description Typical setting Remarks

Mailbox
database

The mailbox
database of the
user for which
Out-Of-Office
settings are
configured.

%NotesDatabase% Use action Get
database to
initialize a variable
that represents the
mailbox database.

Enable/disable
Out-Of-Office

A flag to
either enable
or disable
Out-Of-Office
settings for t

Yes Specify 'Yes' to
enable and 'No' to
disable Out-Of-
Office. Even if 'No' is
specified, the other
properties can be
used to update
other Out-Of-Office
settings.

Person The
distinguished
name of the
person for
which Out-Of-
Office settings
are configured.
By default, this
is the owner of
the mailbox.

CN=John,
O=CompanyOrganization

This parameter is
required if Out-Of-
Office is enabled
and has never been
enabled in the past.

Leaving date The start time
and date of the
Out-Of-Office
period.

 The time of this date
and time
specification is
ignored.

UMRA Help

Returning
date

The end time of
the Out-Of-
Office period.

 The time of this date
and time
specification is
ignored.

Book
Busytime

Specify 'Yes' to
show in
his/here
calender that
the person is
unavailable in
the specified
period.

Message
subject

The subject of
the automatic
Out-Of-Office
response e-
mail.

Message
contents

The contents of
the automatic
Out-Of-Office
response e-
mail.

Script Action: Process all requests

Function

Signals the Lotes Notes adminp process to process all outstanding
requests

Deployment

Typically used in a script to speed up the processing of those actions that
result in adminp requests

Properties

UMRA Help

Property
Name

Description Typical
setting

Remarks

Registration
server

The name of the
server on which the
adminp process is
located that should
process all its
outstanding requests.

 If not specified, the local
computer is used (local
meaning the computer that
executes the script).

Remarks

Several Lotus Notes related script actions result in requests to the Lotus
Notes adminp process. This process starts processing these actions at
times that are configured in Lotus Notes itself. Often the frequency that
the adminp process checks for new actions is quite low, sometimes once
an hour or less. This action lets you force the adminp process to check
immediately for outstanding request, and process them if possible.

Script Action: Get database

Function

Connects to a Lotus Notes database, and creates a variable representing
the database.

Deployment

Typically used as as first step in the process of querying or altering the
database, or the documents it contains.

Properties

Property
Name

Description Typical setting Remarks

Registration
server

The name of the
server on which
the database is
located.

 If not specified, the local
computer is used (local
meaning the computer
that executes the script).

UMRA Help

Database
path

The path and
filename of the
database.

 If the property
Registration server is
specified, the database
path is relative to the
Domino data directory on
the server. Otherwise it
should be a fully qualified
path name.

Access
Directory
Service
Database

Use the Domino
Directory database
of the specified
server (Yes/No).

 If specified, the database
path setting is ignored,
and a connection to the
Domino directory on the
server is made (typically
this is the names.nfs
database on the server).

Database Variable
containing an
object that
represents the
connected Lotus
Notes database.

%NotesDatabase%

Script Action: Get databases

Function

List all databases and/or database templates at a given location.

Deployment

Typically used to get a list of available databases, in order to be able
select one on which further actions should be performed.

Use Script Action: Get Database on page 449 to start operations against a
particular database.

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Registration
server

The name of the server
on which the databases
are located.

 If not specified, the
local computer is
used (local meaning
the computer that
executes the script).

Specify the name of
the server as known
within the Lotus
Notes environment.

Databases
path

The path to the
directory containing
all the databases to
look for.

 optional

If the property
Registration
server is specified,
the database path is
relative to the
Domino data
directory on the
server. Otherwise it
must be a fully
qualified path
name.

If neither the path
nor the registration
server is specified,
the local Lotus
Notes data directory
is used.

Options -
Get all
databases

Specifies whether the
names of Lotus Notes
databases(*.ns?) must
be collected(Yes/No)

Options -
Get all
templates

Specifies whether the
names of database
templates(*.nt?) must
be collected(Yes/No)..

UMRA Help

Options -
Get all files
recursively

Get the files in the
specified directory and
subdirectories(Yes/No)...

 If this flag is not
specified, only files
in the specified
directory are listed.

Databases
table

output Variable
containing a table that
contains the names and
related information of
all found databases.

%DatabasesTable% For each found
database, there is
an entry in the
resulting table.

Format of the resulting databases table

The resulting table has a list of the found databases or database
templates. Each row of the table has the following information:

Column name Description

Registration server The name of the server on which the databases
is located.

Title The title of the database.

File name The file name of the database. for example
"names.nsf".

Physical Path The physical path to the database for example
"C:\program
files\lotus\domino\data\names.nsf.

Script Action: Get views

Function

Create a list of all Lotus Notes views available in a particular Lotus Notes
database.

UMRA Help

Deployment

Typically used to be able to select a view name, that later can be used in
Script Action: Get documents on page 456 to specify which items of the
documents should be retrieved.

Properties

Property
Name

Description Typical
setting

Remarks

Registration
server

The name of the
server on which the
databases are
located.

 If not specified, the local
computer is used (local
meaning the computer that
executes the script).

Specify the name of the
server as known within the
Lotus Notes environment.

Databases
path/name

The path to the
databases of
which the views
must be listed.

 If the path is relative, and a
server is specified, the
Domino data directory is
used as start folder. If no
server is specified, the Lotus
Notes data directory is used
as start folder.

If the database is located
elsewhere, use an full path.

Views table Output variable
containing a table
that contains the
names and related
information of all
found views in the
database.

%ViewTable% For each found view, there
is an entry in the resulting
table.

Format of the resulting databases table

The resulting table has a list of the found views in the specified
database. Each row of the table has the following information:

UMRA Help

Column name Description

Registration server

(column 0)

The name of the server on which the databases
is located.

Database path/name The path to the database that contains the
views.

View/Folder name The name of the view.

Alias An alternative name for the view for display
purposes.

Script Action: Get document

Function

Retrieves a reference to a Lotus Notes document from a database for
subsequent editing

Deployment

Typically used in a script that needs to modify the value of fields in a
particular arbitrary Lotus Notes document. To specify the new values for
fields in the document, use Script Action: Set items(s).

To modify fields in a person document it is more convenient to use Script

Action: Edit person on page 418

Properties

Property
Name

Description Typical setting Remarks

Database A variable
containing a
connected database
object.

%NotesDatabase% This variable is the
result of Script Action:
Get Database on page
449

UMRA Help

Document
Note ID

The Note Id of the
document to
retrieve.

%DocumentID% This variable is generally
the direct result of
Script Action: Search
document on page 464,

which is the
recommended way to
specify this value.

Aternatively, the Note
ID of the document can
be specified manually.
It can be found in the
document properties
dialog of the specific
document as shown for
example in the IBM
Domino administrator
program. The ID is
shown on the rightmost
tab of this dialog.

The value that should
be entered here is not
the entire ID, but only
the decimal value of the
last part of the ID.

For example, if the note
ID ends with
NT0000178A , the value
that should be entered
here is the decimal
value of the
hexadecimal number
178A, thus 6026

Notes
document

Output variable.

The resulting
reference to a Lotus
Notes document is
stored in the
specified variable.

%NotesDocument%

UMRA Help

Script Action: Get documents

Function

Creates a list of all Lotus Notes documents that exist in a particular view
or folder in the specified database.

Deployment

Typically used to obtain a list of all users in an organization, or
comparable overviews.

Properties

Property
Name

Description Typical setting Remarks

Registration
server

The name of the
server on which
the database is
located.

 If not specified, the local
computer is used (local
meaning the computer
that executes the script,
this).

Specify the name of the
server as known within
the Lotus Notes
environment.

Databases
path/name

The path to the
databases of
which the
Documents
must be listed.

 If the path is relative, and
a server is specified, the
Domino data directory is
used as start folder. If no
server is specified, the
Lotus Notes data directory
is used as start folder.

If the database is located
elsewhere, use an full
path.

View or
Folder
Name

 The name of the view or
folder inside the
Database. For example
'$Users' or 'People' or
'Server\Servers'.

UMRA Help

Documents
table

Output variable
containing a
table that
contains the
names and
related
information of all
found
Documents.

%DocumentsTable% For each found document,
there is an entry in the
resulting table.

Use one of the standard
Script Action: Manage
table data on page 528
options to access or
manage the contents of
the resulting table.

Format of the resulting databases table

The resulting table has a list of the found databases in the specified
database. Each row of the table has the following information:

Column number Column name Description

0 Document Note ID The Lotus Notes ID of the
document. This is the value that
can be used in a Script Action: Get
document on page 454 to access
the specific document.

1 Registration server

The name of the server on which
the databases is located.

2 Database path/name The path to the database that
contains the views.

3 View/Folder name The name of the view.

4

5

...

<names by Lotus
Notes>

A variable number of columns
that are defined in the specific
Lotus Notes view itself.

UMRA Help

Script Action: Create document

Function

Creates a new Lotus Notes document at the specified location in the
Lotus Notes database.

Returns a reference to the just created Lotus Notes document to allow
subsequent editing.

Deployment

Typically used in a script that needs to create new Lotus Notes
documents. To specify the values for fields in the document, use Script
Action: Set items(s) afterwards.

To create a person document that should represent a valid registered
Lotus Notes user use Script Action: Register person on page 396 instead.

Properties

Property
Name

Description Typical setting Remarks

Database A variable
containing a
connected database
object.

%NotesDatabase% This variable is the
result of Script Action:
Get Database on page
449

Form
Name

The name of the
Lotus Notes Form
used for the new
document.

 If not specified the
default form of the
database will be used.
The form defines for
instance which fields
(items) can be used for
the document and their
default values.

Folder
Name

The name of the
folder where the
document should
be created.

 This is a virtual "folder"
inside the Lotus Notes
database, not a folder
on the file system

UMRA Help

Copy Note
document

A reference to a
existing note
document.

%SourceDocument% Optional argument. If
specified, the new
document is a copy of
the existing document

The required reference
to the source document
can be retrieved by
using for example Script
Action: Get document
on page 454.

Note
document

Output variable.

The resulting
reference to the
created Notes
document is stored
in the specified
variable.

%NoteDocument%

Script Action: Copy document

Function

Copies an existing Lotus Notes document from one database to another
Lotus Notes database. Returns the ID of the new copy of the document.

Deployment

Typically used in a script to copy documents between Lotus Notes
databases.

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Source
database

A variable
containing a
connected
database object.
The database must
contain the
document to be
copied, identified
by property
NotesID.

%NotesDatabase% This variable is the
result of Script
Action: Get
Database on page
449

Destination
database

A variable
containing a
connected
database object.
The document is
copied and stored
in this database.

%DestinationDatabase% This variable is the
result of Script
Action: Get
Database on page
449

NotesID The ID of the
document to copy.
The ID is the result
of UMRA Lotus
Notes action
'Search
documents'.
Example: 5318.

 The document must
exist in the Lotus
Notes database that
is specified with
property Source
database.

Result
NotesID

The resulting ID of
the copy of the
document. This is
an output only
property.

%CopyNotesID%

Script Action: Delete document

Function

Deletes the specified document from its database

UMRA Help

Deployment

Used to delete a document from a Lotus Notes database. This is a low
level action, so do not use this to delete for instance a registered user.
To delete a user use Script Action: Delete person on page 432 instead.

Properties

Property
Name

Description Typical setting Remarks

Notes
document

reference to the
Lotus Notes
document that
should be deleted.

%NotesDocument% The required reference
to the document can be
retrieved by using for
example Script Action:
Get document on page
454.

Important: After this
script action the
reference to the
document is no longer
valid, so the variable
should not be used
anymore further in the
script.

Notes
database

A data structure
representing the
Lotus Notes database
that contains the
note. Specify either
this property and
property 'Note ID' or
specify single 'Notes
document'.

 See remarks

UMRA Help

Note ID The NoteID of the
note that must be
deleted. Specify
either this property
and property 'Notes
database' or specify
single property
'Notes document'.

 See remarks

Remarks

To delete a document, the input of this action can be specified in 2 ways:

1. Notes document
By using script action Get document, the required reference is
obtained. In this case, the properties Notes database and Note ID
should not be specified.

2. Notes database and Note ID

If the Notes document variable is not available this method can be
used. In this case, the property Notes document should not be
used. The property Notes database property can be obtained using
action Get database. The Note ID can be obtained in various ways.

Script Action: Get item

Function

Retrieves the current contents of a specific item (field) of a Lotus Notes
document

Properties

Property
Name

Description Typical setting Remarks

UMRA Help

Notes
document

reference to the
Lotus Notes
document that
should be deleted.

%NotesDocument% The required reference
to the document can be
retreived by using for
example Script Action:
Get document on page
454.

Item name The name of the item
of the document

Item type The type of the value
of the item

 The value read from the
Lotus Notes document
is converted to the
specified type. If the
conversion is not
possible , an error can
be generated. If the
property is not specified
a default conversion
method is used.

Error if not
found

Generate an error if
the specified item is
not found in the
document

YES

Error if
conversion
fails

Generate an error if
the conversion fails

YES If NO, the item value is
converted to the best
fitting type if possible.
This may give errors
further in the script if a
specific type is required
in an other action.

Item value
Variable

Generate an error if
the specified item is
not found in the
document

YES Output only.

This variable will
contain the value of the
item.

UMRA Help

Script Action: Get item size

Function

Retrieves the size in bytes of a specific item of a Lotus Notes document.

Deployment

Typically used to determine the size of an item to check if the maximum
size (32k or 64k bytes) is not exceeded if the item is updated.

Properties

Property
Name

Description Typical setting

Document A data structure representing the Lotus
Notes document that contains the item
for which the value size must be
determined. The property is initialized
with Lotus Notes action 'Get document'.

%NotesDocument%

Item The name of the Lotus Notes
document item of which the size
must be determined. The size of the
item is stored in bytes. Example:
Department

Item size The name of the variable in which the
size of the Lotus Notes document item
is stored. The size is stored in bytes.
This property is an 'output only'
property.

%ItemSize% (output)

Script Action: Search documents

Function

Searches for documents in a specified Lotus Notes database that match
certain criteria. It returns a list of Note ID's of the documents that
satisfy the criteria.

UMRA Help

Deployment

Typically used to retrieve the Note ID of a particular document that must
be modified. The retrieved Document ID is subsequently used in Script

Action: Get document on page 454 to get a reference to the document
which is needed in actions to modify it.

Properties

Propert
y Name

Descriptio
n

Typical setting Remarks

Database A variable
containing a
connected
database
object which
must be
searched.

%NotesDatabase% This variable is the result of
Script Action: Get Database on
page 449

Search
formula

The formula
that defines
the search
criteria.

 Example:
@LowerCase(Lastname)="smith
".

Begin
date-time

Documents
last
modified
before the
specified
data-time
value are
ignored.

 If not specified this criterion is
not used (no documents are
excluded)

If specified in a variable, the
variable must by of the UMRA
date-time type, not a text
variable.

UMRA Help

End date-
time

Documents
last
modified
after the
specified
data-time
value are
ignored.

 If not specified this criterion is
not used (no documents are
excluded)

If specified in a variable, the
variable must by of the UMRA
date-time type, not a text
variable.

Maximum
Count

Output
variable.

Maximum
number of
document
ID's to
return.

not specified If not specified, all documents
are returned.

Documen
t Result
table

Output
variable.

A table
containing
the list of
Note ID's of
the matching
documents.

%DocumentIDTable
%

The table holds a single column
called "DocumentID".

Script Action: Query Document Items

Function

Searches for documents in a specified Lotus Notes database that match
certain criteria. It returns a table containing the value of items from the
documents that satisfy the criteria. Each document that satisfies the
criteria corresponds with a row in the table. The Items that are returned
for each document are configured in this script action

Deployment

Typically used to do a query to a Lotes Notes database, and put the the
results in a table. It is very similar to the action Script Action: Get

UMRA Help

documents on page 456. The difference is that that action uses an
predefined view in the database, and this action uses a general query.

Properties

Property
Name

Description Typical
setting

Remarks

Database
Variable

This variable
contains a
connected
database object.

This database
contains the
documents that
are queried.

 This variable is the result of
Script Action: Get Database on
page 449.

Output
table
Variable

The name of the
variable that
contains the
resulting table

%ItemTable% Required, output only

For each found document, there
is a row in the resulting table; for
each item in the item list, there is
a corresponding column with the
value of that item. The items
names from the Item list are
copied to the column headers.

Use one of the standard Script
Action: Manage table data on
page 528 options to access or
manage the contents of the
resulting table.

Search
formula

The formula that
defines the
search criteria.

 Example:
@LowerCase(Lastname)="smith".

UMRA Help

Documents
items

A list of Items
whose values will
be stored in the
resulting table

 For each item in the item list,
there is column with the value of
that item in the resulting table.

The fist Item is always the NoteID
of the document.

For each item can be specified
what should be done if it does
not found in the document

Script Action: Sign/Unsign document

Function

Signs or unsigns the specified document. The Lotus Notes Account on
whose behalf the signing occurs, is the account specified in the notes.ini
file used for the complete Notes session .

Deployment

For instance used to create documents that are used by processes that
require signed document, or in order to alter certain fields of documents
that are signed.

Properties

Property
Name

Description Typical setting Remarks

Notes
document

A reference to the
Lotus Notes
document to handle

%NotesDocument% The required reference
to the document can be
retrieved by using for
example Script Action:
Get document on page
454.

UMRA Help

Sign
Document

Signs the
document(Yes/No)

 When a document is
signed this guaranties to
other users that those
document items(fields)
that have the "signed"
property, are not altered
after the signing of the
document.

Some processes that
read Documents may
require a document to
be signed before they
consider it valid, for
reasons of security.

Unsign
Document

Unsigns the
document(Yes/No)

 Removes a signature
from a document. This is
required before items of
the document Fields
that have the "signed"
property can be
modified.

Script Action: Set item(s)

Function

Creates or modifies values of specified Document fields (note items).

Deployment

Used to programmatically edit a document. General action to edit
existing (or just created) documents in a Lotus Notes database.

When there is a specialized script action available for the document you
want to modify, you are strongly advised to use that one instead. For
instance, to edit person documents, use Script Action: Edit person on page
418 instead. The "Set item(s)" action is a very general document
modification action. It is able to create or modify virtually any field of
any document. Due to its general nature however, the action cannot

UMRA Help

and does not generally check whether the resulting document is fit for
any particular purpose. It is the responsibility of the script designer to
specify the correct fields that result in a valid Lotus Notes document.

See Lotus Notes example projects (on page 54) for an example project that
uses this action.

Properties

Property
name

Description Typical setting Remarks

Notes
Document

A variable
containing a
reference to a Lotus
Notes Docuemnt

%NotesDocument% This variable is typically
the result of Script
Action: Get document on
page 454

Number of
document
items

This Property
represents a list of
items, each item
containing a
command to set
or modify a
specific field of
the Document.

Value is specified
by creating the list
of items in the
action dialog

See Item Properties
below for the possible
settings and options for
each item.

Item properties

Item
property
name

Description Typical
setting

Remarks

General: Item
name

The name of the
field to create of
modify

UMRA Help

General: Item
Type

The value-type
of the field. (text,
text list, date-
time, numeric
etc.)

text

General:
Options

Specifies what to
do if there
already is a field
with the
specified item
name in the
current
document

 Possible options:

 Error if exist. The
entire script action
will not be
performed and and
an error will be
generated, if any of
the fields with this
setting already exist
in the document

 Delete existing first.
If the current
document already
contains this field,
the entire field is
removed before the
new field is added.

 Append if exist. The
new value will be
merged with the
existing value as
specified in the
value options. If
there are no special
options, the value
will be appended at
the end of the
current one.

UMRA Help

General: Item
creation flags

Several flags that
determine
specific Lotus
Notes setting
regarding the
field

 Possible options:

 sign

 encrypted

 protected

 names

 readers

 readers-writers

 placeholder

 summary

 auto-summary

 unchanged

Value: The value that
the field should
get

 Dependent on the Item
type there may be special
options. see below.

Item property: Item creation flags

Sign: Items where this flag is set will be sealed when the document is
signed, for instance with Script Action: Sign document on page 468.

Encrypted: Items where this flag is set will be encrypted, when the
document itself is encrypted. Fields without this flag will not be
encrypted.

Protected: Editor access is required to change the item.

Names: The item is a text field that contains a list of users or groups.
often used together with the "readers" or "Authors" option.

Readers: The item is a item containing a list of readers, used for access
control. The "names" option must also be specified if this option is
specified.

Authors: The item is a item containing a list of authors, used for access
control. the "names" option must also be specified if this option is
specified.

Placeholder: The item is a placeholder field.

UMRA Help

Summary: The item added to the document, and is also placed in the
summary buffer of Lotus Notes. This is required for the item to be visible
in any view. If the item is larger than 32 k it does not fit in the summary
buffer and an error is generated. Use this setting if it is required that the
particular field is always visible in views, or if you need to know that it
cannot be shown. Your UMRA script may then react on the error
situation either by making sure that the value is smaller than 32 k, add it
without this flag, or perform some other required action. Only specify
this flag if you really need to know if an item does not fit.

Auto-summary: The item is added to Lotus Lotus Notes, and if it is
smaller then 32 k it is also placed in the summary buffer which is
required for it to be visible in any view. No error is reported if it is larger
than 32 k. By default this is on. If you require a notification if an item
does not fit, used the "summary" instead.

Item Value

The value of an item is specified in on the value tab. The available
options depend on the specified Item Type on the general tab.

Item type: Text

Value property
name Description Typical

setting
Remarks

Text The exact text value of the
resulting field.

 If the
general
option
"Merge if
exist" is
specified
the text is
appended
to the
existing
value of
the item.

UMRA Help

Item type: Text List

Value property
name

Description Typical
setting

Remarks

Operations Specification how to
merge the new text values
with the current one.
Options are:

Set (unconditionally
replace existing values
with specified values)

Append values(s)

Insert value(s) at begin

Remove (no error if not
found)

Remove (error if not
found)

Set

Text item values A list of new text values.

Item type: Date-time

UMRA Help

Value property
name

Description Typical
setting

Remarks

Date time value
specification

The date-time value to set
the field to

 if Specified
by a
variable, it
should be a
UMRA
Date-time
type
variable.

Date time
operation

Specifies how to merge the
item with existing values.
There are 3 options.

1) Set item value to the
specified date-time value.

This results in a single
date-time as specified

2) Append the specified
date-time value to the
current values

Any existing list of date-
time values is extended
with the new value.

3) Insert the specified
date-time value at the
beginning of the current
list of date-time values.

Any existing list of data-
time values is retained,
and the new value is
added in front of the
current values.

UMRA Help

Item type: Numeric

Value
property
name

Description Typical
setting

Remarks

Number value
specification

The numeric value to set
the field to

 if specified
by means
of a
variable,
the result
must be
resolvable
to a
numeric
value. If a
variable is
used it is
therefore
best to
specify only
a single
UMRA
variable of
the
numeric
type.

UMRA Help

Number
operation

Specifies how to merge the
item with existing values.
There are 3 options.

1) Set item value to the
specified number value.
(default)

2) Append the specified
numeric value to the
current values

Any existing list of numeric
values is extended with the
new value.

3) Insert the specified
numiric value at the
beginning of the current list
of numeric values.

Any existing list of numeric
values is retained, and the
new value is added in front
of the current values.

Script Action: Delete Item

Function

Deletes specified Document field (note item) from a document

Deployment

Used to edit a document.

Properties

UMRA Help

Property
name

Description Typical setting Remarks

Notes
Document

A variable
containing a
reference to the
Lotus Notes
document to edit.

%NotesDatabase% This variable is typically
the result of Script
Action: Get document on
page 454

Item name The name of the
field to delete

Script Action: Update profile document

Function

Sets the text, text list, or numerical value of an item of a Lotus Notes
profile document.

Deployment

Profile documents are typically used to store application and user
preference data in order to facilitate personalization. These documents
are like typical Domino database documents, except they are excluded
from the database document count and are cached when the database
is opened. This action updates a specific text item of a Lotus Notes
profile document. The action cannot be used to update other types of
data.

See Lotus Notes example projects (on page 54) for an example project that
uses this action.

Properties

UMRA Help

Property
Name

Description Typical setting Remarks

Database A data structure
representing the
Lotus Notes database
that contains the
profile document.
The property is
initialized with Lotus
Notes action 'Get
database'.

%NotesDocument% The required
reference to the
database can be
retrieved by using
Script Action: Get
Database on page
449.

Profile name The name of the
profile document to
be updated.
Example:
'CalendarProfile'.

Field name The name of the field
of which the value
must be updated.

 To set the value of a
profile document
item, the Field name
must be specified. If
the Field name is
not specified, the
document will be
signed if the Sign
flag is set.

UMRA Help

Field value The new value of the
specified profiled
document field.

 Lotus Notes supports
various types of
profile field item
values. By default and
for most fields, text
values are used. See
the Remarks section
for other supported
types and how to
specify these types.
When the value
[*delete*] is
specified, the field
value is not stored but
the field itself is
deleted from the
profile document.

Field item
flags

Optional: The flags
that define the
characteristics of the
field item. Add the
following numbers to
determine the exact
value: 1=sign, 2=seal,
4=summary,
32=readwriters,
64=names,
256=placeholder,
512=protected,
1024=readers,
4096=unchanged.

 Example: to set the
flags 'sign' and
'summary', specify a
value of 1 + 4 = 5.

Sign flag Optional: Specify
'Yes' to sign the
profile document
when changes are
applied.

 See the Remarks
section for additional
information on
signing profile
document without
updating item fields.

UMRA Help

Signature
time field

Optional: Specify the
name of the field
that should contain
the date and time of
the signature of the
profile document.

[not specified]

or

SignatureTime

In most cases, this
field is not specified.
See the Remarks
section for more
information.

Remarks

By default, the values set are text values (single item text values). It is
also possible to specify the value as a Lotus Notes number value and a
Lotus Notes text list value. To do so, in UMRA, specify a variable for the

Field value with the corresponding type, as shown in the following table.

Lotus Notes field
item value type

UMRA variable type Example Field value
specification

TYPE_TEXT
(simple text, default
type)

Field value specified as
text -or-
Field value specified
using a variable of all
types not used for

Archived Emails
%ArchivedEmailsProfileName%

TYPE_NUMBER
(numeric value)

Field value specified as
a single variable of
UMRA type numeric

%Number5%

TYPE_TEXT_LIST
(array of text values)

Field value specified as
a single variable of
UMRA type text list

%ArchivePrivatePolicyList%

Delete profile document item field

To delete an item from the profile document, specified field value
[*delete*]. This will delete the specified item from the profile
document.

UMRA Help

Sign a profile document

To sign a profile document without changing any of the profile
document item fields, do not specify a Field name. Set the Sign flag to
Yes. This will sign the profile document.

Signature time field

For typical profile documents, it is required to add a field to the profile
document that contains the date and time of the signature of the profile
document. An example is the archive profile document, part of the
user's mail database. To support this function, set the Sign flag to Yes,
e.g. sign the document and specify the name of the field that must
contain the time and date of the signature. When the document is
signed, the date and time value is retrieved from the document and
added to the document. If the Sign flag is not specified or set to No, this
field has no effect.

Example

This action is used to specify the archive settings of a Lotus Notes
database. In the Domino administrator, this corresponds with the
following action: Select a Lotus Notes database (.nsf file), right click and
select Properties. Click Archive Settings and select Advanced. Check the
option: Log all archiving activity into a log database and specify the
database. To use the UMRA action Update profile document to do the
same, specify the following properties.

Property Name Value Example

Database The UMRA variable obtained
with action 'Get database' to
access the Lotus Notes
database.

%NotesDatabase%

Profile name archive profile archive profile

Field name ArchiveLogDBPath ArchiveLogDBPath

Field value The name of the log database. archive\log_user123.nsf

UMRA Help

Field item flags 5 5

Sign flag Yes Yes

Script Action: Update ACL

Function

Creates or modifies an Access Control Entry in the Access Contol List of a
Notes Database

Deployment

Used to edit the allowed access of a specific person to a Notes Database.

Properties

Property
name

Description Typical setting Remarks

Database
variable

A variable that
contains the
database of
which the access
should be
modified.

 This variable is the
result of Script
Action: Get
Database on page
449

ACE name The name of the
Lotus Notes user
for which the
security is
modified, for
instance the
short name of
the user.

 Only one user can
be specified. To
change the access
for more users, use
this action more
times in the UMRA
script with different
users. The user
must be specified
using the following
notation:

CN=name/O=org

UMRA Help

Update the
ACE

If selected, the
ACE will be
created or
modified
according to the
specifications

 the security for the
user will be set
according to the
specifications

Delete the
ACE

If selected, the
ACE will be
removed from
the ACL

 The specific
security settings for
the user will be
removed from the
ACL. The user may
still have access
due to group
memberships.

User Type The type of user
represented by
the ACE naonme

A choice of

 Person

 Server

 Mixed group

 Person group

 server group

 unspecified

This is mainly used
for display
purposes

Access The main
access category
of the user

A choice of

 Manager

 Designer

 Editor

 Author

 Reader

 Depositor

 No Access

UMRA Help

Privileges De detail level
privileges

A combination of

 Create documents

 Delete documents

 Create private
agents

 Create personal
folders/views

 Create shared
folders/views

 create
LotusScript/Java
agents

 Read public
documents

 Write public
documents

 Replicate of copy
documents

Depending on the
access category,
some privileges are
preset.

Script Action: Execute agent script

Function

Creates, compiles, executes and deletes a Lotus Notes agent in an
existing Lotus Notes database. The agent consists of an configurable
Lotus Notes script. The action uses an existing database and executes
the following procedure:

1. Create an agent in the database. The action specifies the name of
the agent. Before the agent is created a new temporary Lotus
Notes document is created to hold the agent;

2. The Lotus script of the agent is set. The Lotus script text is
completely configurable and specified by the UMRA action. Next,
the script is 'compiled' in Lotus Notes. The result is stored in the
agent and ready for execution. The target document(s) of the agent
must be specified and accessed as part of the Lotus script.

3. The agent is executed (optional).

4. The agent and the Notes document that holds the agent are
deleted (optional)

UMRA Help

Deployment

Typically used to execute Lotus Notes tasks that can run only as Lotus
script in Lotus Notes agents. The action can be used for instance to
execute certain tasks by using the administration process database. The
administration process is used in a lot of confirmation operations, for
example to confirm the deletion of a user's mail file when the user is
deleted. Once the administration request to confirm the mail file
deletion exists, the request must be confirmed to complete the
operation and delete the mail file. This must be done manually by an
administrator. To automate this process, an agent can be created in the
administration process database. The agent contains Lotus script code
and selects the request document and confirms the request using a
script library of the administration process database. The UMRA project
to execute this procedure can be found at .\Example
Projects\LotusNotes\LotusNotesApproveMailfileDeletion.xml.

Properties

Property
Name

Description Typical setting

Database A data structure representing the Lotus
Notes database that is used to execute
the agent.

%NotesDatabase%

Agent name The name of the temporary agent
Lotus Notes agent. Example: UMRA
Lotus Notes agent. The name does
not have to be unique.

Agent script The Lotus script of the agent. The Lotus
script text is immediately executed
when the agent is executed. The script
itself should select the appropriate
Lotus Notes database documents.

Agent
comment

A free text describing the agent.

UMRA Help

Run agent
flag

Optional: A flag indicating if the agent
should be executed immediately when
created. If not specified, the agent is
executed when created. If set to 'No'
the agent is created but not executed.

Delete agent
flag

Optional: A flag indicating if the agent
should be deleted when created and
(optionally) executed. If not specified,
the agent is deleted. If set to 'No' the
agent is not deleted.

Note ID Optional: An output value, the NoteID
of the note that holds the created
agent. This property is an 'output only'
property and is generated
automatically. This property is to be
used in other script actions. Store this
value in a variable in order for instance
to be able to delete the agent.

%AgentNoteID%

Example script

The following script contains the Lotus script code of the example
project. In UMRA, the variable %NoteID% refers to the administration
process request document to confirm the deletion of a mail file. The
syntax of the %NoteID% variable is as specified by Lotus Notes, for
example: 00001E40. (eight characters, hexadecimal notation with
leading zero's).

Option Public
Option Declare
%INCLUDE "lsconst.lss"
%INCLUDE "lsxbeerr.lss"
%INCLUDE "lserr.lss"
Use "AdminRequestLib"

Sub Initialize
Set s = New NotesSession
Set db = s.CurrentDatabase
Dim doc As NotesDocument

UMRA Help

Set doc = db.GetDocumentByID("%NoteID%")
If Not(doc Is Nothing) Then
Call ApproveRequest(doc)
End If
End Sub

The agent creates a notes session s and selects the request document
doc by specifying the ID of the document. Once found,then the
subroutine ApproveRequest of database library "AdminRequestLib" is
called.

4.3.8. SAP actions

UMRA supports over 30 actions to manage the SAP environment,
accounts and related resources. To configure UMRA to support the
UMRA SAP actions, see UMRA and SAP. For more information on the
individual actions, you are referred to the descriptions of the action and
action attributes.

SAP actions

UMRA supports over 30 actions to manage the SAP environment,
accounts and related resources. To configure UMRA to support the
UMRA SAP actions, see UMRA and SAP. For more information on the
individual actions, you are referred to the descriptions of the action and
action attributes.

4.3.9. TOPdesk

TOPdesk is a help desk system with the ability to manage incidents at
several levels. Connect incidents to users, sites etc. UMRA supports
TOPdesk thru its URL interface. This means that UMRA can do anything
in TOPdesk, which can be done thru the url interface. The URLs send to
TOPdesk are described in a PDF document which can be requested from
the TOPdesk support desk. The URLs are created and modified by
several UMRA actions. UMRA has also an 'TOPdesk Invoke action URL'

UMRA Help

action to send the URL to TOPdesk. This is sophisticated action which
can

perform HTML analysis to catch error messages and fetch TOPdesk IDs.

Some URLs are much used (For example to create an incident.), those
URLs have special actions in UMRA.

The following URLs have special actions in UMRA:

 * Create incident.

 * Create Person

 * Create Site

The URL objects generated by this action can be modified by the normal
TOPdesk UMRA actions to add change or remove fields. The generated
URL object can be invoked by the 'TOPdesk Invoke action URL' action,
like any TOPdesk URL object.

also UMRA provides the following actions to retrieve information from
the TOPdesk system:

 * Get Person

 * Get Incident

 * Get Persons

 * Get Unid

 * Get Unid list

Those actions do not generate an URL object, but just a table or other
output variable.

UMRA Help

The passwords used in the URLs are never shown in the logs. Make sure
the connection to TOPdesk is using https, because the passwords are
part of the URL and therefor not encrypted when send to TOPdesk. If
https is not used those URLs can easily be monitored. By using https this
monitoring is not possible.

The debug option should only be used when instructed to do so by a
Tools4ever employee. The debug option will generate lots of extra log
information. However passwords are still not logged.

4.3.10. Education

UMRA supports a number of connectors for educational systems. For
each of these systems, a collection of UMRA actions is available. Each
action implements a specific task for the system. The connectors
consists of the specific UMRA actions for the system.

Aura

Aura is a Dutch company that offers library software that is primarily
used in schools. The UMRA connector for Aura integrates the student
information system, for instance Magister, @VO or nOISe, with the Aura
software. Changes in the student information system are automatically
propagated to Aura.

To setup the UMRA connector for UMRA, see Aura connector installation
for more information.

Aura actions

Aura Setup connection

Use this action to build a connection to the UMRA-Aura-Webservice

component. Provide a PowerShell session, so the connection can be
used by following Aura actions.

Aura Initiate all users

When first installed UMRA is not able to modify existing Aura users.
Every existing Aura user has to be initialized first. Use the action 'Aura

UMRA Help

Initiate all users' to enable modification of existing Aura users. Users
created by UMRA do not have to be initialized.

Aura Get Users

This action retrieves all users and all their properties from the Aura
system. Users not initialized and not created by UMRA are also included.

Aura Create User

To create a new user in the Aura system, this action must be used.
Depending on the setting of the 'PasnummerIsLenersCode' key in the
web.config file of the UMRA-Aura-Webservice the rental code will be
used or ignored. If the card number is set to be equal to the rental code,
the value of the rental code will be ignored by Aura.

Aura Get user exists

Checks if the specified user exists in the Aura system. Aura uses the 'card
number' for identification of users. This should be the same as the
student id in the student administration system.

Aura Edit user

To update existing user, this action must be used. The card number
identifies the user in Aura. Empty values will not be changed.

Aura Delete user attribute

This action clears an attribute from an Aura user.

Aura Get user info

To retrieve all information from an existing Aura user. (Only UMRA
created or initialized users.)

UMRA Help

N@tSchool

he UMRA N@TSchool connection is a very advanced connector based on
SOAP. The SOAP webservice is part of the N@tSchool software and no
special requirements to setup the connector apply. The UMRA
Powershell Agent service is used to access the webservice.

To create a fast and reliable connection a caching system is build into
this connector. To use the advantages of this caching mechanism, the
order of execution of the actions is important (although for stability the
order has no consequences). A few understandings of how N@TSchool
works, will make the implementation of the actions easier.

Containers

N@TSchool users are divided in containers. Those containers are the
groups at the highest level in the N@TSchool interface. Because loading
items from a container is time-consuming the containers that UMRA is
operating on, can be limited. It is possible to exclude specific containers
or just to include only a few. When excluding containers, all other
containers (including containers created at a later point) will be included
in the search. When including containers, only those containers will be
included in the search operations. Containers that are created later have
to be included explicitly. Excluded containers take priority over included
containers. So if an included container is later on excluded by the

N@TSchool exclude root containers action, this container will not be
included. The special containers Everyone, Users and Administrators will
not be included in searches. The result of the include and exclude root
container actions will be called the container set. To retrieve the id's of
the containers check the UMRA log. The id's are send to the log when
the N@TSchool Setup connection action is executed.

Caching

UMRA Help

To improve performance of the N@TSchool connector a caching
mechanism is implemented. Understanding of this mechanism is
important to get the best performance of the N@TSchool actions.

There are 3 caches.

1. User cache: This cache contains all the user, group and membership
information of all the included containers, without the excluded
containers.

2. Changes cache: This cache contains all the modifications UMRA has to
make.

3. User name cache: This cache contains all the user names of all
N@TSchool users in all containers.

When creating a connection, all user names are loaded by a background
thread into a cache. This cache is used when the N@TSchool Get user

name available action is run. Because this cache is filled by a background
thread, the N@TSchool Setup connection action will return immediately.
As soon as this cache is used, the action will wait utill it’s filled.
Therefore it can be wise to create a N@TSchool connection as soon as
possible in the UMRA script and first perform all other tasks before
calling the N@TSchool Get user name available action.

When requesting user information (for example by the action
N@TSchool Get all users), the user is looked up in the changes cache and
all containers in the 'container set'. When the users in a container set
are not yet loaded in the cache, the users are requested from
N@TSchool and saved to the cache. After the cache is filled the
requested information is retrieved from the cache and send back to
UMRA. Therefore the first time a single user is looked up, the whole
container cache is filled, till the user is found. If the user does not exists,
this can take some time. The next call however will return immediately.
When the members of a group are requested the whole container set is
scanned for members and every container is loaded in cache if not
already done so.

UMRA Help

When users, groups and/or memberships are created, removed,
changed, these changes are recorded in the changes cache. As soon as
the N@TSchool Process changes request is called, all the changes are
send to N@TSchool and all the caches are cleared, also the user name
cache will be reloaded in background. Therefore It’s wise to perform a
N@TSchool Get user name available as late as possible after a
N@TSchool Process changes. Also do not perform a N@TSchool Process

changes after every modification but for example after 20 modifications.
A modification will just update the changes cache and reload the user
cache. Therefore those actions will not take long to process even if the
caches are empty.

Process changes

Because all modifications are saved to a cache, the actions to perform
those modifications will not return an error in case of an illegal
modification, because the modification is not yet performed. The
N@TSchool Process changes will send back reporting variables. Use
those to check if ALL modifications are processed correctly.

TeleTOP

TeleTOP is a LMS (Learning Management System) used by a large
number of dutch schools. With the TeleTOP actions in UMRA it is
possible to create users and courses inside TeleTOP.

The connection is SOAP based. TeleTOP can be configured to use https,
this is the preferred configuration for the UMRA connector. HTTP
connections will work, but are not supported by Tools4ever. The data
communicated with TeleTOP is sensitive and therefor HTTPS should be
used.

If https is not enabled in TeleTOP, request the TeleTOP support desk to
enable https. After https support is enabled by TeleTOP change the
TeleTOP configuration to enable https.

UMRA Help

Open the Learning Management System (LMS) in TeleTOP. Use the URL
that shows in your browser of the TeleTOP Learning Management
System as the value for the TeleTOP system in the 'TeleTOP Setup
connection' action.

Users and courses

TeleTOP exists of users and courses. A course holds study materials
(such as readers and other interesting stuff.) UMRA does not maintain
the contents of a course, teachers do. In TeleTOP any user can be a
teacher in any course. Teacher or student is just the role a user has in a
course. So from a user account perspective there is no difference
between a student and a teacher, but from a course perspective there
is. When adding users to a course the role has to be specified. The role
defines whether a user is a teacher, student or a guest in the course.
Depending on the role in the course (Teacher, Student, Guest) the user
has rights in a course. The rights of every role are influenced by the
overall TeleTOP settings as well as by the course settings.

Courses

Courses are assigned to a year. In TeleTOP years are defined as a system
variable named 'Years'. Courses cannot be assigned to a year that does
not exists in the system variable 'Years'. In the current version of
TeleTOP it is not possible to set or change the year of the course.
Courses are always created in the current year. Therefore the system
variable 'Years' must contain a value for the current year. The values of
the 'Years' variable are specified in the form 'label|YY'. The label
normally is the 4 digit year, but can be anything. After the pipe a 2 digit
year code must be specified. For example, to be able to create courses in
the year 2010, the system variable 'Years' must contain a value
'2010|10'. The system variable 'Years' cannot be managed by UMRA.
Use the web interface to manage this variable. A course can have 3 extra
properties known as course keys. The values of those properties are
multi-valued. Mostly the interpretation is hierarchical, although it is not
mandatory to interpret them as hierarchical values. For example the
value of 'coursekey2' is mostly a subvalue of 'coursekey1'. So if
'coursekey1' contains the name of the school, 'coursekey2' could contain

UMRA Help

the other (for example, informatica). This can be handy to filter courses
for a school or differentiation. Course keys are, just like years, system
variables. Unlike years, course keys can be created and removed by
UMRA. Also UMRA can add course key settings to, or remove course key
settings from a course. Note: After creating a course, it will take a while
before the web-pages of the course, through which teachers manage
the course materials and students log-in, are available. Depending on
the internal system settings at the TeleTOP location, it will take up a day,
bust mostly a few minutes, before the web-interface is available. Note:
Courses are, currently, limited to hold only 800 users. Although older
courses may have already more as 800 users assigned, TeleTOP will not
return the members of courses with 800+ users. See preparations for a
work around.

Users

Users can be created, edited and disabled by UMRA, but not removed.
Users are identified by their 'User ID'. This value must be unique for
every user in the TeleTOP environment. Users can have a role in the
system such as 'Teacher', 'HelpDesk', 'Administrator', 'Student' etc.
Those roles have no influence on the role of an user within a course
(except for 'Administrator'). UMRA can specify the role when creating a
user, or modify roles of existing users. An user can have only one
system-wide role. Like courses, users have 3 userkeys. Those keys are
defined as System variables. The userkeys can have multiple values.
There is also a 4th user key named usergroup. This key can have only
one value and is mostly used to identify the class of a user, although it is
not enforced to do so. The usergroup is also defined by a system
variable. In umra it is possible to add keys to a user. When the usergroup
is specified in the 'TeleTOP User check key' action, the value specified for
the key will overwrite any existing value for this key in the specified user.
To disable a user use the 'TeleTOP Edit user' action and set the 'Disable'
property to 'Yes'. It is advised to add a special key to the user when it is
being disabled to easily filter on users disabled by UMRA when users are
retrieved from the TeleTOP environment by retrieving the members of a
course. Because current limitations in the TeleTOP API, UMRA only
retrieves the 'User ID' of the members. Therefor UMRA has to do an
extra call per user to retrieve the other details. To retrieve the keys
assigned to the user an extra call has to be done per user. This makes

UMRA Help

the process slow. However, when TeleTOP is the target environment,
user information is mostly not used, just overwritten with new data.
Therefor the retrieval of the user and key data is optional to speed up
synchronization scripts.

User and course keys

User keys and course keys are cached in a Tools4ever Powershell Agent
session. This means, when a user key is used in the session, its internal
ID is cached by UMRA. When a user key is removed and recreated with
the same name thru the web interface, while the Tools4ever Powershell
Agent session is still open, the cache will not know of this manual
change and the user or course key will not be properly functioning util
the Tools4ever Powershell Agent session is recreated.

Through the web-interface, user and course keys of the same type and
with the same name are allowed to be created. However it is not
possible to see the difference between those 2 keys when assigning
them to a course or user, or when they are used in a filter. Therefor
UMRA will not allow the creation of keys of the same type with the same
name. When assigning existing keys to a user or course, UMRA will
choose the first one it encounters with the given name of the given type.

System variables

System variables can be set through the 'Administration' section in the
LMS. Open the item 'System variables' in the 'Administration' section to
manage the system variables.

Setting up a sync

Preparations

In TeleTOP it is currently not possible to retrieve all the users in the
system. However it is possible to retrieve all the users from a specific
course. Therefore, to setup a successful sync with TeleTOP all users that

UMRA Help

should be synchronized, must be member of a course. This can be easily
achieved by means of the web interface. Keep in mind, that currently
courses can only contain 800 members. So to sync more as 800 users, it
is necessary to have multiple courses. Also, make sure the system
variable 'Years' contain a value for the current year. (see 'Courses' and
'System variables' for more information.

First create a new course used for synchronization purposes. To create
such a course follow the steps bellow:

1. Go to the TeleTOP LMS web interface and choose course
management.

2. Click the button 'New'.

3. Specify a name for the course. If multiple courses are required
(because of the 800 users limit) add a number to the name
(umra_students_1, umra_students_2... umra_students_10 etc...).

4. In the tab 'Authorizations' specify the 'Access to this course'. Select
the radio button 'Teachers only' so teachers can modify this course.

5. Uncheck all the checkboxes.

6. Add the users that should be synchronized as 'Guests' to this course.
(Do not add more as 800 users to a single course.)

7. Click the button 'Save' Repeat those steps if multiple courses have to
be made.

Make sure the Tools4ever Powershell Agent is able to connect to the
TeleTOP environment.

Create sync scripts.

Ports and connections

The Tools4ever PowerShell Agent (TPA) must be able to create the
following connections.

 443 to the TeleTOP server

 80 to www.imsglobal.org

UMRA Help

DNS name resolving of www.imsglobal.org must be possible by the
powershell agent.

If the hostname of the TeleTOP server is specified as an IP-Address the
subject of the certificate must be the same IP-Address else the
connection will fail.

If the hostname of the TeleTOP server is specified as an FQDN or as an
NetBIOS name the TPA must be able to resolve that name to an IP-
Address and the subject of the certificate must be equal to the specified
hostname else the connection will fail.

If the certificate is untrusted by the TPA or if the certificate is expired the
connection will fail.

If the certificate path is invalid the connection will fail.

TeleTOP

The following procedure is based on the template synchronization
project. See SOAP Synchronization template project for more information.

In UMRA create a new initialization script with 'TeleTOP' as product.
Replace step 5 with the following steps:

 1. a. Add the action 'Set variable'

 b. Set the property 'Variable name' to '%TeleTOPSystem%'

 c. Set the property 'Value type' to 'text'

 d. Set the property 'Value' to <the url to LMS>

 e. Set the On error to: A jump to label
'ERROR_CLEANUP_POWERSHELL', Set variable '%OperationStatus%' to
'TeleTOP Sync init: Error, could not set the system name to '<the url to
LMS>'.'

 2. a. Add the action 'Set variable'

UMRA Help

 b. Set the property 'Variable name' to
'%TeleTOPSyncCourseCodePre%'

 c. Set the property 'Value type' to 'text'

 d. Set the property 'Value' to <The name of the courses to read the
users from for the sync, with out the number. ('umra_students_')>

 e. Set the On error to: A jump to label
'ERROR_CLEANUP_POWERSHELL', Set variable '%OperationStatus%' to
'TeleTOP Sync init: Error, could not set the main course code to '<the
value>'.'

 3. a. Add the action 'Set variable'

 b. Set the property 'Variable name' to '%TeleTOPLoginName%'

 c. Set the property 'Value type' to 'text'

 d. Set the property 'Value' to <The login name of the admin user.>

 e. Set the On error to: A jump to label
'ERROR_CLEANUP_POWERSHELL', Set variable '%OperationStatus%' to
'TeleTOP Sync init: Error, could not set the login name to '<the login
name value>'.'

 4. a. Add the action 'Set encrypted variable'

 b. Set the property 'Variable name' to '%TeleTOPPassword%'

 c. Set the property 'Value' to <The password of the admin user.>

 d. Set the On error to: A jump to label
'ERROR_CLEANUP_POWERSHELL', Set variable '%OperationStatus%' to
'TeleTOP Sync init: Error, could not encrypt the administrator password.'

 5. a. Add the action 'TeleTOP Setup connection'

 b. Set the On error to: A jump to label
'ERROR_CLEANUP_POWERSHELL', Set variable '%OperationStatus%' to

UMRA Help

'TeleTOP Sync init: Error, could not connect to the TeleTOP system at
'%TeleTOPSystem%' as '%TeleTOPLoginName%'.'

Step 8 in the initialization script needs to be replaced with code to
retrieve the users from the different courses. Because the number of
courses is not known when the script is first run the number in the name
will be incremented until the course cannot be found. So the script starts
with 'umra_students_1' retrieves the members and looks for
'umra_students_2' if it does exists it will add the users to the user table
and looks for 'umra_students_3' else the script stops with looking. etc.
This is accomplished with the following steps:

 1. a. Add the action 'Set variable'

 b. Set the property 'Variable name' to
'%TeleTOPSyncCourseCodeNumber%'

 c. Set the property 'Value type' to 'numeric'

 d. Set the property 'Value' to 0

 2. ## An empty table, to which the members of several courses will be
appended. This is because we have to query several 800 user courses to
retrieve all users. Now they are stored in one table so the join will work
as designed.

 a. Add the action 'Manage table data'

 b. Set the property 'Table data operation' to 'Create table'

 c. Set the property 'Table data variable' to '%TeleTOPUsers%'

 d. Set the property 'Number of columns' to '29'

 3. ## Without this action the table will not have column names and the
join in the main sync script will not be able to join this table with the
source data.

UMRA Help

 a. Add the action 'Manage table data'

 b. Set the property 'Table data operation' to 'Set column name'

 c. Set the property 'Table data variable' to '%TeleTOPUsers%'

 d. Set the property 'Column index' to '0'

 e. Set the property 'Name of column' to 'UserId'

 5. a. Add the action 'No operation'

 b. Set the label to 'TeleTOP_loadusers_start'

 6. a. Add the action 'Update numeric variable'

 b. Set the property 'Numeric data operation' to 'Increment variable
value by 1'

 c. Set the property 'Numeric data variable' to
'%TeleTOPSyncCourseCodeNumber%'

 7. a. Add the action 'Set variable'

 b. Set the property 'Variable name' to '%TeleTOPCourseCode%'

 c. Set the property 'Value type' to 'text'

 d. Set the property 'Value' to
'%TeleTOPSyncCourseCodePre%%TeleTOPSyncCourseCodeNumber%'

 e. Set the property 'Resolve immediatly' to 'Yes'

 8. a. Add the action 'TeleTOP Get course exists'

 b. Set the property 'Course code' to '%TeleTOPCourseCode%'

 c. Set the output property 'Course exists' to '%TeleTOPCourseExists%'

UMRA Help

 d. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync init: Error, could not determine if
course '%TeleTOPCourseCode%' exists.'

 9. a. Add the action 'If-Then-Else'

 b. Add a if-criteria (Variable Name = '%TeleTOPCourseExists%',
Variable type = 'boolean (yes/no, true/false)', Operator = 'equal', Value =
'No')

 c. Set the 'Then Goto label' to 'END'

10. a. Add the action 'TeleTOP Get course members'

 b. Set the output property 'Members' to '%TeleTOPUsersPart%'

 c. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync init: Error, could not retrieve the
members of course '%TeleTOPCourseCode%'.'

11. a. Add the action 'Manage table data'

 b. Set the property 'Table data operation' to 'Add data of other table'

 c. Set the property 'Target table data variable' to '%TeleTOPUsers%'

 d. Set the property 'Table data variable to add' to
'%TeleTOPUsersPart%'

 e. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync init: Could not add the found
members in '%TeleTOPUsersPart%' to the user table '%TeleTOPUsers%'.'

12. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'TeleTOP_loadusers_start'

UMRA Help

Save the script.

In UMRA create a new cleanup script with 'TeleTOP' as product and save
the script.

In UMRA Create a new Automation script. The purpose of this script is to
join the TeleTOP users with the users in the source or destination
system. In this example TeleTOP is the destination product. The source is
the example source script. The following script will create a table wich
will contain which users exist in the Source system, which users exists in
the TeleTOP system and which users exists in both. For each record in
this table a sub-script will be called. The sub-script will created in the
following chapter

 1. Create a new Automation Project ('TeletopSync')

 2. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'SourceSync_Init' (The name of the
Source-Product initialization script)

 c. Set the On error to: A jump to label 'END'

 3. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'TeleTOPSync_Init' (The name of the
TeleTOP initialization script)

 c. Set the On error to: A jump to label 'END'

 4. a. Add the action 'Join table data'

 b. Set the property 'Input table variable 1' to '%ExampleSourceUsers%'

UMRA Help

 c. Set the property 'Input table variable 2' to '%TeleTOPUsers%'

 d. Set the property 'Output table variable' to '%JoinedUsers%'

 e. Set the property 'Join condition table 1 column name' to
'EmployeeId'

 f. Set the property 'Join condition table 2 column name' to 'UserId'

 g. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP sync: Error, could not join the example
source data '%ExampleSourceUsers%' with the table
'%TeleTOPUsers%'.'

 5. a. Add the action 'For-Each'

 b. Set the property 'Table variable name' to '%JoinedUsers%'

 c. Set the property 'script project' to 'TeleTOPSync_Record'

 d. Set the property 'Specify project input variables' to 'Pass 'for each'
variables plus: '%G_TeletopPowerShellSession%,
%TeleTOPSyncCourseCodePre%'

 e. Specify the following column mapping: (The columns defined in the
source table, this may vary, depending on the source data, followed by
the 29 columns of the TeleTOP user table, followed by the join result
variable.)

 Column_01 -> %EmployeeId%

 Column_02 -> %FirstName%

 Column_03 -> %MiddleName%

 Column_04 -> %LastName%

 Column_05 -> %PartnerFirstName%

 Column_06 -> %PartnerMiddleName%

 Column_07 -> %PartnerLastName%

 Column_08 -> %NamingConvention%

UMRA Help

 Column_09 -> %Title%

 Column_10 -> %Gender%

 Column_11 -> %Birthday%

 Column_12 -> %ClassName%

 Column_13 -> %StartDate%

 Column_14 -> %EndDate%

 Column_15 -> %HomePhone%

 Column_16 -> %MobilePhone%

 Column_17 -> %TeleTOPUserId%

 Column_18 -> %TeleTOPAccountId%

 Column_19 -> %TeleTOPRoleInCourse%

 Column_21 -> %TeleTOPUserType%

 Column_22 -> %TeleTOPFirstName%

 Column_23 -> %TeleTOPMiddlename%

 Column_24 -> %TeleTOPLastName%

 Column_25 -> %TeleTOPInitials%

 Column_26 -> %TeleTOPFullName%

 Column_27 -> %TeleTOPGender%

 Column_28 -> %TeleTOPStreet%

 Column_29 -> %TeleTOPHouseNumber%

 Column_30 -> %TeleTOPCity%

 Column_31 -> %TeleTOPPostalCode%

 Column_32 -> %TeleTOPCountry%

 Column_33 -> %TeleTOPEmail%

UMRA Help

 Column_34 -> %TeleTOPPhoneNumber%

 Column_35 -> %TeleTOPCellularNumber%

 Column_36 -> %TeleTOPFaxNumber%

 Column_37 -> %TeleTOPWebsite%

 Column_38 -> %TeleTOPCompanyInstitute%

 Column_39 -> %TeleTOPFunction%

 Column_40 -> %TeleTOPAboutMe%

 Column_41 -> %TeleTOPUserRole%

 Column_42 -> %TeleTOPBlocked%

 Column_43 -> %TeleTOPUserKey1%

 Column_44 -> %TeleTOPUserKey2%

 Column_45 -> %TeleTOPUserKey3%

 Column_46 -> %TeleTOPUserGroup%

 Column_47 -> %JoinResult%

 f. Set the On error to: A jump to label 'END'

 6. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 7. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

 8. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

UMRA Help

 9. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

10. a. Add the action 'No operation'

 b. Set the label to 'END'

11. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'TeletopSync_Cleanup' (The name of
the TeleTOP cleanup script.)

12. Specify a scheduling scheme in the schedule tab.

Creating the TeleTOP sub script.

This script will be run for every record in the 'join' table. The join table
consists of all the data of a user in the source and/or destination system
plus a column providing information about th system in which the user
exists. For every record in the join-table the new script will be called.
The data in the record is saved into variables defined in the For-Each
action in the previous chapter. The %JoinResult% variable stores in
which system the user exists. The user is matched by its UserId in
TeleTOP and its EmployeeId in the source data. This is specified in the
Join action in the previous script.

The %JoinResult% variable can contain the following values:

 0 - The user exists in both systems

 1 - The user exists in the 'Input table variable 1' of the Join table
action. (In this example the user is found in the source system, but must
be created in TeleTOP)

UMRA Help

 2 - The user exists in the 'Input table variable 2' of the Join table
action. (In this example the user is found in TeleTOP, but does not exists
in the source and will therefor be disabled in TeleTOP)

any other value means an error occurred. This is mostly caused by an
incorrect number of column specifications in the For-Each.

To create a TeleTOP sub-script follow the next steps.

 1. Create a new Automation project 'TeleTOPSync_Record'.

 2. a. Add the action 'Map variable'

 b. Set the property 'Input variable' to '%JoinResult%'

 c. Set the property 'Output variable' to '%Operation%'

 d. Set the property 'Table entry 1' to '0' -> 'equal'

 e. Set the property 'Table entry 2' to '1' -> 'teletop_create'

 f. Set the property 'Table entry 2' to '2' -> 'teletop_disable'

 g. Set the property 'Default value of output variable' to
'ERROR_INVALID_JOINVALUE'

 3. a. Add the action 'Go to label'

 b. Set the property 'Label' to '%Operation%'

 4. a. Add the action 'No operation'

 b. Set the label to 'equal'

 5. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'TeleTOPSync_UpdateUser'

UMRA Help

 c. Set the On error to: A jump to label 'END'

 6. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 7. a. Add the action 'No operation'

 b. Set the label to 'teletop_create'

 8. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'TeleTOPSync_CreateUser'

 c. Set the On error to: A jump to label 'END'

 9. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

10. a. Add the action 'No operation'

 b. Set the label to 'teletop_disable'

11. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'TeleTOPSync_DisableUser'

 c. Set the On error to: A jump to label 'END'

12. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

UMRA Help

13. a. Add the action 'No operation'

 b. Set the label to 'ERROR_INVALID_JOINRESULT'

14. a. Add the action 'Get file/directory info'

 b. Set the property 'Target file/directory' to '$: ERROR INVALID PATH
\\ $:'

 c. Set the property 'Error if not found' to 'Yes'

 d. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP sync record: Error, the join result
'%JoinResult%' is invalid.'

15. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

16. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

17. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

18. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

19. a. Add the action 'No operation'

UMRA Help

 b. Set the label to 'END'

Save the project

TeleTOP Sync update user.

To update an existing user, the TeleTOP user must be edited. In this
topic a very simple edit user script is specified. Of course in real/life
situations a name generation script should be called before edit the
user, to utilize the partner name information in the source data, or any
other client wishes to convert the source name information to the
wished name convention in TeleTOP. The same is for the e-mail addres.
This step is skipped here.

Create the script by following the next steps:

 1. Create a new Automation project 'TeleTOPSync_UpdateUser'.

 2. a. Add the action 'TeleTOP Edit user'

 b. Set the property 'Password' to <do not specify a value for this
property>

 d. Set the property 'Initials' to <do not specify a value for this
property>

 d. Set the property 'Gender' to '%Gender%'

 e. Set the property 'E-Mail address' to
'%EmployeeId%@organisation.com'

 f. Set the property 'Telephone number' to '%HomePhone%'

 g. Set the property 'Cellular number' to '%MobilePhone%'

 h. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP sync update user: Error, could not
update user '%EmployeeId%'.'

UMRA Help

 3. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'TeleTOPSync_SetUserClass'

 c. Set the On error to: A jump to label 'END'

 4. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 5. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

 6. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

 7. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 8. a. Add the action 'No operation'

 b. Set the label to 'END'

TeleTOP Sync Create user.

To create a new user in the TeleTOP environment, all information about
the user should be available. Because of the variables utilized by the
join, this information is available. Of course in real/life situations a name

UMRA Help

generation script should be called to convert the source data to the
whished destination format. For example, to utilize the partner name
information in the source data. This step is skipped in this example.

Create the script by following the next steps:

 1. Create a new Automation project 'TeleTOPSync_CreateUser'.

 2. Add the action 'Generate password'

 3. a. Add the action 'TeleTOP Create user'

 b. Set the property 'Full name' to <do not specify a value for this
property>

 c. Set the property 'Initials' to <do not specify a value for this
property>

 d. Set the property 'FullName' to '%FirstName% %MiddleName%
%LastName%'

 e. Set the property 'Gender' to '%Gender%'

 f. Set the property 'E-Mail address' to
'%EmployeeId%@organisation.nl'

 g. Set the property 'Telephone number' to '%HomePhone%'

 h. Set the property 'Cellular number' to '%MobilePhone%'

 i. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP sync create user: Error, could not
create the user '%EmployeeId%'.'

 4. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'TeleTOPSync_SetLastStudentCourse'

UMRA Help

 c. Set the On error to: A jump to label 'END'

 5. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'TeleTOPSync_SetUserClass'

 c. Set the On error to: A jump to label 'END'

 6. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 7. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

 8. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

 9. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

10. a. Add the action 'No operation'

 b. Set the label to 'END'

TeleTOP Sync disable user.

To disable an existing user in the TeleTOP environment. The user must
only be blocked. However to ease the search for disabled user thru the
web interface, the users will be added to the 'umra_disabled' user

UMRA Help

group. (In this example the user group represent the class.) See the
'TeleTOPSync_SetUserClass' script creater in the next topic.

Create the disable script by following the next steps.

 1. Create a new Automation project 'TeleTOPSync_DisableUser'.

* WARNING THIS SCRIPT WILL DISABLE EVERY USER WHICH IS NOT
FOUND IN THE SOURCE DATABASE, IMPLEMENT AT YOUR OWN RISK.

* Remove step 2 to 6 to just log when this script is called without
disabling the user.

 2. a. Add the action 'TeleTOP Edit user'

 b. Set the property of all properties to <do not specify a value for this
property>

 c. Set the property 'User ID' to '%TeleTOPUserId%'

 d. Set the property 'Disable' to 'Yes'

 e. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP sync disable user: Error, could not
disable the user '%EmployeeId%'.'

 3. a. Add the action 'Set variable'

 b. Set the property 'Variable name' to '%ClassName%'

 c. Set the property 'Value type' to 'text'

 d. Set the property 'Value' to 'umra_disabled'

 4. a. Add the action 'Execute Script'

 b. Set the property 'Project' to 'TeleTOPSync_SetUserClass'

UMRA Help

 c. Set the On error to: A jump to label 'END'

 5. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 6. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

 7. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

 8. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 9. a. Add the action 'No operation'

 b. Set the label to 'END'

TeleTOP Sync set user class

To specify the class the TeleTOP user key 'usergroup' will be used. First
UMRA has to check if the user key exists. If it does not exists, it has to be
created, before it can be assigned to a user. The following script will
perform those tasks.

 1. Create a new Automation project 'TeleTOPSync_SetUserClass'.

UMRA Help

 2. a. Add the action 'TeleTOP Get key exists'

 b. Set the property 'Key Name' to '%ClassName%'

 c. Set the property 'Key Type' to 'usergroup'

 d. Set the ouput property 'Key Exist' to '%TeleTOPClassExists%'

 e. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync set user class: Error, could not
check if the user key '%ClassName%' of the type 'usergroup' exists.'

 3. a. Add the action 'If-Then-Else'

 b. Add a if-criteria (Variable Name = '%TeleTOPClassExists%', Variable
type = 'boolean (yes/no, true/false)', Operator = 'equal', Value = 'No')

 c. Set the 'Then Goto label' to 'teletop_class_create'

 d. Set the 'Else Goto label' to 'teletop_class_exist'

 4. a. Add the action 'No operation'

 b. Set the label to 'teletop_class_create'

 5. a. Add the action 'TeleTOP Create key'

 b. Set the property 'Key Name' to '%ClassName%'

 c. Set the property 'Key Type' to 'usergroup'

 d. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync set user class: Error, could not
create the user key '%ClassName%' of the type 'usergroup' although it
does not exist.'

 6. a. Add the action 'No operation'

 b. Set the label to 'teletop_class_exist'

UMRA Help

 7. a. Add the action 'TeleTOP User check key'

 b. Set the property 'User ID' to '%EmployeeId%'

 c. Set the property 'Key Name' to '%ClassName%'

 d. Set the property 'Key Type' to 'usergroup'

 e. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync set user class: Error, could not
add the user key '%ClassName%' of the type 'usergroup' to the user
'%EmployeeID%'.'

 8. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

 9. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

10. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

11. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

12. a. Add the action 'No operation'

 b. Set the label to 'END'

UMRA Help

TeleTOP Sync set last student course.

 1. a. Add the action 'Set variable'

 b. Set the property 'Variable name' to
'%TeleTOPSyncCourseCodeNumber%'

 c. Set the property 'Value type' to 'numeric'

 d. Set the property 'Value' to 0

 5. a. Add the action 'No operation'

 b. Set the label to 'TeleTOP_studentcourse_search'

 6. a. Add the action 'Update numeric variable'

 b. Set the property 'Numeric data operation' to 'Increment variable
value by 1'

 c. Set the property 'Numeric data variable' to
'%TeleTOPSyncCourseCodeNumber%'

 7. a. Add the action 'Set variable'

 b. Set the property 'Variable name' to '%TeleTOPCourseCode%'

 c. Set the property 'Value type' to 'text'

 d. Set the property 'Value' to
'%TeleTOPSyncCourseCodePre%%TeleTOPSyncCourseCodeNumber%'

 e. Set the property 'Resolve immediatly' to 'Yes'

 8. a. Add the action 'TeleTOP Get course exists'

UMRA Help

 b. Set the property 'Course code' to '%TeleTOPCourseCode%'

 c. Set the output property 'Course exists' to '%TeleTOPCourseExists%'

 d. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync set last student course: Error,
could not determine if course '%TeleTOPCourseCode%' exists.'

 9. a. Add the action 'If-Then-Else'

 b. Add a if-criteria (Variable Name = '%TeleTOPCourseExists%',
Variable type = 'boolean (yes/no, true/false)', Operator = 'equal', Value =
'No')

 c. Set the 'Then Goto label' to 'TeleTOP_studentcourse_create'

10. a. Add the action 'TeleTOP Get course members'

 b. Set the output property 'Members' to '%TeleTOPUsersPart%'

 c. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync set last student course: Error,
could not retrieve the members of course '%TeleTOPCourseCode%'.'

11. a. Add the action 'Manage table data'

 b. Set the property 'Table data operation' to 'Determine number of
rows'

 c. Set the property 'Table data variable' to '%TeleTOPUsersPart%'

 d. Set the property 'Number of rows returned in variable' to
'%TeleTOPUserCount%'

 e. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync set last student course: Could not
count the members of course '%TeleTOPCourseCode%' in
'%TeleTOPUsersPart%'.'

UMRA Help

12. a. Add the action 'If-Then-Else'

 b. Add a if-criteria (Variable Name = '%TeleTOPUserCount%', Variable
type = 'numeric', Operator = 'greater than', Value = '750')

 c. Set the 'Then Goto label' to 'TeleTOP_studentcourse_search'

 d. Set the 'Else Goto label' to 'TeleTOP_studentcourse_set'

13. a. Add the action 'No operation'

 b. Set the label to 'TeleTOP_studentcourse_create'

14. a. Add the action 'TeleTOP Create course'

 b. Set the property 'Course Name' to 'UMRA: %TeleTOPCourseCode%'

 d. Set the property 'Course Description' to 'DO NOT DELETE, THIS
COURSE IS MAINTAINED BY UMRA'

 d. Set the property 'TeleTOPSourceCourseCode' to
'%TeleTOPSyncCourseCodePre%1'

 e. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync set last student course: Error,
could not create a new course '%TeleTOPCourseCode%' based on
'%TeleTOPSyncCourseCodePre%1'.'

15. a. Add the action 'No operation'

 b. Set the label to 'TeleTOP_studentcourse_set'

16. a. Add the action 'TeleTOP Add member to course'

 b. Set the property 'Role type' to 'Member'

 c. Set the On error to: A jump to label 'ERROR', Set variable
'%OperationStatus%' to 'TeleTOP Sync set last student course: Error,

UMRA Help

could not add the user '%EmployeeId%' to the course
'%TeleTOPCourseCode%'.'

17. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

18. a. Add the action 'No operation'

 b. Set the label to 'ERROR'

19. <place some action to process the '%OperationStatus%' variable (for
example the action 'Log specific variables' or 'Export variables' or call a
generic log script with the 'Execute script' action>

20. a. Add the action 'Go to label'

 b. Set the property 'Label' to 'END'

21. a. Add the action 'No operation'

 b. Set the label to 'END'

It's Learning
Description

"It's Learning" is a web based Learning Management System hosted by a
company of the same name. See http://www.itslearning.co.uk for more
information. UMRA projects can interface to this system in order to
perform specific tasks directly related to account and group
management. UMRA Interfaces with It's learning as specified in the
"IMS Enterprise Services" specification
(http://www.imsglobal.org/es/index.html).

UMRA Help

This is completely transparent in UMRA. The underlying functionality is
implemented in the Powershell agent of UMRA. Within UMRA we have
developed dedicated It's Learning script actions that can be directly used
in an UMRA script, in order to create and manage persons, groups of
various kinds, and memberships.

Note that the UMRA actions are not designed to create any specific
learning content.

Prerequisites

1) The UMRA Powershell Agent service must be installed. For
installation instructions see the chapter about the Powershell agent
service in the UMRA user guide.

2) A working It's learning system, accessible by browser from the
computer running the powershell service.

Ports and connections

The Tools4ever PowerShell Agent (TPA) must be able to create the
following connections:

 443 to the It's Learning server

 80 to www.imsglobal.org

DNS name resolving of www.imsglobal.org must be possible by the
powershell agent.

Setting up a connection to an It's learning system, and executing It's
learning actions

1) Set up a dedicated Powershell session

All communication with It's learning is done by means of Powershell
commands/scripts that are automatically generated by the UMRA script
actions, and executed by the UMRA Powershell service. The Powershell
service is not only used by the It's learning script actions, but also by
many other actions. To prevent interference with other unrelated

UMRA Help

actions it is recommended to run all It's learning actions in a dedicated
Powershell session.

This is done with Script Action: Setup Powershell Agent service session. This
creates a new Powershell session, and returns the ID of this newly
created session. This session ID should then be specified as input for all
related It's learning actions.

2) Open the connection it's learning with Script Action: It's learning
Setup Connection

As input specify the just created powerschell session ID , and the login
credentials for the It's learning system. Note that the specified password
must be encrypted. So use for example Script Action: Set encrypted variable
on page 546 to encrypt the password. Note also that the account used
for the login must be an administrative user with "web service rights" in
It's learning. This may be a different account than you use to access the
normal It's Learning web interface.

3) Next, you can use all It's Learning actions, using the Powershell
session ID for the It's Learning connection parameter.

Closing connections

 When finished using the actions in the script use the action It's learning

Close Connection to close the connection to It's learning system, and
lastly Script Action: Release Powershell Agent service session on page 606 to
release the Powershell session used.

Note on Powershell sessions

Setting up a new powershell session and It's learning connection is a
relative resource intensive operation, so its recommended to use the
same Powershell session for all It's Learning actions when possible,
instead of frequently setting up and releasing sessions.

UMRA Help

A Powershell Session may be automatically released by the Powershell
service if it has nothing to do for a longer period. In order to check if a
certain earlier created powershell session used earlier is still available,
use Script Action: Check Powershell Agent service session.

It's Learning concepts

Basically, there are two kinds of objects in the It's learning environment
that can be managed with UMRA, i.e Persons And Groups.

Groups are created in a hierarchy. (that means they are located in a tree
structure, they have a 'parent' object, usually another group). Persons
are not created in a hierarchy. (that means they are a flat table).
Persons can be members of of several groups. With UMRA you can
create, delete, and edit persons and groups, and assign and list
memberships.

Groups come in different flavors. Examples of these are
"Site","School","Study", "Studyyear", "class", "course". These are all a
kind of group, but there are special actions in UMRA to create them
more easily.

UMRA Help

4.3.11. Variable actions

Table

Script Action: Generate generic table

Function

Script action to generate a generic table (resulting from a LDAP query,
database query etc, csv files, etc) and store the entire results in a special
"table" variable for further processing.

Deployment

This script action is used when you need to create a table with query
results in a script. The variable which is the output of this script action
can be further processed using any other script action that accept
table(s) as input. Most prominently this is the Script Action: Manage table

data on page 528. Also, the resulting table can be shown in a form,
when the script is part of a form project, and run before the form is
displayed.

Properties

The Properties of this action are configured by means of special
configuration dialogs.

Press the configure button in the properties tab on the properties page
of this action to access the dialog, and press F1 for the online help of the
specific dialog for more information.

Remarks

Script Tables and Form tables

There are two distinct tables types in UMRA. Script Tables and Form
tables

A Script table is a table contained in a script table variable, for example
generated with the script action Generate generic table. Subsequent
script actions that accept a table variable as input may act on this table
to perform a wide range of actions. It can be used in any UMRA module
that uses a script.

A Form table is a special Form field within a UMRA Form. It is used to
display the contents of a table in a form. Obviously form table only exist

UMRA Help

in the "Forms and delegation" module. The required queries for this
form table are contained in the definition of the form field itself, and
executed when the form is presented to the user.

Both the Script table and the Form table can be the result of queries to
for example LDAP directories, csv files, and databases, and these query
definitions have common configuration interfaces and capabilities.

Alternatively a Form table element can build itself from a pre-existing
Script table variable. This is used for instance if it is required that the
table result should be modified before being presented the form. In that
case the build-in query functionality in the Form table cannot be used.

64 bit Operating Systems.

On 64 bit Operating systems, UMRA runs as a normal 32 bit application.
This means that in order to communicate with providers for database
connections (e.g. ODBC), It is required that the appropriate 32 bit odbc
data sources are installed c.q. configured. Make sure to start de
odbcad32.exe program located in the SysWOW64 folder, and not the
program with the same name in the system32 folder.

See also:

Script Action: Manage table data on page 528

Script Action: Manage table data

For most standard User Management tasks, the available built-in tables
(Fixed, Network, Generic) can be used. There are situations however,
where these standard tables may not be sufficient:

 You may wish to evaluate an existing table programmatically
and / or create a new table from scratch ;

 You may have to combine data from one of the built-in tables
with data which are not contained in a table.

In such cases, you can use the Manage table data script action to create
your own tables. This script action includes many operations for creating
and editing tables:

UMRA Help

Table data operation Description

Create table Creates an empty table. Initially, the table
contains no rows. The number of columns must
be specified.

Append a row at the end of
the table

Adds a row at the end of a table. Initially, the
table row contains empty data text fields. The
specified row index variable will contain the
index of the new row after the action has
executed.

Append a column at the end
of the table

Adds a column at the end of a table. Initially,
the table column contains empty data text
fields. The specified column index variable will
contain the index of the new column after the
action has executed.

Set the data for the specified
row and column of the table

Sets the data value of the specified cell to the
specified value. The cell is specified by the row
and column index. The data cell value can be
specified by a text value or variable name.

Get the data at the specified
row and column of the table

Copies the data value of the specified cell into
the value of the specified output variable. The
cell is specified by the row and column index.

Get the number of table rows Determines the number of rows in a table. The
number is stored in the row count variable.

Get the number of table
columns

Determine the number of table columns. The
number is stored in the specified variable.

Copy row Copy a specific row to another table. The row is
specified by its index. The target table should
either not exist or have the same number of
columns. If the target table does not exist, it is
created. If the target table does exist, the new
row is added at the end of the table. If the
target table does exist and already contains
data, but if the table does not contain the same
number of columns, an error is generated.

UMRA Help

Copy multiple rows Copy multiple rows to another table. The rows
are specified by their indexes. The indexes are
stored in another table with only a single
column and one row for each index. The target
table should either not exist or have the same
number of columns of the original table. If the
target table does not exist, it is created. If the
target table does exist, the new rows are added
at the end of the table. If the target table does
exist and already contains data, but if the table
does not contain the same number of columns,
an error is generated.

Copy table Copy one table to another table. If the
destination table variable already exists, its data
os overwritten.

Remove a specified row Removes the row with a specified row number
from the table.

Remove multiple rows Remove multiple rows from a table. The rows
are specified by their indexes. The indexes are
stored in another table with only a single
column and one row for each index.

Remove duplicate rows Removes duplicate rows from a table. The
specified key column index is used to find
duplicate rows. A duplicate is found when the
cell data of two rows in the specified key
column are equal.

Remove a specified column Removes the column with a specified column
number from the table

Sort on column index Sort the rows of the table based on the
specified column. The column is specified using
the index number of the column
(0,1,...,[number of columns]-1).

Sort on column name Sort the rows of the table based on the
specified column. The column is specified using
the name of the column.

Convert multi-text variable to
table

Converts a multi-text variable into a single
column of a table.

UMRA Help

Convert table column to
multi-text variable

Converts the contents of the specified column
of the table to a multi-text variable

Convert multi-value variable
to table

Converts a multi-value variable into a single
column of a table

Set column name Set the name of the specified column. The
column is specified by its index.

Replace column name Replace the name of the specified column by
the new name of the column. The column is
specified by its original name.

Get column name Get the name of the specified column. The
column is specified by its index.

Complete rows Complete all rows of the specified table. If one
or more rows have less columns compared to
other rows, empty text values are appended to
these rows to complete them.

UMRA Help

Search table Search all rows in the table. Either a specific
column or all columns of each row are searched
for. To search only in a specific column, specify
the column index in the field 'Optiona: Search in
column'. Result indexes are stored in the 'Result
output table'. The search can be performed in
various ways:

1: Search for a specific text
Specify the text as 'Search text'. By default, a
match is found if the text in the table contains
the specified search text. To require an exact
match (e.g. match only if the contents of the
table cell equals the specified text), include the
keyword STRICT in the field 'Optional: Search
column'. Examples: 0, STRICT or STRICT. The
search is always case-insensitive.

2: Search for empty cells
Leave the 'Search text' field empty. A match is
found if the table cell contains no data or an
empty text value.

3: Search for not-empty cells
Specify [*] for the 'Search text' field. A match is
found if the table cell contains data.

The result is stored in the specified 'Result
output table'. For each match, a row is created
in the output table. The first column holds the
matching row number (0,1,2,...). The second
column the matching column number (0,1,2...).

Add data of table variable to
table

Appends the contents of an other table to the
current table. both tables must contain the
same number of columns and data-types.

Log table data Writes the contents of a table to the log file

UMRA Help

Export to .csv file Exports the table data to a .CSV file. You
need to specify the file name, the separator
and format string (optional). The format
string can contain the following keywords:

UNICODE: File will be saved in UNICODE
format.
APPEND: If the file exists, the data is
appended to the existing file.
SINGLEQUOTE: The quote character used is ' .
By default the quote character is " .
QUOTEBLANK: Quotes will be added if a text
field contains a space or tab.
QUOTEALWAYS: Quotes will be placed around
all text fields.
HEADER: The first line of the output will
contain the column name

Specify multiple keywords using the comma's.

Script Action: Join table data

Function

Joins the table data from table data variable A and table data variable B
and returns the result in output table data variable C. This output table
includes the matched rows of both tables that are being joined and
preserves the unmatched rows of both tables.

In database query terminology this is called a full outer join. Full outer
joins return results which include rows from table A and B, whether or
not they contain matching values in the joining columns. In the result
set, the columns for which no match was found will contain empty text
fields.

Deployment

This script action is typically used for identity management tasks in
heterogeneous network environments. For instance, a company may
have a need to update Active Directory with the latest phone
information from a phone system database. Using the Join table data
script action, the table data from both systems can be joined. The
leading information from the phone system can then be matched

UMRA Help

against the information found in Active Directory. Each row of the joined
table is evaluated. If the User IDs match and the phone number in Active
Directory differs from the phone number found in the phone system,
Active Directory will be updated with the phone number from the phone
system.

Example: Synchronization procedure

Consider two sets of table data, both generated in UMRA. The first table
contains the result of a query on an SQL database holding the company's
telephone numbers. The table contains a column with user IDs and a
column with phone numbers. Table B is the result of an LDAP query on
Active Directory and contains columns with the employee ID (Employee

ID column), telephone number (Telephone column) and the user's
distinguished name (DN column) from Active Directory.

By joining these two tables, each row of table A will be paired with rows
from table B. For a join to succeed, a column of both table A and table B
needs to be specified on which to base the join. These columns have to
contain matching (non-duplicate) data. In the example shown below, the
columns UserID and Employee ID contain the data on which the join is
based.

UMRA Help

For each row of table C, a project script is executed using the relevant
variables as input for the script. These variables represent the
information in the various table columns (if you are not familiar with the
use of variables, please read the UMRA Basics on page 3 manual first).

This script checks if the specified columns do indeed match (in the
example above, it concerns the columns UserID and Employee ID). If
this is the case, the phone numbers in the columns Phone and
Telephone are compared. If these phone numbers are NOT equal (as in
the case of the phone numbers for UserID 900002 and 900004 in the
example shown above), the value in the Phone column with the leading
phone information will be used to set the Telephone attribute of the
user specified in the DN column.

UMRA Help

The Get User on page 31 script action can use the value specified in the
DN column to retrieve the user object of the specified user in Active
Directory. Next, the value for the telephoneNumber attribute can be set
using the Set attribute on page 124 script action. This script action can
set the value of the telephoneNumber attribute to the value found in the
Phone column for the corresponding user ID.

This is only a simple example of synchronization. More complex
synchronization scripts can be created to build a solution which meets
the specific needs of your organization (e.g. synchronizing user
management data across various directory services supporting LDAP,
such as Novell e-Directory and Linux OpenLDAP).

Table variables

In this section, the table input and output variables for the join
operation are specified.

Input table variable 1

First input table for the join operation.

Input table variable 2

Second input table for the join operation.

Output table variable

This variable will contain the table data resulting from the join
operation.

Join condition

Column with name N of input table 1 must match column with name N
of input table 2

Here you need to specify the name of the columns on which the join is
based. The content of the specified columns must match (non
duplicates). The name of the column is not necessarily the same.

UMRA Help

In case of the example given earlier, the specification would have to be
as follows:

The content of Table A is stored in %TableA% and the content of Table

B in %TableB%. The join operation is based on column UserID of Table

A and the column Employee ID of Table B.

Log messages

When the Join table data script action is used, the log message also
reports on the results of the join operation:

Total number of rows: N, common: N, left: N, right: N

Total number of rows - total number of rows in the table containing the
joined data.

Common - the number of rows containing common data.

UMRA Help

Left - number of unmatched rows from the first (left) table, joined with a
NULL row of the second (right) table.

Right - number of unmatched rows from the second table (right), joined
with the NULL row of the first (left) table.

Options

Text mode - Activate this checkbox to run the join operation in text
mode. Numeric data will then be treated as text. Note that if your data
are imported from a text file (CSV), these data will be automatically
treated as text.

See also:

UMRA Basics on page 3

Get User script action on page 31

Set attribute script action on page 124

Database

Script action: Update database

Script Action: Update database - Database

Click the Configure button to configure the connection to the database
you wish to update. The connection details will be shown in the
Database specification window.

Next steps:

1. Entering the SQL statement on page 539 for updating the record set

2. Defining test variables (see "Variable list" on page 778) (optional,
this is for test purposes only)

3. Running a test (see "Script Action: Update database - Test" on
page 541)

C H A P T E R

UMRA Help

Script Action: Update database - Introduction

This action allows you to connect to any existing database and update
the record set. The update is usually the result of a Manage table data on
page 528 action.

There are several steps involved in updating an existing database:

1. Specifying the database (see "Script Action: Update database -
Database" on page 538)

2. Entering the SQL statement on page 539 for updating the record set

3. Defining test variables (see "Variable list" on page 778) (optional,
this is for test purposes only)

4. Running a test (see "Script Action: Update database - Test" on
page 541)

The resulting database update configuration details will be displayed in
the Database update action description window. Clicking the Configure

button will take you to to the Database update commands configuration
window. From here you can specify the database you wish to update
and complete the steps as indicated above.

Script Action: Update database - SQL Statements

Previous steps:

1. Specifying the database

In the SQL statement window you can specify the SQL syntax for
updating the record set for your table. In this section you will find a few
examples for update operations in an existing MS Access database. For
more detailed information on updating your database, see the
instructions of your database provider.

Single record append query in MS Access

INSERT INTO target [(field1[, field2[, ...]])]

VALUES (value1[, value2[, ...])

Multiple record append query in MS Access

INSERT INTO target [(field1[, field2[, ...]])] [IN externaldatabase]

UMRA Help

SELECT [source.]field1[, field2[, ...]

FROM tableexpression

The INSERT INTO statement contains the following parts:

Part Description

target The name of the table or query to
append records to.

field1, field2 Names of the fields to append data to,
if following a target argument, or the
names of fields to obtain data from, if
following a source argument.

externaldatabase The path to an external database

source The name of the table or query to copy
records from.

tableexpression The name of the table or tables from
which records are inserted. This
argument can be a single table name
or a compound resulting from an
INNER JOIN , LEFT JOIN , or RIGHT JOIN
operation or a saved query.

value1, value2 The values to insert into the specific
fields of the new record. Each value is
inserted into the field that corresponds
to the value's position in the list:
value1 is inserted into field1 of the
new record, value2 into field2, and so
on. You must separate values with a
comma, and enclose text fields in
quotation marks (' ').

An example of an SQL statement for appending a single record may look
as follows:

UMRA Help

The variables %EmployeeID%, %FullName%, %Department%,
%Manager%, %Location%, %FirstName% and %Phone% in this example
will be replaced with their actual values at runtime.

Do no show statements in log files

The database statements can contain sensitive information, for instance
passwords. To prevent these from being shown in log files, select the
option Do not show statements in log files. When this option is
specified, the statement description is shown, but at runtime, but the
actual statement is not shown in the log file. Note that if the statement
execution fails, the statement is not shown in the log file in this case if
this option is specified.

Next steps:

3. Defining test variables (see "Variable list" on page 778) (optional, this is
for test purposes only)

4. Running a test (see "Script Action: Update database - Test" on page
541)

Script Action: Update database - Test

Previous steps:

1. Specifying the database (see "Script Action: Update database -
Database" on page 538)

2. Entering the SQL statement on page 539 for updating the record set

3. Defining test variables (see "Variable list" on page 778) (optional, this is
for test purposes only)

UMRA Help

To validate the SQL statement for the database update, click the Test

button. Please note that this is not a simulation. The database will be
updated according to the SQL statement and the test variables you have
provided. The test result will appear in the Test results window.

Name generation

Script Action: Generate name(s)

Function

Generates one or more names based on the value of one or more input
variables. The algorithm that is used to generate the output names is
configurable. The output value names are stored in variables.

Deployment

This action is typically used in UMRA form projects to propose the user
name and full name of a new user account. These names are generated
by the algorithm of the script action when the end-user specifies the
input names (typically first, middle and last name). The resulting names
are presented in a form an the end-user can then accept the names or
let the algorithm generate new names (next iteration cycle).

The script actions that create user accounts, Script Action: Create User (AD)
on page 3 and Script Action: Create User (no AD) on page 68 contain a user
name generation algorithm. If the generated names are used as input
names for these actions, the user name generation algorithm of these
actions should not be used. So, when creating user accounts, there are 2
methods to generate user names automatically:

1. Use script action Generate name(s) and disable the name
generation algorithm of the Create user action.

2. Do not use script action Generate name(s) and use the name
generation algorithm of the Create user action instead.

With the first method, the script must implement a loop:

1. Generate name.

2. Check if name is unique.

UMRA Help

3. If name is unique, continue with step 4, if not unique go to step 1
to generate next name.

4. Create user account.

This method requires a more complex script. On the other hand, the
names that are generated by the algorithm can be shown to the end-
user before the account is created.

To configure the name generation action, the following dialog is used:

Use the Edit and browse (...) button to edit the currently configured
algorithm or import another algorithm.

Iteration - Use internal data (can only be used for mass projects)

If the name generation action is called multiple times in mass projects,
new names are generated according to the configuration of the name
generation algorithm. If this option is selected, the iteration mechanism
is controlled by the action itself. This option can only be used in mass
projects. In form projects, the same names will be generated if this
option is selected.

Iteration - Use variable

If this option is selected, the iteration mechanism is controlled by a
numeric variable specified in this field. This variable holds a number that
corresponds with the iteration cycle. The first time, the variable is 0. The
action will generate the names according to the first iteration cycle.
Next, the value of the variable is incremented. This, the next time the
action is called during the same session, the variable has a value of 1.
Hence, the next iteration cycle of the name generation algorithm is used
to generate the names. This process continues.
Note: The action will create the iteration variable if it does not exist
when executed.

UMRA Help

Properties

Property
Name

Description Typical
setting

Remarks

Name
generation
algorithm

The name of the
algorithm.

Input
variable N

The name of input
variable 1,...,N as
configured in the
name generation
algorithm.

%FirstName%
%MiddleName%
%LastName%

When the action is
executed, the input
variables should have a
value that is used to
calculate the output names.

Output
variable M

The name of output
variable 1,...,M as
configured in the
name generation
algorithm.

%UserName%
%FullName%

Iteration A description of the
method used to
iterate through the
name generation
algorithm when the
action is called
multiple times.

See also:

Script Action: Create User (AD) on page 3

Script Action: Create User (no AD) on page 68

Variable operations

Script Action: Set Variable

Function

Defines and sets a script variable. This action does not do any network
calls. It is used for configuration within the User Management script.

UMRA Help

Deployment

Many implementations of User Management scripts are configured in
such a way that the input for the script action property values can be
specified as a variable. Variables correspond with a column of the input
data or they get a fixed constant value in the beginning of the script
using this action. For instance, the Domain property of the Script Action:

Create User (AD) on page 3 (and this applies to many other script actions),
is usually specified as %Domain% in the script action property value. If all
users need to be created in the same domain it is usually easier to
specify the name of the domain directly in the script, instead of
requiring that the domain name is available in every row of the Project
Table.

To specify the contents of a variable directly in the script, this script
action should be inserted in the script. It must be inserted prior to any
script action that uses this specific variable.

Properties

Property
Name

Description Remarks

Variable Name The name of the
variable to set

The Name of the variable must be
enclosed in "%" characters. e.g.
%Domain%

Value The value of the
variable. This value will
be used in all following
script actions.

The value to which the variable is
set. Note that Value might contain
the name of another variable or a
combination of text and other
variables.

The variable can then be used in any
following script actions in the script.

Value Type The type of the
variable. That is text,
boolean,numeric, date-
time or text list.

Do not show
value in
windows and log
files

Hides the value of the
variable. It is no longer
shown in log files and
windows.

UMRA Help

Resolve variable
names in value
immediately
when action is
executed

The method used to
resolve variable names
in the specified value.

No: Other variable names specified
as part of the variable value, are not
resolved until the variable is used as
an argument in in another script
action.

Yes: Other variable names specified
as part of the variable value are
resolved immediately.

Script Action: Set encrypted variable

Function

This script action sets the value of the specified variable to the
encrypted value of the entered text.

See also:

Script Action: Encrypt text on page 563

Script Action: Split Variable

Function

Splits the value of an existing variable in two parts, and store the results
in two (new) variables. This action does not do any network calls. It is
used for configuration and formatting within the User Management
script. The Variable is split in two parts, the split position is determined
by a separator character available in the data.

Deployment

Many implementations of User Management scripts are configured in
such a way that the input for the script action property values can be
specified using variables. The contents of these variables are usually
read from an input data source.

In some cases the value of this variable needs to be manipulated before
it can be used to specify a specific script action property. Various
functions are available for these kind of operations.

UMRA Help

The Split variable script action is used if one specific variable contains
information that a certain script action expects to be in different
variables. For example, the input data may have a field that contains the
variable %HomeDirectory% in the form "server name\share name\sub
directory". The Script Action: Create Directory on page 341 for instance,
requires the name of the server, the name of the share, and the rest of
the path to be in three different variables. With the script action Split

variable it is possible to create the required variables. In this particular
example the action is first used to retrieve the server name, and then
used again to retrieve the share name.

Properties

Property
Name

Description Typical
setting

Remarks

Input variable The name of the
variable that
contains the
information that
must be split.

 The name of the variable
must be enclosed in "%"
characters. e.g. %Domain%

Output
variable 1

The name of the
variable that
contains as result
the first part of
the input string
up to the first
separator
character.

Output
variable 2

The name of the
variable that
contains as result
the rest of the
original string

Result if no
split

Specifies which
variable contains
a copy of the
original string as
the data cannot
be split.

Value of
variable 2
empty

Sometimes the data cannot
be split if there is no
separator character. For such
cases, this setting will
determine which of the 2
output variables should get a
value.

UMRA Help

Process from
right to left

Specifies that the
input string is
should be
evaluated from
right to left

No if specified, the part of the
string after the last separator
character is stored in variable
1, and the part before the
last separator character is
stored in variable 2

Separator(s) Specifies which
character(s) count
as separator

No The variable is split at the
first position where one of
the specified characters is
encountered.

Script Action: Get variable length

Function

Calculates the length (number of characters) of an existing text variable,
and stores the resulting number in the specified output variable.

Deployment

For instance to check if the length of a name is in the range of allowed
values.

Properties

Property
Name

Description Typical
setting

Remarks

Input variable The name of the
variable that
contains the
string of which
the length must
be calculated

 The name of the variable
must be enclosed in "%"
characters. e.g. %username%

Output
variable

The name of the
(numeric) variable
that will contain
the length.

%Length%

UMRA Help

Script Action: Format Variable Value

Function

Formats the variable value according to the specified formatting
functions. With this action you can specify several formatting functions
that are consecutively applied on the value of the input variable. The
resulting value is stored in the same variable.

Deployment

This script action is typically used to remove undesired characters from
the variable value or limit the length of the variable value. The original
content of the variable often is determined by a user provided import
file. Such a file is likely to contain some irregularities, or the format may
be not always be exactly correct. This action helps to correct such
problems. For instance, by removing any trailing blanks in the value.

Properties

Property Name Description Remarks

Variable The name of the
variable that contains
the value to be
formatted.

The resulting formatted value will
be stored in the same variable

Number of
Formatting functions
Applied

Lists the number of
formatting functions
that are applied

This is a read only value shown
for informational purposes.
Double click to open a dialog to
configure the formatting
functions.

Test Name A example value that
can be specified to
test the result of the
formatting functions
on a value

This value is not used when the
script is run

UMRA Help

Formatting
functions.

A list of formatting
functions that are
consecutively applied
to the value of the
variable.

This property is not directly
shown in the right pane of the
Project. Double click any property
to open a dialog that reveals a
button to specify the functions
used

Do not show results
in log files

Enable this option if
the input and output
values of the
formatting functions
should not be shown.

Typically used to format password
values.

Specifying Formatting functions

Doubleclicking on any property shows a dialog to configure the
properties of this action. Select the Format functions button to specify
which functions to use and in at order that they are applied.

Script Action: Update numeric variable

Function

This function allows you to perform some basic numerical operations on
variables.

Overview

Operation Description

Increment
value

Increments the variable value by 1. This operation is typically
used to accommodate for reiteration within a loop (e.g. as a
result of a goto label). Similarly, you could cycle through the
rows of a table and use this script action to increment the row
counter.

Decrement
value

Decreases the variable value by 1. This operation is typically
used to accommodate for reiteration within a loop (e.g. as a
result of a goto label). Similarly, you could cycle through the
rows of a table and use this script action to decrement the row
counter.

UMRA Help

Add number Adds a number to an existing numeric variable. The number to
add can be held by a variable.

Subtract
number

Subtracts a number from an existing numeric variable. The
number to subtract can be held by a variable.

Multiply by Multiplies an existing numeric variable by a number. The
number to multiply with can be held by a variable.

Divide by Divides an existing numeric variable by a number. The number
to divide with can be held by a variable.

Convert from
variable

Converts an existing text variable to a numeric variable. The
variable to convert needs to be selected in the Source
variable list box. The name of the new numeric variable needs
to be specified in the Numeric variable field.

Convert
number to text
(format)

Convert an existing numeric variable to a text value, according
to the specified format. The format corresponds with the
programming C-language printf syntax. For a numeric value of
3168, the following list shows some example values for
different format specification:

Format specification: %d resulting text: 3168

Format specification: %06d resulting text: 003168

Format specification: %x resulting text: C60

Format specification %08X resulting text: 00000C60

Cycling through the records in a table using Increment / Decrement value

To do this, you would need to define the following:

1. Set a row counter variable (e.g. %RowCounter%) to 0 using the
Set variables action item

2. Retrieve the number of rows in a column and assign these to a
variable (e.g. %NumberOfRows%) using the option "Get number
of rows" in the Manage table data script action

3. Create a loop which includes

This loop may be constructed as follows:

UMRA Help

1. an If-Then-Else statement (IF the value of %RowCounter% is
smaller than %NumberOfRows%, THEN execute a script, ELSE do
something else)

2. the action to execute when the IF statement returns TRUE

3. Update numeric variable action to increment the value of
%RowCounter% by 1. This will let you cycle to the next row in the
table.

4. GoTo statement to return to the If-Then-Else script action to
evaluate the next row in the table

5. "No operation" script action as an ELSE clause (IF statement
returns FALSE)

See also:

Script Action: If-Then- Else on page 570

Script Action: Manage table data on page 528

Script Action: Update date-time variable

Function

Performs basic numeric operations on date-time variables.

Options

Set value to current date-time

This option allows you to set a date-time variable to the current date. If
the variable name already exists, it will be replaced. If it does not exist, it
will be created using the specified variable name.

Add days-months-years

UMRA Help

For this option, you need to specify an existing date-time variable. Days,
months and years can be added to an existing data-time variable. This
will be needed for instance, if you want to execute an action with a time
delay (e.g. removing a disabled user).

Add hours-minutes-seconds

For this option, you need to specify an existing date-time variable.
Hours, minutes and seconds can be added to an existing data-time
variable.

Subtract days-months-years

For this option, you need to specify an existing date-time variable. Days,
months and years can be subtracted from an existing data-time variable.

Subtract hours-minutes-seconds

For this option, you need to specify an existing date-time variable.
Hours, minutes and seconds can be subtracted from an existing data-
time variable.

Subtract date-time variable

This function subtracts a date-time value stored in a variable (field:
Date-time variable to subtract) from another date-time value (field:
Date-time variable). The result is stored as a numerical value, the
difference in seconds in another variable (field: Result variable

(seconds)).

See also:

Script Action: Set Variable on page 544

UMRA Help

Script Action: Convert value of variable

Function

This script action allows you to perform the following variable
conversions:

1. Performing a logical AND on the input value and a specified
argument

2. Convert a large integer to date-time

3. Converting a large integer to specified text if the value is zero.

Deployment

This script action is mainly intended to be used in MASS and
Automation. In Forms & Delegation, large integers (e.g. lastLogon
attribute) are either automatically converted or shown as text (in a form
object, these variables will be displayed as text).

Usage

The name of the input variable should be selected or entered in the
Input variable name list box. The name of the converted variable should
be selected or entered in the Output variable name list box. If you click
the Conversion button, the following dialog box will appear:

Click the Add button. The Data Conversion Routine dialog box will
appear. Under Conversion Operation you can select the required
conversion type.

Perform logical AND on the input value and specified argument

The routine Perform logical AND on the input value and specified
argument is used to evaluate so called bitmask attribute values. A
bitmask attribute is a single attribute that contains multiple properties
and property values (e.g. the attribute UserAccountControl).

UMRA Help

Convert a large integer to date-time

Using this option, you can convert a large integer to date-time (e.g.
lastLogon attribute). The large integer will then be converted to a date-
time variable (e.g. "127718490668401648" will become "07:51
09/22/2005"

Converting a large integer to specified text if zero

In Active Directory, all attributes containing system times, are stored in a
large integer (e.g. lastLogon). If this value is equal to zero, a normal
conversion to date-time would result in "00:00 01/01/1601". With the
conversion routine "Converting a large integer to specified text if zero"
you can specify a more meaningful text value to pass.

Script Action: Convert text to date/time

Function

Converts a text value to a date/time value. Both values are stored in a
variable. The method used to convert the text to a date/time value can
be specified.

Deployment

This action is typically used in UMRA projects to set the account
expiration date as specified in a text file when creating new user
accounts. In this scenario, a column of the text file contains the user
account expiration date and a variable is assigned to this column. This
variable stores the expiration date/time as a text string. In order to use
this expiration date/time value, it must be converted from a text value
to a date/time type value. This can be done with this action. The action
takes the text value of the input variable and converts this text to a
date/time value type. The resulting value is stored in a variable that can
be used to specify the expiration date of a user account.

For the action, the format used to convert the text to a date/time value
can be configured.

This image cannot currently be displayed.

UMRA Help

Input text variable

The name of the input variable that stores the date/time text value
represented as text.

Output date/time variable

The name of the output variable that upon execution of the action
stores the date/time value in as a date/time type. The input and output
variable names can be the same: In this case the input variable value is
overwritten with the result variable value.

Format

The format of the input variable text value. The format is specified using
the following fields: month,day,year,year,hour,minute and second. In
order for this action to succeed, the format must correspond with the
input variable value. Example: When the date/time is specified as
7/27/2005 14:30 the format must be specified as: month/day/year
hour:minute. A number of predefined formats can be selected from the
list. Note that not all fields need to be specified. In this case, the action
will use the default values.

Default values - Format field - Default value

Select one of the possible format fields from the list Format field and
specify the default value in the edit box Default value. The default value
is only used when it is not specified in the Format string.

See also:

Script Action: Create User (AD) on page 3

Script Action: Create User (no AD) on page 68

Script Action: Convert to multi-value variable

Function

Converts the value of a variable into multiple values. The multiple values
will be stored under one variable. This action does not do any network
calls. It is used for configuration and formatting within the User
Management script. The Variable is split in multiple values and stored

UMRA Help

under a new variable, the split position is determined by a separator
character available in the data.

Deployment

Many implementations of User Management scripts are configured so
that the input for the properties of the script actions they contain are
defined as variables. The contents of these variables are usually read
from the input data. This table is often created from information
provided by the user. This information may however not fit seamless to
the requirements of the script actions in the script. Therefore there are
several functions that can be used in the script for some formatting of
data. This is one of them.

This function in particular can be used when one variable in the input
data contains information that has multiple values for one property of a
script action. For example, the input data may have a field that contains
the variable %GroupMemberships% specified as
"Domain\Administrators;Domain\Backup Operators;Domain\Users". The
action Script Action: Set group membership (AD) on page 135 for instance
can be used to make an user account member of multiple groups. With
the script action Convert to multi-value variable it is possible to create
the required variable which contains the three groups as separate values
under one variable. In this particular example the action is used to
separate the value of a variable into three new values for an other
variable.

Properties

Property
Name

Description Typical
setting

Remarks

Input
variable:

The variable that
contains the data
which is multi-value.

 The data in the input variable
should be separated by an
separator character.

Output
variable:

The variable which
contains the same
data as the input
variable only now
the data is available
as multiple values
instead of one value.

 The output variable can be a
different variable or the same
variable as the input variable.

UMRA Help

Separator
character

A character that
separates one value
from the other. This
character is used to
determine where
the new value
begins.

; The following characters can
be chosen to separate the
values:
, : ; <tab>

Insert
empty
values

When two separator
characters are
placed directly after
each other a blank
value could be
created.

No When you want blank values
to be defined this property
should be set to 'Yes'. When
you want to remove all blank
characters this property
should be set 'No'.

Script Action: Manage multi-text value variable

Function

Manages a multi-text value variable. Enables you to sort a multi-text
value variable and delete empty text values.

Deployment

This script action is used to manage the multi-text value that is created
with Script Action: Convert to multi-value variable on page 556.

Properties

Property
Name

Description Typical
setting

Remarks

Variable The variable that contains
the data which is
converted to multi- value.

 Use Script Action: Convert
to multi-value variable on
page 556 to convert a
data string to a multi
value variable.

Delete
empty text
values

When a multi-text value
contains empty values,
these empty values can
be deleted by setting this
property to 'Yes'.

No

UMRA Help

Sort values
in ascending
order

Sorts the multi-text value
in ascending order

No

Sort values
in
descending
order

Sorts the multi-text value
in descending order

No

Script Action: Merge multi-text variable values

Function

This action merges two input variables into one output variable

Name Description

Input variable 1 Name of input variable 1

Input variable 2 Name of inpurt variable 2

Output variable Name of the output variable

Delete duplicates Specifies that duplicate entries in the content of the
output variable must be deleted

Delete empty
values

Specifies that empty values in the content of the output
variable must be deleted

Sort Specifies that the content of the output variable must be
sorted

Deployment

This action is typically used in a script where you need to merge two
tables and clean up the content.

Script Action: Export Variables

Function

Writes the value of one or more variables to a text file.

UMRA Help

Deployment

Typically used at the end of a script to record the results of the script
operation. For instance, in a script that creates user accounts often the
user logon name and the password are exported to a file, so the user can
be informed. Especially essential when the account are created with
random passwords.

Properties

Doubleclick on any property to open a special dialog to set all properties
from one window.

Property
Name

Description Typical
setting

Remarks

Number of
exported
variables

The number of
exported variables.

 Read only property.

Export file
name

The name of the file The name of the file can
contain variables:
%NowDay% : The current day
(00,...,31)
%NowMonth%: The current
month (01,...,12)
%NowYear%: The current
year (2005,...)

Exported
text fields

A list of strings that
are written to the
Export file. In order
to export variables,
specify the variable
name in the export
string.

 Examples of a export strings:
Created user %Username% in
domain %Domain%
%Username%
%Password%

All strings will be exported on
the same line in the file. If the
output must be on more lines,
use a separate Export
Variables script action.

Field
separator

The character that is
exported to separate
the exported fields.

,

UMRA Help

Value
separator

The character used
to separate multi-
values

, or ; The character is inserted
between the values of a
multi-value variable value. In
order to be able to distinguish
the different values of a
multi-value variable, the
values should not contain the
value separator character.
Example: When exporting the
memberOf attribute of user
accounts, the object
distinguished names of the
groups of which the user
account is a member are
returned. These names
contain comma's:
CN=GroupA, DC=domain
(note the comma between
GroupA and DC). To separate
multiple groups in this case,
another value separator
should be used, for instance a
semi-colon (;).

Enclose
fields with
blanks

Specifies that fields
that contain blanks
will be enclosed by
the enclose
character.

Enclose
character

Specifies the
character that is
inserted around
strings that contain
blank chars.

"

UNICODE
format

When checked, the
exported data is save
in UNICODE format.

UMRA Help

Script Action: Delete variable

Function

Deletes a specific variable from the list with variables. If a the value of a
variable is no longer valid, it might be a good idea to delete the variable
so it can not accidentally be used in subsequent script actions.

Deployment

The execution of certain actions might invalidate the value of certain
variables. To prevent incorrect usage of these variables, the variables
can be deleted with this action. Example: Suppose a script is used to
move a user account from one domain to another domain in the same
forest. The target user account has a number of properties, for instance
the Security Identifier (SID). The SID can be used in User Management to
set up directory permissions. Now suppose the user account must be
moved, and then the home directory must be moved to another
location. For the new home directory, permissions must be setup. The
script actions involved are:

Script action Description

Script Action: Get user
(AD) on page 31

Binds to the user account. The user account and the
security identifier are exported in variables
(%UserObject%, (%UserSid%)

Script Action: Move -
rename user (AD) on
page 63

Moves the user account to the new domain in the
same forest. The variable %UserSid% now becomes
invalid since a new Security Identifier is generated for
the moved user account.

Script Action: Copy
directory on page 347

Copies the original home directory to the new location
and setup the new security settings using variable
%UserSid%.

Script Action: Delete
directory on page 357

Deletes the original home directory.

In this example, the variable %UserSid% is no longer valid, once the user
is moved and cannot be used to setup the new security settings for the
target home directory. Instead, the variable %UserSid% should be
deleted. Then a new Get user (AD) action should be used to determine
the new value of the SID.

UMRA Help

In more complicated scripts, you might want to delay certain operations.
For instance before an operation is retried or to limit network load. For
this purpose, this action can be used. The action simply suspends the
script for the specified time. Note that during this time, the script cannot
be aborted.

Properties

Property
Name

Description Typical
setting

Remarks

Variable The name of the
variable to be
deleted.

Script action: Delete multiple variables

Function

Delete one or more variables from the project variable list.

Properties

Property
Name

Description Typical
setting

Remarks

Variable
names

The names of one or
more variables that must
be deleted from the
variable list (example:
%FirstName%,
%MiddleName%,
%LastName%).

 The names must be
separated with comma's (,).

Script Action: Encrypt text

Function

Encrypts the text data of one variable and stores the result in another
variable. The same name can be used for both input and output text.

UMRA Help

See also:

Script Action: Set encrypted variable on page 546

Script Action: Generate random number

Function

Generates a random number and assign the value to a variable. The
name of the variable and the minimum and maximum possible values of
the random number can be specified.

Deployment

The action is used to generated random values. The random value is
generated as a number. The minimum and maximum possible values can
be specified. These limits are included, e.g. the generated number can
be equal to the value of these limits. The number is assigned to a
variable as a numeric value. This variable can be used in other variables,
also text variables, for instance to create a random user id number as
described below:

1. Generate variable %ID% as a random number in the range
0,...,99.

2. Specify variable %UserID% as text value: User%ID%. See Script

Action: Set Variable on page 544 for more information on how to
do this.

3. Now if number 47 is generated (%ID%=47) the resulting
variable equals User47 (%UserID%=User47)

Properties

Property
Name

Description Typical setting

Variable
name

The name of the variable that stores the
generated random number.

Minimum
value

The minimum possible value of the generated
number.

0

UMRA Help

Maximum
value

The maximum possible value of the generated
number.

999

See also:

Script Action: Set Variable on page 544

Script Action: Generate password

Function

This script action generates a password according to the specified
algorithm and stores the result in the variable %Password%.

Script Action: Log Variables

Function

Writes the current value of all variables to the User Management log
file. Note that is not the same as the Script Action: Export Variables on page
559 which is used to export the value of variables to a text file. It can be
used at several positions in the same script to log the values of the
variables at the moment the specific line of the script was executed.

Deployment

Typically used for script debugging purposes when developing or
customizing a User Management script. If you want to output specific
variables to a file for reviewing or post processing outside User
Management use the Script Action: Export Variables on page 559.

Properties

This action has no configurable properties

See also:

Script action: Log specific variables on page 566

UMRA Help

Script Action: Log Specific Variables

Function

Writes the current value of the specified variables to the User
Management log file. Note that is not the same as the Script Action: Export

Variables on page 559 which is used to export the value of variables to a
text file. It can be used at several positions in the same script to log the
values of the variables at the moment the specific line of the script was
executed.

Deployment

Typically used for script debugging purposes when developing or
customizing a User Management script. If you want to output specific
variables to a file for reviewing or post processing outside User
Management use the Script Action: Export Variables on page 559.

Properties

Property
Name

Description Typical
setting

Remarks

Number of
logged
variables

List the currently
configured number
of variables to log

 Readonly.

Double click to open a
dialog to specify the
names of the variables
that should be logged.

See Also:

:Script Action: Log Variables on page 565

Script Action: Get session variable

The action retrieves a variable from the session on page 81 variable list
and copies or updates the value to the project variable list. The variable
name must be specified. Example: %ConnectionString%. When the
variable does not exist in the session variable list, an error is generated.
If the variable already exists in the project variable list, the existing value
is overwritten.

UMRA Help

Script Action: Set session variable

The action stores a variable value in the session on page 81 variable list.
The variable name must be specified. Example: %ConnectionString%.
When the variable does not exist in the project variable list, an error is
generated. If the variable already exists in the session variable list, the
existing value is overwritten.

Script Action: Check session variable

The action checks if a variable exsist in the session on page 81 variable
list. The variable name must be specified. Example:
%ConnectionString%. The action returns the result in output property
Variable exists flag.

Script Action: Delete session variable

The action deletes a variable from the session on page 81 variable list.
The variable name must be specified. Example: %ConnectionString%.
When the variable does not exist in the session variable list, an error is
generated.

4.3.12. Programming

Script Action: Map variable

Function

This function maps the value of an input variable to a value of an output
variable. The mapping table specifies the value of the output variable for
each possible value of the input variable.

Deployment

This script action is usually used in a scripts to handle the case of
exceptions to the main rule of the script. The output variable can also be
used as a label, .e.g. as the target of a GOTO action.

UMRA Help

Example: A particular script that creates a user account uses the variable
%HomeServer% to contain the home server of the new account. This
name is later in the script used to specify the home directory of the user:
%HomeDirectory%=%HomeServer%\users\%UserName% by means of
the Script Action: Set Variable on page 544. Now this setting works fine for
most home servers in your network, but for a particular server, the
location where the home directory should be created is different: For
your home server named OAK you want the home directory of the user
to be %HomeServer%\students\%UserName%

In the above case, you can use the map variable action. You specify the
variable %HomeServer% to be the input variable, and the variable
%HomeDirectory% as the output variable. In the mapping table you
specify OAK as the input value to match and
%HomeServer%\students\%UserName% as the associated value. The
result is that whenever the home server is OAK the name of the home
directory is changed from %HomeServer%\users\%UserName% to
%HomeServer%\students\\%UserName%.

Properties

Property
Name

Description Typical
setting

Remarks

Input variable The name of the
variable that
contains the
information that
must be looked up
in the list.

 The Name of the variable
must be enclosed in "%"
characters. e.g.
%Domain%.

Output
variable

The name of the
variable that is
modified by this
script action.

 The Name of the variable
must be enclosed in "%"
characters. e.g.
%Domain%.

Number of
Input-Output
values

The number of
entries in the
Mapping table.

 This is only shown in the
property list, not in the
configuration dialog.

UMRA Help

Mapping
Table

Specifies which
input value results
in the specified
output value.

 Specifies a list of (input
value, output value) pairs.
If the contents of the
input variable matches the
input value in the list, the
output variable will be set
to the corresponding
output value.

This is only shown in the
configuration dialog, not
in the properties list itself.

Set output
variable to
default value
if no match
found.

If set to Yes, then,
when no match is
found in the
mapping table, the
output variable is
to the below
specified default
value. If set to NO,
and no match if
found, the output
variable is not
altered.

Default value
of output
variable

Specifies the value
the output variable
gets when there is
no match.

 This value is only used
when the "Set output
variable to default value if
no match found" flag is set
to Yes.

Case sensitive
compare

Specifies if the
compare function
to find a match
must be case
sensitive.

No

Script Action: Go to Label

Function

Unconditionally jumps to the script action with a specified label, skipping
all actions between this action and the action with the specified label.

UMRA Help

Deployment

Each script action can jump to an other labeled action in case of an
error. In combination with Script Action: Map variable on page 567, you can
conditionally specify the value of a label to jump to.

Properties

Property
Name

Description Remarks

Label The label of the
script action that
is to be executed
directly after this
action.

Note that the name of the destination label
may contain variables. This makes it possible
to perform conditional jumps if required, for
instance by using Script Action: Map variable
on page 567 earlier in the script to create a
variable that specifies a label.

To setup the label of an script action, select the target action in the
script section (lower left area) of the project window. Right click the
mouse or select main menu option Actions and select Set script action
label.

Script Action: If-Then- Else

Function

Evaluates a condition and then performs one or more script actions
depending on the results of that condition.

General

An IF-THEN-ELSE statement is essential in the world of scripting and
programming. It evaluates a condition and then performs an action
depending on the outcome of the evaluation. Every IF-THEN- ELSE
statement follows the same structure:

UMRA Help

IF the result is TRUE, then execute action A, else (the result is FALSE)
execute action B. The screenshot below illustrates this principle. In the IF
section, the evaluation criterion is specified. If the variable
%CurrentDate% is equal to 1 January 2006, THEN the action labeled as
NEW YEAR is executed. ELSE (the variable %CurrentDate% is not equal to
1 January 2006), the action labeled as NOT NEW YEAR is executed.

For the IF section there are many different evaluation conditions
available.

Script Action: Execute script

Function

This script action executes the script of another project. When the script
action has been executed, the variables in project B will be updated and
merged into project A.

Deployment

There are many situations where this script can be employed:

 to reuse temporary variables. These are variables which only
contain references to data and not the actual data itself. One
example would be a wizard containing multiple project forms
where an LDAP session is established for each form. As soon
as the 1st LDAP session is closed, the variable containing the
session no longer exists. Using the Execute script script action,
the LDAP session script generating the LDAP session variable
can be called from within any project form in the Wizard.

 to reuse complex scripts. Some scripts can take a lot of time to
develop and this script action offers the possibility to reuse it
for other projects;

 to initialize scripts (e.g. to change the user environment
settings so that a project can easily be used in other user
environments).

UMRA Help

The project of which you want to execute the script can be selected in
the Project name list box.

Script Action: For-Each

Function

Steps through the specified table. For each row in the specified table, a
script is executed, using the values of the current row.

Deployment

Typically, this is used if the same set of actions must be done on multiple
objects.

For instance, earlier actions in current script may have read a table of
user names from a file, and an other UMRA script may have been
configured to create a single new user, given the name of the user in a
variable. This action can then be used to call that script, so that a user is
created for each name in the file.

The following properties are shown. Double click on any of them to open
a special configuration dialog.

Table variable name Variable name of the table on which the For-
Each action has to operate

Script project Name of the project which contains the script
which needs to be executed for each row of the
table

Column x Specifies the name of the variable of the called
script that must be filled with the value in the
specified column of the table

Script project input variables Specifies which variables in the current script
are passed on to the called script. See For each -
Input variables on page 573 for more
information

UMRA Help

Return variable Specifies the name of the variable that must be
returned when the called script has finished.

Stop loop on error Here you can specify if the script should
continue upon encountering an error or not

Break conditior Specifies a condition that is checked after each
call of the script.If true,the rest of the table will
be skipped, and execution resumes with the
next action in the current script

See also:

Script Action: Manage table data on page 528

For each - Input variables

Pass variable method specification

These options specify which variables that are available in the current
script are passed on to the project that is called repeatedly.

Passing on values of variables to the called project can cause
considerable overhead in specific circumstances, especially when some
variables contain a lot of data, such as an table with many entries.
Therefore these options let you control which variables to pass, and
which not, in order to enhance performance.

Pass all variables

All variables that are available in the current script are passed on to the
repeatedly called project. This means that all variables that are defined
in the current script are available for the called project. Use this if you do
not know which variables you will actually use in the called script, or if
they do not contain large amounts of data.

This is the default setting.

Pass "for each" variables only

Only the variables that are bound to a specific column in the table over
which the "for each" is performed, as specified on the "fore each" tab,
are passed on.

UMRA Help

This gives the best performance. Use this if you do not want to make
available any other variables from the current script in the called
project.

Pass "for each" variables and the specified variables

In addition to the "for each" variables, the variables specified in the
specified Variable list are also passed on to the called script. Use this
option if you want to use some specific additional variables from the
current script in the called script.

Pass all but the specified variables

All variables are passed to the called script, except those specified in the
Variable list. Use this if you want access to most variables in the called
project, but there are some large variables you do not need in the called
project.

A variable that often does not need to be passed to the called project is
the "table" variable, that was used to generate the "for each" variables.
As the called project usually does not need access to the entire table,
but only to the generated variables that represent the current row in the
table, the original "table" variable can be added to the list of excluded
variables.

Variable list

This list contains the variables that are explicitly passed on when the
option 'Pass "for each" variables and the specified variables' is chosen

The list contains the variables that are explicitly not passed on when the
option 'Pass all but the specified variables' is chosen.

It is not used with the other options.

Script Action: Delay

Function

Waits for a specified number of milli-seconds (1000 milli-seconds = 1
second). This action can be used for instance before the retry of a failed
action.

UMRA Help

Deployment

In more complicated scripts, you might want to delay certain operations.
For instance before an operation is retried or to limit network load. For
this purpose, this action can be used. The action simply suspends the
script for the specified time. Note that during this time, the script cannot
be aborted.

Properties

Property Name Description

Delay (milli- seconds) The delay specified in milli-seconds.

Script Action: No operation

Function

No operation. The script action does not execute any operation. The
script will continue immediately with the next action.

Deployment

This action is typically used as a reference point, e.g. as the target of a
Script Action: Go to Label on page 569 script action.

See also:

Script Action: Go to Label on page 569

4.3.13. Mail

Script Action: Send mail message

Function

This action specifies the parameters for accessing the mail server and
sending an e-mail message.

UMRA Help

Property
Name

Description

To: E-mail recipient

Cc: Cc is an abbreviation for carbon copy. If you add a recipient's
name to this box in a message, a copy of the message is sent to
that recipient

From: Name of the sender

Subject: Subject line for the e-mail message

Message: Body text for the e-mail message

X-Sender: Some mail software expect 'Sender:' to be an e- mail address
which you can send mail to. However, some mail software has
as the best authenticated sender a POP or IMAP account,
which you might not be able to send to. Because of this, some
mail software put the POP or IMAP account into an X-sender
header field instead of a Sender header field, to indicate that
you may not be able to send e-mail to this address.

Mail Server: The mail server which handles mail to addresses in the domain
associated with the mail server

Mail Server
Port:

Authentication:

Username:

Password:

Deployment

This action is typically used in a script where an e-mail needs to be sent
as a result of a previous action.

Script Action: Send HTML mail message

Function

This action is used to send an HTML E-mail message. Optionally, the mail
message can contain one or more attachment files.

UMRA Help

Property Description

SMTP server The DNS name or IP address of the SMTP server to be used by
UMRA to send the e-mail (example: mail.company.com).
Optionally, the SMTP port can be specified
(mail.company.com:25). By default, port number 25 is used.

To The recipient of the e-mail message. To specify multiple
recipients, use a semi-colon (;) to separate the recipients
(example: john@domain.com; william@company.com).

Cc The recipients that should receive a copy of the e-mail message.
To specify multiple recipients, use a semi-colon (;) to separate the
copied recipients (example: john@domain.com;
william@company.com).

Bcc The recipients that should receive a blind copy of the e-mail
message. To specify multiple recipients, use a semi-colon (;) to
separate the copied recipients (example: john@domain.com;
william@company.com).

From The name of the sender of the e-mail message (example:
john@company.com).

Subject: The subject of the e-mail message (example: User creation
report).

HTML file The name of the file that contains the HTML contents of the e-
mail message. Specify either this property or property HTML
text. The HTML contents of the file can contain UMRA variables.
If the HTML contents contains links to files, the files should be
contained in the same directory as the file or in the directory
specified by property HTML link directory. (example:
D:\UMRA\EmailTemplates\UserCreationReport.html)

HTML text The HTML contents of the e-mail message. Specify either this
property or property HTML file. The HTML contents can contain
UMRA variables. If the HTML contents contains links to files, these
files should be contained in the directory specified with property
HTML link directory (example: <HTML> ... </HTML>).

HTML link
directory

The directory that contains the files referred to in the HTML
contents, specified with property HTML text' or HTML file
(example: D:\UMRA\EmailTemplates\images).

UMRA Help

Attachments The name of one or more files to be attached to the e-mail
message. To specify multiple attachments, use the semi-colon (;)
as a separator character (example: D:\UMRA\Data\UserLog.txt).

Remarks

1. All properties can contain variable names. At runtime, these
variable names are replaced with their actual values.

2. The content of the E-mail message is specified by property HTML

file or by property HTML text. Only one of these properties can be
specified.

3. If the HTML contents contains links to for instance image files,
these files should be stored in one and the same directory. The
directory is specified with property HTML link directory. If property
HTML file is used to specify the HTML contents and property HTML

link directory is not specified, the files should be contained in the
same directory as the HTML file. The references to linked file
should not contain a directory name.

4.3.14. Powershell

Active Directory permissions

Script Action: Get AD permissions

Note: This action requires the UMRA Powershell Agent service to be installed with
the Exchange 2007 Management Tools. See Manage Active Directory w ith
the UMRA Powershell Agent service for more information.

Function

Retrieve permissions of an Active Directory object, like a group,
computer, user or organizational unit. The action returns a table with
rows for each permission on that object.

Properties

UMRA Help

Property
Name

Description Typical setting

Identity The Identity parameter
identifies the Active Directory
object (group, user, computer
or organizational unit) you want
to get the permissions of. Use
for example the distinguished
name
(OU=sales,DC=tools4ever,DC=co
m), the domain\account name
(tools4ever.com\Jsmith) or the
GUID.

CN=jsmith,OU=sales,DC=tools4
ever,DC=com
tools4ever.com\Jsmith
JSmith
JSmith@tools4ever.com
or the GUID.

Filter account The 'Filter account' parameter
identifies the account (user or
group etc.) of the permissions
you want to receive. Use for
example the distinguished name
(CN=jsmith,OU=sales,DC=tools4
ever,DC=com), the
domain\account name
(tools4ever.com\Jsmith), the
User principal name (UPN).
(JSmith@tools4ever.com) or the
GUID. The 'Filter account'
parameter is used to filter the
results.

Include
inherited
permissions

Optional value. Set the value of
this parameter to 'Yes' to show
the inherited permissions as
well.

UMRA Help

Where clause Optional value. Use this
property to filter the results.
Use the following syntax:
Where-Object
{$_.NameOfProperty -eq
'value'}. For example: Where-
Object {$_.User -eq 'John
Smith'}. To use different
operators, like -ne, -like etc.
read the powershell
documentation. Use the |
operator to seperate more
Where clauses.

Domain
controller

Optional value. The name of the
domain controller used to
retrieve the Active Directory
object's permissions from. Use
the fully qualified domain name
(FQDN) of the domain controller
you want to use. For example:
EXCHSERVER.tools4ever.com.

EXCHSERVER.tools4ever.com

ADPermission
sTable

The resulting table with columns
for Identity, AccessRights, User,
Deny, ChildObjectTypes,
ExtendedRights,
InheritanceType,
InheritedObjectType and
Properties for each ACE.

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

UMRA Help

Property Description Default variable name

ADPermissionsTable The resulting table with
the columns described
below.

%ADPermissionsTable%

Table: Permissions table contents

Column name Description Example

Identity The name of the
object that you are
getting permissions
from.

domain.com/Users/John
Smith

AccessRights A description of the
access right. Possible
values: CreateChild,
DeleteChild,
ListChildren, Self,
ReadProperty,
WriteProperty,
DeleteTree,
ListObject,
ExtendedRight,
Delete, ReadControl,
GenericExecute,
GenericWrite,
GenericRead,
WriteDacl,
WriteOwner,
GenericAll,
Synchronize,
AccessSystemSecurity.

GenericRead

User The account for which
the permission applies

BUILTIN\Administrators

UMRA Help

Deny A flag indicating if the
permission is granted
or denied.

False

ChildObjectTypes The ChildObjectTypes
parameter specifies
what type of object
the permission is with.

ExtendedRights The ExtendedRights
parameter specifies
the extended rights
needed to perform
the operation. Valid
values include: Send-
As, Receive-As, View
Information Store
status

InheritanceType The InheritanceType
parameter specifies
whether permissions
are inherited

InheritanceObjectType The
InheritedObjectType
parameter specifies
what kind of object
inherits this ACE

Properties The Properties
parameter specifies
what properties the
object contains.

UMRA Help

Script Action: Add AD permission

Note: This action requires the UMRA Powershell Agent service to be installed with
the Exchange 2007 Management Tools. See Manage Active Directory w ith
the UMRA Powershell Agent service for more information.

Function

Adds a permission to an Active Directory object, like a group, computer,
user or organizational unit. Use the parameters to specify the correct
permission.

Properties

Propert
y Name

Description Typical setting Remark
s

Identity Use this
parameter to
specify the
identity of the
object that
you are
getting
permissions
on.

(CN=jsmith,OU=sales,DC=tools4ever,DC=
com), tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com or the GUID.

UMRA Help

Account The Account
parameter
identifies the
user, group or
computer of
the
permission
you want to
add to the
Active
Directory
object. Use for
example the
distinguished
name, the
domain\accou
nt name, the
User principal
name (UPN) or
the GUID.

CN=jsmith,OU=sales,DC=tools4ever,DC=c
om, tools4ever.com\Jsmith,
JSmith@tools4ever.com

Access
rights

Optional
value. The
'Access rights'
parameter
identifies the
access rights
the account
gets on the
Active
Directory
object. If this
property is not
specified, the
'Extended
rights'
property must
be specified

Delete, ReadControl, WriteDacl,
WriteOwner, Synchronize,
AccessSystemSecurity, GenericRead,
GenericWrite, GenericExecute,
GenericAll, CreateChild, DeleteChild,
ListChildren, Self, ReadProperty,
WriteProperty, DeleteTree, ListObject,
ExtendedRight

UMRA Help

Extended
rights

Optional
value. The
'Extended
rights'
parameter
identifies the
extended
rights the
account gets
on the Active
Directory
object. If this
property is not
specified, the
'Access rights'
property must
be specified

Open-Address-Book, Allowed-To-
Authenticate, Receive-As, Send-As, User-
Change-Password, User-Force-Change-
Password, Send-To, Apply-Group-Policy,
Allowed-To-Authenticate, Enable-Per-
User-Reversibly-Encrypted-Password.

Child
object
types

Optional
value. The
'Child object
types'
parameter
specifies what
type of object
the
permissions is
with. This
parameter can
only be
specified
when you
specify the
CreateChild or
DeleteChild
permission in
the 'Access
rights'
property.

UMRA Help

Inheritanc
e type

Optional
value. The
'Inheritance
type'
parameter
specifies
whether
permissions
are inherited.

None, All, Descendents, SelfAndChildren,
Children

Inherited
object
type

Optional
value. The
'Inherited
object type'
parameter
specifies what
kind of object
inherits this
ACE. Use for
example:
User, Group,
Computer
etc..

User, Group, Computer etc.

UMRA Help

Propertie
s

Optional
value. The
'Properties'
parameter
specifies on
what
properties of
the Active
Directory
object this
ACE applies
to. This
parameter can
only be used
when the
ReadProperty,
WriteProperty
or Self
permission is
used in the
'Access rights'
property.

 E-mail-Addresses, Display-Name,
Exchange-Information etc.

Deny Optional
value. Set the
'Deny'
parameter to
'Yes' to deny
the
permission for
the specified
account on
this Active
Directory
object.

Yes, No

UMRA Help

Domain
controller

Optional
value. The
name of the
domain
controller that
retrieves data
from Active
Directory. Use
the fully
qualified
domain name
(FQDN) of the
domain
controller you
want to use.

EXCHSERVER.tools4ever.com

Script Action: Remove AD permission

Note: This action requires the UMRA Powershell Agent service to be installed with
the Exchange 2007 Management Tools. See Manage Active Directory w ith
the UMRA Powershell Agent service for more information.

Function

Remove a permission of an Active Directory object, like a group,
computer, user or organizational unit. Use the parameters to specify the
permission you want to remove.

Properties

UMRA Help

Propert
y Name

Description Typical setting Remark
s

Identity The Identity
parameter
identifies the
Active
Directory
object (group,
user,
computer or
organizational
unit) you want
to remove a
permission
from.

(CN=jsmith,OU=sales,DC=tools4ever,DC=
com), tools4ever.com\Jsmith, JSmith,
JSmith@tools4ever.com or the GUID.

Account The Account
parameter
identifies the
user account
or group of
which you
want to
remove
permissions of
this Active
Directory
object from.
Use for
example the
distinguished
name, the
domain\accou
nt name, the
User principal
name (UPN) or
the GUID.

CN=jsmith,OU=sales,DC=tools4ever,DC=c
om, tools4ever.com\Jsmith,
JSmith@tools4ever.com

UMRA Help

Access
rights

Optional
value. The
'Access rights'
parameter
identifies the
access rights
you want to
remove from
the Active
Directory
object. If not
specified, and
the 'Extended
rights'
property is not
specified, all
permissions
for that
account will
be removed.

Delete, ReadControl, WriteDacl,
WriteOwner, Synchronize,
AccessSystemSecurity, GenericRead,
GenericWrite, GenericExecute,
GenericAll, CreateChild, DeleteChild,
ListChildren, Self, ReadProperty,
WriteProperty, DeleteTree, ListObject,
ExtendedRight

Extended
rights

Optional
value. The
'Extended
rights'
parameter
identifies the
extended
rights you
want to
remove from
the Active
Directory
object. If not
specified, and
the 'Access
rights'
property is not
specified, all
permissions
for that
account will
be removed.

Open-Address-Book, Allowed-To-
Authenticate, Receive-As, Send-As, User-
Change-Password, User-Force-Change-
Password, Send-To, Apply-Group-Policy,
Allowed-To-Authenticate, Enable-Per-
User-Reversibly-Encrypted-Password.

UMRA Help

Child
object
types

Optional
value. The
'Child object
types'
parameter
specifies what
type of object
the
permissions is
with. This
parameter can
only be
specified
when you
specify the
CreateChild or
DeleteChild
permission in
the 'Access
rights'
property.

Inheritanc
e type

Optional
value. The
'Inheritance
type'
parameter
specifies
whether
permissions
are inherited.

None, All, Descendents, SelfAndChildren,
Children

UMRA Help

Inherited
object
type

Optional
value. The
'Inherited
object type'
parameter
specifies what
kind of object
inherits this
ACE. Use for
example:
User, Group,
Computer
etc..

User, Group, Computer etc.

Propertie
s

Optional
value. The
'Properties'
parameter
specifies on
what
properties of
the Active
Directory
object this
ACE applies
to. This
parameter can
only be used
when the
ReadProperty,
WriteProperty
or Self
permission is
used in the
'Access rights'
property.

 E-mail-Addresses, Display-Name,
Exchange-Information etc.

UMRA Help

Deny Optional
value. Set the
'Deny'
parameter to
'Yes' to deny
the
permission for
the specified
account on
this Active
Directory
object.

Yes, No

Domain
controller

Optional
value. The
name of the
domain
controller that
retrieves data
from Active
Directory. Use
the fully
qualified
domain name
(FQDN) of the
domain
controller you
want to use.

EXCHSERVER.tools4ever.com

Script Action: Set AD permissions (advanced)

Note: This action requires the UMRA Powershell Agent service to be installed with
the Exchange 2007 Management Tools. See Manage Active Directory w ith
the UMRA Powershell Agent service for more information.

Function

Set permissions of an Active Directory object, for example, a group,
computer, user or organizational unit. The action has a table with rows
for each permission as input and overwrites all existing permissions for
that object.

UMRA Help

Deployment

The 'AD permissions table' parameter is an UMRA table with one
column. This table has rows for each permission and each row in that
column contains the last part of the 'Add-ADPermission' commandlet.
The first part of the commandlet is generated with the Identity
parameter and looks like 'Add-ADPermission -Identity "John Doe"'. The
second part contains for example: -AccessRights Read -User "Jane Doe" -
. To get this table, first retrieve a table with the UMRA action 'Get AD
permissions'. Optionally, you can edit the table. Use this table as input
for the UMRA Form 'ConvertToADPermissionTable'. This form, and the
get and set example forms, are located in the 'Example projects' folder
in the UMRA installation directory.

Properties

Proper
ty
Name

Description Typical setting Remar
ks

Identity Use this parameter to
specify the identity of
the object that you are
getting permissions on.

(CN=jsmith,OU=sales,DC=tools4eve
r,DC=com), tools4ever.com\Jsmith,
JSmith@tools4ever.com or the
GUID.

AD
permissi
ons table

This parameter is used
to set all the
permissions of a Active
Directory object.
Retrieve a permissions
table by using the' Get
AD permission' and
filter the results with
the UMRA project:
ConvertToADPermissio
nTable.

%ADPermissionsTable%

UMRA Help

Domain
controlle
r

Optional value. The
name of the domain
controller that
retrieves data from
Active Directory. Use
the fully qualified
domain name (FQDN)
of the domain
controller you want to
use.

EXCHSERVER.tools4ever.com

Script Action: Get owner

Note: This action requires the UMRA Powershell Agent service to be installed with
the Exchange 2007 Management Tools. See Manage Active Directory w ith
the UMRA Powershell Agent service for more information.

Function

Get the owner of an Active Directory object, for example, a group,
computer, user or organizational unit. The action returns a table with a
row for the owner of that object.

Properties

Propert
y Name

Descriptio
n

Typical setting Remark
s

Identity Use this
parameter
to specify
the identity
of the object
that you are
getting
permissions
on.

(CN=jsmith,OU=sales,DC=tools4ever,DC=co
m), tools4ever.com\Jsmith,
JSmith@tools4ever.com or the GUID.

UMRA Help

Domain
controller

Optional
value. The
name of the
domain
controller
that
retrieves
data from
Active
Directory.
Use the fully
qualified
domain
name
(FQDN) of
the domain
controller
you want to
use.

EXCHSERVER.tools4ever.com

Output Properties

When the action is run, the actual value of the properties are
determined at run time, and the action is executed using these values.
Generally these values are not stored for later usage.

By default the following properties are saved in a variable for usage in
other scripts. Properties that are exported are shown with an image with
a green arrow in the properties list.

UMRA Help

Property Description Default
variable name

Remarks

ADOwnerTable The resulting
table with
one row and
columns for
Identity,
Owner,
Isvalid and
ObjectState,
describing
the owner of
the Active
Directory
object.

%ADOwnerTable%

Script Action: Set owner

Note: This action requires the UMRA Powershell Agent service to be installed with
the Exchange 2007 Management Tools. See Manage Active Directory w ith
the UMRA Powershell Agent service for more information.

Function

Set the owner of an Active Directory object, for example, a group,
computer, user or organizational unit. The action has a table with rows
for each permission as input and overwrites all existing permissions for
that object.

Properties

UMRA Help

Propert
y Name

Description Typical setting Remark
s

Identity Use this
parameter to
specify the
identity of the
object that
you are
getting
permissions
on.

(CN=jsmith,OU=sales,DC=tools4ever,DC=c
om), tools4ever.com\Jsmith,
JSmith@tools4ever.com or the GUID.

Owner The Owner
parameter
identifies the
new owner of
the Active
Directory. Use
for example
the
distinguished
name, the
domain\accou
nt name or the
GUID.

(CN=jsmith,OU=sales,DC=tools4ever,DC=c
om), tools4ever.com\Jsmith,
JSmith@tools4ever.com or the GUID.

Domain
controlle
r

Optional
value. The
name of the
domain
controller that
retrieves data
from Active
Directory. Use
the fully
qualified
domain name
(FQDN) of the
domain
controller you
want to use.

EXCHSERVER.tools4ever.com

UMRA Help

Group management

Script Action: Set Managed By

Note: This action requires the UMRA Powershell Agent service to be installed with
the Exchange 2007 Management Tools. See Manage Active Directory w ith
the UMRA Powershell Agent service for more information.

Function

Set the Managed By attribute of the specified group. The action updates
the Managed By attribute in Active Directory and optionally updates the
Active Directory permissions to allow the specified manager to update
the membership list (Manager can update membership list).

Deployment

This action updates the Managed By setting of an existing group.

Properties

Propert
y Name

Description Typical setting Rema
rks

Identity Identifies the group you
want to set the
'Managed By' option of.
Use for example the
distinguished name, the
domain\account name,
or the GUID.

CN=group_a,OU=sales,DC=tools4
ever,DC=com

tools4ever.com\group_a

UMRA Help

User
name

The parameter specifies
the name of the user,
group, or contact that
appears in the Managed
by tab of the Active
Directory object. You can
use any of the following
values for this
parameter:
Distinguished name
(DN), canonical name,
GUID, Name or Display
name.

(CN=jsmith,OU=sales,DC=tools4ev
er,DC=com),
tools4ever.com\Jsmith,
JSmith@tools4ever.com or the
GUID.

Allow
update
member
ship list

Set this parameter to
'Yes' to allow the
manager (the user that
has the Managed By'
option of this group) to
update the membership
list.

Yes or No

Domain
controlle
r

Optional value. The
name of the domain
controller used to access
and update the group.
Use the fully qualified
domain name (FQDN) of
the domain controller
you want to use. For
example:
domaincontroller.tools4
ever.com. This property
is used to prevent
replication problems.

domaincontroller.tools4ever

UMRA Help

Script Action: Get (nested) group memberships

Note: This action requires the UMRA Powershell Agent service to be installed with
the Exchange 2007 Management Tools. See Manage Active Directory w ith
the UMRA Powershell Agent service for more information.

Function

Get the group memberships of an Active Directory object. Like for
example: a group, user or computer. The action generates a table that
hold the names of the groups, including nested groups, of which the
Active Directory object is a member.This action retrieves the group
memberships of an existing Active Directory object.

Deployment

This action retrieves the group memberships of an existing Active
Directory object.

Properties

Prope
rty
Name

Description Typical setting Rema
rks

Identit
y

The Identity parameter
identifies the Active Directory
object (group, user, computer
or organizational unit) you
want to get the group
memberships of. Use the
distinguished name to specify
this parameter
(CN=jsmith,OU=sales,DC=tools
4ever,DC=com).

CN=jsmith,OU=sales,DC=tools
4ever,DC=com

UMRA Help

Group
table

The table of groups that the
object is a member of. Each
group is specified with the
format Domain\GroupAccount.

%GroupTable% The
proper
ty is an
output
only
proper
ty,
specifi
ed as a
variabl
e.

File system

Script Action: Get disk space

Function

The action gets disk space information from a specified computer. The
information is returned in a table and output variables holding minimum
and maximum values.

Properties

Propert
y Name

Description Typical setting Remarks

Computer
name

The name of the
computer of which
to receive its disk
spaces. If this
parameter is not
specified, the local
machine is used. Use
one of the following
formats: NETBIOS
(zeus), FQDN
(zeus.tools4ever.co
m) or TCP/IP address
(192.168.196.87).

 Examples:

zeus

zeus.tools4ver.co
m

192.168.196.87

UMRA Help

Disk
space
table

When specified, the
output variable
stores the disk
information in a
table.

%DiskSpaceTable% The table contains
the following
columns:

Name (C:)
VolumeName
(UserData)
FreeSpace (in
bytes)
Size (in bytes)
Description (Local
fixed disk)
__SERVER (ZEUS)
DriveType. See
the Remarks
section for more
information on
the DriveType
parameter.

Minimum
free disk
space MB

When specified, the
output variable
stores the available
disk space in MB of
the logical disk drive
with the minimum
disk space available.
For this property,
only hard disks are
taken into account.

%MinFreeDiskSpaceMB%

Minimum
free disk
space
drive

When specified, the
output variable
stores the logical
disk drive (example:
D:) with the
minimum disk space
available. For this
property, only hard
disks are taken into
account.

%MinFreeDiskSpaceDrive
%

UMRA Help

Maximum
free disk
space MB

When specified, the
output variable
stores the available
disk space in MB of
the logical disk drive
with the maximum
disk space available.
For this property,
only hard disks are
taken into account.

%MaxFreeDiskSpaceMB%

Maximum
free disk
space
drive

When specified, the
output variable
stores the logical
disk drive (example:
D:) with the
maximum disk space
available. For this
property, only hard
disks are taken into
account.

%MaxFreeDiskSpaceDrive
%

Remarks

The Disk space table returns in one column the drive type. This
numerical value corresponds to the type of disk drive the logical disk
represents. The values have the following meaning:

DriveType value Meaning

0 Unknown

1 No Root Directory

2 Removable Disk

3 Local Disk

4 Network Drive

5 Compact Disc

6 RAM Disk

UMRA Help

Active Directory utility

Script Action: Get PDC (AD)
Function

The action gets the Fully Qualified Domain Name of the computer
holding the PDC Operations Master FSMO role on the current domain.
The name is returned in an output variable, specified by default as
%PDCDomainController%.

Agent service session

Script Action: Setup Powershell Agent service session

The action is used to initialize a Powershell Agent service session. A
number of UMRA Powershell actions use a Powershell session. This
action is used to create such a session. The action has only a single
output property: Session ID. The property should be stored in an UMRA
variable (default: %PowershellAgentSessionId%) that used in
subsequent actions that use the session.

For more information on the Powershell Agent service session, see the
following topics:

Powershell Agent service session on page 78

Script Action: Setup Powershell Agent service session

Script Action: Release Powershell Agent service session on page 606

Configuration section on page 27

Script Action: Check Powershell Agent service session

The action is used to check if an Powershell Agent service session still
exists. A number of UMRA Powershell actions use a Powershell session.
With action Setup Powershell Agent service session, such a session is
initialized at the Powershell Agent service session. When the session is
idle for a configurable time interval, the session is released by the

UMRA Help

Powershell Agent service. When the session is released, all variable
objects stored with the session are destroyed. With this action, you can
check if the action still exists at the Powershell Agent service. If this is
not the case, the session must be recreated.

The input property Session ID specifies the Powershell Agent service
session ID, as generated with action Setup Powershell Agent service

session. The output property variable Session flag indicates if the
session was found, yes or no.

With this action, you can only check Powershell Agent Service sessions
that are created within the same client context: the same UMRA session
on page 81 must be active. E.g. if the UMRA Forms client is restarted, a
new UMRA session is created and old existing sessions cannot be
checked.

More information:

Powershell Agent service session on page 78

Script Action: Setup Powershell Agent service session

Script Action: Release Powershell Agent service session on page 606

Configuration section on page 27

Script Action: Release Powershell Agent service session

The action is used to release an existing Powershell Agent service
session. A number of UMRA Powershell actions use a Powershell
session. This action is used to delete such a session when it is no longer
needed. The action has only a single input property, Session ID that
identifies the existing Powershell Agent service session.

For more information on the Powershell Agent service session, see the
following topics:

Powershell Agent service session on page 78

Script Action: Setup Powershell Agent service session

Script Action: Release Powershell Agent service session on page 606

Configuration section on page 27

UMRA Help

5. Context sensitive Help

5.1. UMRA PSM Domain Controllers Overview
This window gives an overview of the installation status and health of
the PSM notification packages on the domain controllers, and is the
starting point for managing the installation and configuration of PSM.

The PSM Notification package is custom UMRA software
(UmraPsmW32.dll or UmraPsmX64.dll) that is loaded by Windows on
the domain controller. The package is signalled by Windows on each
password modification. The PSM Package will forward this signal to the
UMRA service. The PSM package must be installed on each domain
controller in the domain in order to catch all password modifications.

Domain Controller List
Domain controller

The name of the domain controller.

Domain

The full DNS name of the domain.

Version

The version of the currently installed PSM Notification Package on the
Domain Controller.

Current Status

Shows the current installation status of the PSM package on the domain
controller. see UMRA PSM installation status on page 126 for the possible
values.

Small Buttons

In the top right of the window are two square buttons. Use the button
with the + sign to manually add a domain controller to the list shown.
Use the button with the X sign to manually remove a domain controller
from the list shown. This will not install or un-install any software, only

UMRA Help

which Domain Controllers are listed. Only needed when you have
disabled the automatic detection, or to remove a DC that has been
dismantled.

Buttons
Install/Upgrade

Starts the installation and upgrade wizard to start installing the current
version PSM Package on the (selected) domain controllers.

Delete

Un-installs the PSM package from the selected DC.

Options

Opens a dialog where you can perform miscellaneous actions on the
selected DC, such as configure the behaviour of the PSM packages on
the selected service, access the log file of the PSM Packages, or initiate a
reboot of the selected domain controller.

Advanced

Opens a dialog where you can configure several settings regarding to the
performance of this overview window, such as Automatically discovering
new Domain controllers, modifying the managed domains, etc.

Refresh

Reevaluates the status information of all domain controllers in the list,
and checks for newly added Domain Controllers if automatic discovery is
active.

5.2. Installation and upgrade wizard- Installation
and upgrade options
Specify here on which domain controller(s) the PSM Package should be
installed, and press Next.

Install or upgrade UMRA PSM on all domain controllers in a domain
(Recommended)

UMRA Help

Will browse for all domain controllers in a domain (specified shortly),
and offer to install the package on all Domain controllers found.

Install or upgrade UMRA PSM on a specific Domain Controller

Installs the PSM package on a specific domain controller. Note that the
Package must be installed on all domain controllers in a domain in order
to catch all password reset events.

Install or upgrade UMRA PSM on all selected Domain Controllers

Installs the package on all domain controllers that where selected in the
overview window.

5.3. Installation and upgrade wizard - Specify the
target domain
Specify the domain name of the domain that will be searched for
Domain controllers and prepare installation, and press Next.

5.4. Installation and upgrade wizard - Specify the
target domain controller
Domain Controller Name

Specify here the name of the domain controller on which to install the
UMRA PSM notification package.

5.5. Install/upgrade software
A list of the domain controllers found is presented.

Wait until the Installation/progress text at the bottom reads "Waiting for
user input".

Select Install/Upgrade to install the PSM package on each domain
controller listed as "ready to install".

Next wait until the Installation/progress text at the bottom reads
Installation/upgrade Completed.

Select Close to return to the main overview window.

UMRA Help

5.6. Delete Options
Delete the UMRA PSM software from the selected domain controllers

Deletes the PSM package from the domain controllers that where
selected in the main list when the delete button was selected.

Delete the UMRA PSM software from other domain controllers

You can specify here Domain Controllers that are not yet in the overview
list of domain controllers. The will be added to the overview window.
Then you select the DC's from the overview list for which you want to
delete the PSM package and select the delete button again.

So, only option 1 actually deletes the software. option 2 allows to browse
for more DC's, and reissue the delete request, using option 1.

5.7. Domain Controller Options
Here you may perform specific actions on the selected Domain
Controllers

Configuration

Specify here configuration settings for the working of the PSM package
itself.

Notify UMRA service of password changes

When selected, the PSM Notification Package on the server will connect
to the UMRA service to inform the service of any password changes. This
is the default setting. If not selected for all DC's in a domain, PSM will not
operate properly.

When unselected, the PSM Notification Package will be switched off on
the selected Domain Controllers, and NOT send any notification to the
UMRA service. The PSM Package runs as it where in stand-by mode. Use
this only to switch off the package in case of severe issues.

Enable Logging in the PSM log

When selected, the PSM Notification package will log information of its
actions in the UmraPsm.log file, located in the system32 directory of the
Domain Controller. Default this logging is turned on.

UMRA Help

Maximum log detail level

Specify the detail of the messages logged, when logging is enabled.

Update

Selecting the update button applies the configuration settings to the
selected Domain Controllers.

Status
View log file

Select this button to open de UmraPsm.log file on the specific Domain
controller, to view detailed info regarding the performance of the PSM
Notification Package.

Reboot
Reboot options

Select this button to be able to remotely reboot the selected domain
controllers.

After installation or un-installation of the PSM package, the Domain
Controller(s) involved have to be rebooted in order to complete the
process. It is recommended to use the standard protocol for rebooting
domain controllers that applies to your organization. However, if
required, it is possible to schedule a forced reboot of the selected domain
controllers by selecting the button.

5.8. Reboot options
Schedule a reboot

Select to initiate a reboot after the selected number of minutes.

Reboot immediately

Select to initiate a reboot immediately.

OK

Initiates the selected reboot.

Cancel

Exit window without rebooting.

UMRA Help

5.9. Refresh options
Select here which domain controllers must be refreshed in the overview.

5.10. Advanced Settings - general settings

General settings regarding the PSM overview
Auto Discovery Mode

When selected, the UMRA console will automatically search for all domain
controllers in the managed domains when the Overview window is
opened or refreshed. The default setting is selected.

Auto Refresh Mode

When selected the status of the DC's is refreshed when the overview
window is opened or modified. Otherwise the status of the DC's is only
refreshed when the refresh button is pressed. Default is on.

5.11. Advanced Settings - domains
Here is a list of all domains which are automatically browsed for new
domain controllers when appropriate. List here all domains for which
you use PSM.

Select the add button to add domains, and the remove button to
remove domains.

Note that the remove button will not remove domain controllers from
the overview list, nor uninstall PSM, only remove the domain from the
browse list.

5.12. Select domain controller wizard - Specify the
target domain
Specify the domain name in order to find all Domain Controllers in the
domain.

UMRA Help

5.13. Select domain controller wizard - welcome
Specify a method to determine the target domain controllers, and select
Next.

5.14. Specify the name of the domain controller
Enter the name of the specific domain controller to manage.

5.15. Password Synchronisation Manager service
settings
These options define what the UMRA service does when it receives a
notification of a password change from a PSM package on a Domain
Controller.

Enable Password Synchronisation Manager

If the enable flag is switched of, the service only will acknowledge in the
log (when the appropriate loglevel is enabled), that a PSM notification
has been received by the service, but no project will be executed.

UMRA project to Execute

If enabled, the specified user-provided project will be executed on a
notification from the PSM package.

The project may examine the values of several predefined variables to
decide on the actions to initiate.

See UMRA PSM Script variables on page 127 for details

5.16. IDD_TAB_ACTIONITEM_LN_QUERY_ITEMS-
forwarded

5.17. IDD_TAB_ACTIONITEM_LN_ACL -forwarded
forwarded to IDH_HELP_ACTION_LN_UPDATE_ACL

UMRA Help

5.18. IDD_TAB_ACTIONITEM_CYCOS_GET_ATTACH
MENT

5.19. IDD_TAB_ACTIONITEM_CYCOS_GET_CUSTOM

5.20. IDD_TAB_ACTIONITEM_CYCOS_SET_CUSTOM

5.21. IDD_DIALOG_CYCOS_CUSTOMFIELD_OUTPUT

5.22. Value of text item.
Specify here the value of the text item.

Value property
name

Description Typical
setting

Remarks

Text The exact text value of the
resulting field.

 If the
general
option
"Merge if
exist" is
specified
the text is
appended
to the
existing
value of
the item.

5.23. Value of text list item
Item type: Text List

UMRA Help

Value property
name

Description Typical
setting

Remarks

Operations Specification how to
merge the new text values
with the current one.
Options are:

Set (unconditionally
replace existing values
with specified values)

Append values(s)

Insert value(s) at begin

Remove (no error if not
found)

Remove (error if not
found)

Set

Text item values A list of new text values.

5.24. Value of date-time item
Item type: Date-time

UMRA Help

Value property
name

Description Typical
setting

Remarks

Date time value
specification

The date-time value to set
the field to

 if Specified
by a
variable, it
should be a
UMRA
Date-time
type
variable.

Date time
operation

Specifies how to merge the
item with existing values.
There are 3 options.

1) Set item value to the
specified date-time value.

This results in a single
date-time as specified

2) Append the specified
date-time value to the
current values

Any existing list of date-
time values is extended
with the new value.

3) Insert the specified
date-time value at the
beginning of the current
list of date-time values.

Any existing list of data-
time values is retained,
and the new value is
added in front of the
current values.

UMRA Help

5.25. Value of numeric item
Item type: Numeric

Value
property
name

Description Typical
setting

Remarks

Number value
specification

The numeric value to set
the field to

 if specified
by means
of a
variable,
the result
must be
resolvable
to a
numeric
value. If a
variable is
used it is
therefore
best to
specify only
a single
UMRA
variable of
the
numeric
type.

UMRA Help

Number
operation

Specifies how to merge the
item with existing values.
There are 3 options.

1) Set item value to the
specified number value.
(default)

2) Append the specified
numeric value to the
current values

Any existing list of numeric
values is extended with the
new value.

3) Insert the specified
numiric value at the
beginning of the current list
of numeric values.

Any existing list of numeric
values is retained, and the
new value is added in front
of the current values.

5.26. Built-in variables
A built-in variable is a variable that is generated automatically by UMRA.
These variables can be used for logging and script-debugging purposes.
The built-in variables are predefined. The following list shows all of the
built-in variables.

UMRA Help

Variable name Example value Description

%NowYear% 2006 The current year
(2006,...). The value
is generated when a
script is executed by
either the UMRA
Console or UMRA
Service application.

%NowMonth% 11 The current month
(1,...,12). The value is
generated when a
script is executed by
either the UMRA
Console or UMRA
Service application.

%NowDay% 26 The current day
(1,...31). The value is
generated when a
script is executed by
either the UMRA
Console or UMRA
Service application.

%NowHour% 14 The current hour
(0,...,23). The value is
generated when a
script is executed by
either the UMRA
Console or UMRA
Service application.

%NowMinute% 35 The current minute
(0,...,59). The value is
generated when a
script is executed by
either the UMRA
Console or UMRA
Service application.

UMRA Help

%NowSecond% 9 The current second
(0,...,59). The value is
generated when a
script is executed by
either the UMRA
Console or UMRA
Service application.

%TimeStamp% 20080528-111433 A timestamp string
representing the
current date and
time in the format:
YYYMMDD-HHMMSS
(year month day -
hour minute -
second).

%CurrentSystemDate% 11:14 05/28/2008 The current date and
time stored as a
date-time variable
type.

%UmraFormSubmitAccount% Domain_A\WillliamsJ The name of the
user account that
runs the UMRA
Forms or UMRA
Console application
and submits a form
to the UMRA
Service. The variable
value is determined
by the UMRA Service
when a form submit
request is received.

UMRA Help

%UmraFormSubmitDomain% Domain_A The name of the
domain of the user
account that runs
the UMRA Forms or
UMRA Console
application and
submits a form to
the UMRA Service.
The variable value is
determined by the
UMRA Service when
a form submit
request is received.

%UmraFormSubmitUsername% WilliamsJ The username of the
account that runs
the UMRA Forms or
UMRA Console
application and
submits a form to
the UMRA Service.
The variable value is
determined by the
UMRA Service when
a form submit
request is received.

%UmraPath% C:\Prgram
Files\UmraService

The program
directory of the
UMRA Service of
UMRA Console
application.

%SystemRoot% C:\WINDOWS\system32 The path of the
system32 folder of
the computer that
runs the UMRA
application.

%UmraProjectName% CreateUser The name of the
UMRA project that is
currently executed.

UMRA Help

 %UmraProjectNameStack% CreateUser
GetAccountNames

A text list variable
containing all
projects that are
currently being
executed up to the
current project. The
variables gets
multiple values
when using for-each
constructions and
when projects
execute other
projects.

%UmraClientComputerName% HERMES The name of the
client computer
from which the form
is submitted. This
variable is only
available when using
the UMRA Forms
client application in
combination with
the UMRA Service.
The value is
generated when a
submit button is
pressed in a form.

Note: When the value of a built-in variable is generated, an existing
value of a variable with the same name is overwritten.

5.27. Condition criteria - Setup
Using the IF-Then-Else script action you can evaluate a condition. A
condition is always setup using the following components:

IF

The IF component includes one or more criteria for the condition.

UMRA Help

Then

In the Then section you specify which action should be executed if the
condition is met

Else

In the Else section you specify which action (if any) needs to be executed
if the condition is not met.

5.28. Condition criteria - Setup criterion
In the Setup criterion dialog box you must specify how the variable in
your If-Then-Else condition should be evaluated. The variable type can
be text, numeric, date-time or a boolean.

The equation operator can be one of the following:

 has no value or does not exist

 equals (case sensitive and case insensitive)

 contains (case sensitive and case insensitive)

 starts with (case sensitive and case insensitive)

 ends with (case sensitive and case insensitive)

If you need to obtain an inverted result (e.g. does NOT equal), the option
Invert the result should be marked.

5.29. Configure predefined variables
The script of a User Management Resource Administrator project can
contain variables. To run a project, the variables need to be configured.
The project can contain additional information for the variables. With
the option Configure predefined variables, this information is shown for
each variable to help you specify the variable values.

The top section of the window describes the variable. It shows the
variable name (%Domain%), a description and some example values. In

UMRA Help

the bottom section of the window, you need to specify a variable. If the
value of the variable should be the same each time the script is

executed for a line of the input data, then select the option Constant

and specify the value of the variable. If the value of the variable
corresponds with an input data column, then select the option Input

data column and select the column from the list with available columns.

See also:

Help on help

UMRA Basics on page 3

Managing script actions on page 712

5.30. Control running UMRA service projects
In this window are listed the UMRA service projects of which the scripts
are currently actively running on the UMRA service. This window is
mainly informational.

The Abort button can be used in case of urgent need to abort a specific
script.

Under normal conditions this option should not be used. However, in
some circumstances it may be required to abort a specific script. For
instance in order to stop a lengthy script that contains an error.

5.31. Data specification - Text list
User Management Resource Administrator can process various different
data formats: text, numbers, date and time values etc. In specific cases,
the data can not be specified as a single value, but as a series of values.
For instance, the Script Action: Set User Global Group Memberships
http://www.tools4ever.com/resources/manual/usermanagement6/scrip
t_action_set_user_global_group_memberships.htm \t t4ehelppopup
supports the property Global groups. This property holds a series of
global group names. In other words, this single property specifies

http://www.tools4ever.com/resources/manual/usermanagement6/script_action_set_user_global_group_memberships.htm%20t%20t4ehelppopup
http://www.tools4ever.com/resources/manual/usermanagement6/script_action_set_user_global_group_memberships.htm%20t%20t4ehelppopup

UMRA Help

multiple names. If you want to assign global group memberships using
variables you want the variable to hold multiple values. For example:

1. Variable %GroupSet% contains the groups GlobalGroupA,
GlobalGroupB, GlobalGroupC

2. In the script action Set User Global Group Memberships, the
property Global groups is set to %GroupSet%

To support this mechanism, you can set the value of a variable using the
multivalue type Text list. To start, add an actionScript Action: Set Variable
on page 544 to the script. Edit the properties of the action and select
Text list as the type of the variable value.

Next, click the Browse button. The Specify input window is presented.
The window shows a list with all the current values of the variable. Click
the Add, Edit and Delete buttons to manage the values of the variable.

When you click the Add button, you can directly specify a new value for
the variable or you can search the network to find one or more items.

If you select the option Specify name, you can simply enter the value
and click OK. If you select the option Specify search method. you can
specify the type of search and the format of the output names. Once the
search method and name format are selected, click OK to continue.
When ready, the results will be shown in the Specify input window.

See also:

UMRA Basics on page 3

Script Action: Set Variable on page 544

Script_Action: Map variable on page 567

Script Action: Set User Global Group Memberships on page 88

UMRA Help

5.32. Database query - Database specification
In the Database type list box, you can select one of the following
database types:

1. MS Access (Jet) databases

Allows you to connect to an MS Access database through the Jet engine.
Jet is the Database Management System (DBMS) which underlies MS
Access and also Visual Basic, as well as MS Word and MS Excel.

Next steps:

Database setup - MS-Access (Jet) on page 627

Database query - Query on page 626

2. All other databases

Choose this option if you wish to connect to any other (relational)
databases (SQL server, Oracle, etc.) through a connection string on page
628. A connection string includes the source database name and other
parameters needed for the initial connection. The default value is an
empty string.

Next steps:

Database setup - Other databases on page 628

Database query - Query on page 626

5.33. Database query - Query

Previous steps:

1. Specifying the data source on page 626

2. Specifying the MS Access database on page 627

UMRA Help

Once you have completed these steps, you are ready to create a
database query. For example, suppose we have am MS Access table
called Users.MDB which contains a table Users with the following
information:

The query syntax for retrieving all the table data is:

SELECT * FROM USERS

where "USERS" is a table in the Users.mdb database file.

Since the query can be considerably more complex than the one for this
example, we would advise you to construct the query in MS Access until
you are absolutely certain that your query returns the required result. If
this is the case, then copy the SQL query into UMRA as follows:

1. Select the Query tab in the Setup generic table dialog box

2. Paste the query into the Database query window.

3. Click the Run test tab and click the Test button to check once

more if the query is working correctly.

5.34. Database setup - MS-Access (Jet)

Specifying an MS Access database

1. Drag the Table form field from the Actions-Network-Form field
window to the Form window of your project.

2. Select the option Generic table and click the Configure button.
The Configure Table dialog box will appear.

3. Click the Configure button and select the option Database query

from the Table type list and click OK. The Setup Generic table
dialog box will appear.

UMRA Help

4. Click the Configure button in the Database specification window

to specify the MS Access database (.mdb file) you wish to use (in
the screenshot below a connection is made to the database
Departments.mdb).

Note: Please ensure that the specified path to the database can be
accessed by the UMRA module. In most cases you will define a share for
storing the MS Access databases (e.g. \\<Computer name>\<Share
name> instead of pointing to an absolute path name.

5.35. Database setup - Other databases
In UMRA, you can connect to a wide variety of databases (SQL server,
Oracle, etc.) using an OLE DB connection.

Establishing a connection

To establish a connection, click the Configure button in the Configure

database connection section and select the OLE DB connection you wish
to establish. You will need to provide details regarding the source
database name and other parameters.

Once you have established a successful connection, the connection
string will be displayed in the Database connection string window. A
connection string includes the source database name and other
parameters needed for the initial connection. The default value is an
empty string.

Changing the connection string

In some cases you may wish to customize this connection string (e.g.
when there is no OLE DB provider for your specific database or if you
wish to add certain keyword values for an existing connection. In the

UMRA Help

table below you will find a list of valid names for keyword values within
the ConnectionString.

Name Default Description

Application Name The name of the application, or
'.Net SqlClient Data Provider' if no
application name is provided.

AttachDBFilename

-or-

extended properties

-or-

Initial File Name

 The name of the primary file,
including the full path name, of an
attachable database.

The database name must be
specified with the keyword
'database'.

Connect Timeout

-or-

Connection Timeout

15 The length of time (in seconds) to
wait for a connection to the server
before terminating the attempt
and generating an error.

Current Language The SQL Server Language record
name.

Data Source

-or-

Server

-or-

Address

-or-

Addr

-or-

Network Address

 The name or network address of
the instance of SQL Server to
which to connect.

Encrypt 'false' When true, SQL Server uses SSL
encryption for all data sent
between the client and server if
the server has a certificate
installed. Recognized values are
true, false, yes, and no.

UMRA Help

Initial Catalog

-or-

Database

 The name of the database.

Integrated Security

-or-

Trusted_Connection

'false' When false, User ID and Password
are specified in the connection.
When true, the current Windows
account credentials are used for
authentication.

Recognized values are true, false,
yes, no, and sspi (strongly
recommended), which is
equivalent to true.

Network Library

-or-

Net

'dbmssocn' The network library used to
establish a connection to an
instance of SQL Server. Supported
values include dbnmpntw (Named
Pipes), dbmsrpcn (Multiprotocol),
dbmsadsn (Apple Talk), dbmsgnet
(VIA), dbmslpcn (Shared Memory)
and dbmsspxn (IPX/SPX), and
dbmssocn (TCP/IP).

The corresponding network DLL
must be installed on the system to
which you connect. If you do not
specify a network and you use a
local server (for example, "." or
"(local)"), shared memory is used.

Packet Size 8192 Size in bytes of the network
packets used to communicate with
an instance of SQL Server.

Password

-or-

Pwd

 The password for the SQL Server
account logging on (Not
recommended. To maintain a high
level of security, it is strongly
recommended that you use the
Integrated Security or
Trusted_Connection keyword
instead.).

UMRA Help

Persist Security Info 'false' When set to false or no (strongly
recommended), security-sensitive
information, such as the
password, is not returned as part
of the connection if the
connection is open or has ever
been in an open state. Resetting
the connection string resets all
connection string values including
the password. Recognized values
are true, false, yes, and no.

User ID The SQL Server login account (Not
recommended. To maintain a high
level of security, it is strongly
recommended that you use the
Integrated Security or
Trusted_Connection keyword
instead.).

Workstation ID local computer
name

The name of the workstation
connecting to SQL Server.

For more information please check the Microsoft website
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfSystemDataSqlClientSqlConnectionClassConnectionSt
ringTopic.asp.

5.36. Expiration date
Specify here the exact date and time after which the object or user will
expire.

If a variable is used to specify the expiration date, it must be an UMRA date-
time variable, and not a text variable.

The exact interpretation of the expiration date depends on the
particular script action:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDataSqlClientSqlConnectionClassConnectionStringTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDataSqlClientSqlConnectionClassConnectionStringTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDataSqlClientSqlConnectionClassConnectionStringTopic.asp

UMRA Help

Script actions Script Action: Create User (AD) on page 3, User - Edit user
(AD) on page 37 etc

The specified user account will be expired at the first day following the
specified date-time.

Script action Lotus Notes - Get certifier on page 392

Input property. Any certificates generated with the resulting certifier object
variable will expire at the specified time. If this property is not specified, an
expiration date of 2 years from the current time is used.

If the certifier is used to register a person, this date consequently specifies the
expiration date of the user account.

5.37. For each - Input variables

Pass variable method specification

These options specify which variables that are available in the current
script are passed on to the project that is called repeatedly.

Passing on values of variables to the called project can cause
considerable overhead in specific circumstances, especially when some
variables contain a lot of data, such as an table with many entries.
Therefore these options let you control which variables to pass, and
which not, in order to enhance performance.

Pass all variables

All variables that are available in the current script are passed on to the
repeatedly called project. This means that all variables that are defined
in the current script are available for the called project. Use this if you do
not know which variables you will actually use in the called script, or if
they do not contain large amounts of data.

This is the default setting.

UMRA Help

Pass "for each" variables only

Only the variables that are bound to a specific column in the table over
which the "for each" is performed, as specified on the "fore each" tab,
are passed on.

This gives the best performance. Use this if you do not want to make
available any other variables from the current script in the called
project.

Pass "for each" variables and the specified variables

In addition to the "for each" variables, the variables specified in the
specified Variable list are also passed on to the called script. Use this
option if you want to use some specific additional variables from the
current script in the called script.

Pass all but the specified variables

All variables are passed to the called script, except those specified in the
Variable list. Use this if you want access to most variables in the called
project, but there are some large variables you do not need in the called
project.

A variable that often does not need to be passed to the called project is
the "table" variable, that was used to generate the "for each" variables.
As the called project usually does not need access to the entire table,
but only to the generated variables that represent the current row in the
table, the original "table" variable can be added to the list of excluded
variables.

Variable list

This list contains the variables that are explicitly passed on when the
option 'Pass "for each" variables and the specified variables' is chosen

The list contains the variables that are explicitly not passed on when the
option 'Pass all but the specified variables' is chosen.

It is not used with the other options.

UMRA Help

5.38. Form action - Check form input
The Check form input function is used to check the input of the
submitted form. If the input is not correct, a message is shown to the
end user of the form. This action is always executed as the first action
when a form is submitted. The following options are available in this
window:

Form variables check specification

Form objects such as input boxes and table entries can be assigned to a
variable. You can either check the content of these variables (e.g. to
make sure that the user has selected a table entry before clicking an
action button) or perform a length check on the entered text (e.g. to
make sure that a password has the required length or that a phone
number has 10 digits, etc.). If a check is specified, the check status will
appear in the Checking column.

Variable contents check

When the user selects a table entry or enters text in an input box and
then clicks the form button, the UMRA Service will process the
submitted form. With the Check form input action, the UMRA service
can check the specified variables. In the screen below, the variable
%UserName% should contain the value of a selected user account. By
checking the contents of this variable, you can check if the user has
actually selected a table entry before clicking the action button. If not,
an error message can be displayed to inform the user.

Message text shown when variable equals check value

The contents of the message shown to the end-user:

Variable length check

UMRA Help

You can also check if the string which the user has entered, is of the
required length (see example below) by entering a minimum and / or
maximum length. An error message can be displayed when the string
length does not meet the specified criteria.

5.39. Form action - Execute script of form
A form project consists of a form and a script. In a form project, this
script is executed when the end user clicks a form button. Wit this
action, you specify that the script of the current form project should be
executed. This action has no additional parameters to be configured.

When the script is executed, you can show a message box to the end-
user of the UMRA forms application. This is done by using the variable
%ScriptMessage%. If a variable with the name %ScriptMessage% is
found, a message is shown to the end-user.

For general information on project scripts, forms and project script
execution, see UMRA Basics on page 3.

5.40. Form action - General
When a form is submitted, it is sent to the UMRA service for further
processing, for example: the script of the form project is executed. In
UMRA, a number of form actions exist. A form action is an action that is
executed by the UMRA service (or UMRA console application for local
form projects) as part of the processing of a form that was submitted.
Form actions can be associated with various form fields:

1. Button form field: For each action button, a number of form
actions can be specified.

2. Checkbox form field: For a checkbox you can define form actions
for both the checked and unchecked state.

When an action button is pressed, the form is submitted. The contents
of various form fields is stored in variables and sent to the UMRA

UMRA Help

service. Note that the form actions are not directly related to the form.
Instead, form actions are defined for form fields. For different submit
buttons (example: disable account, enable account, unlock account) you
can (and should) define different form actions.

Important: Form actions are very different from script actions. Script
actions are part of a project script. An example of a script action is the
creation of an user account in Active Directory. See Manage script
actions on page 712 for more information on script actions. A form
action is an action executed by the UMRA service as a result of an end-
user submitting a form.

Setting up the form actions for an action button

1. Doubleclick the button form field

2. Click the Manage actions button in the Button actions section.
The Configure form actions window is shown:

The Form actions window shows all the form actions currently defined
for the form field. Use the Add, Edit and Delete buttons to configure the
form actions. Use the up and down keys to change the order of the form
actions.

To setup the form actions for a Checkbox form field, the procedure is
very similar. Normally, you only want to configure the Set variable
action for a checkbox form field.

5.41. Form action - Iteratively execute project script
This form action is used to execute the script of the project multiple
times when the form is submitted. The action is used for multiple-select

tables on page 659 and the script is executed for each selected table

items.

Example: suppose a form contains a table with user accounts. In the
table, multiple user accounts can be selected. When the submit button
is clicked, a user account property must be updated for each of the
selected user accounts. In such a scenario, this action is used.

The iteration of a script execution is controlled by a form field, normally
a multiple-select table. The variables associated with the specified form

UMRA Help

field contain multi-values when the form is submitted. The script is
executed for each of the values of the variable(s).

Example:

In a form, a multiple select table with user accounts is shown. The
account names are stored in variable %UserName%. In the script a
variable %Domain% is set to DOMAIN_A. The user selects 2 account
names (John and Fred) and presses the submit button.

Now the script is executed twice with the following variable settings:

Iteration 1:
%Domain%=DOMAIN_A
%UserName%=John

Iteration 2:
%Domain%=DOMAIN_A
%UserName%=Fred

See also:

Table form field - Options on page 659

5.42. Form action - Return current form
This form action is always executed as the last action. With this action
the same form is returned to the application that submitted the form.
With this form you can also configure how the different form fields must
be returned: with their current values or in the original state.

In the Specify form fields restore options window, all form fields with a
name are shown. By checking a form field, the current state of the form
field is restored when the form is shown.

There are two options for the way in which the current form should be
returned:

1. Input restored: the selected item in the table is still selected. In
this case, you do not need to select the item from the table.
Instead, it remains selected.

UMRA Help

2. Re-initialized: The table is shown as if the form was presented
for the first time: no items are selected.

To specify the name of a form field, see Form fields - Name on page 646

5.43. Form action - Return other form
This form action is always executed as the last action. With this action a
form is returned to the application that submitted the form.

This action can be used to setup a wizard with UMRA Forms. As
response to a form submit button (e.g. Next), a script is executed and
the next form is returned. A variable can be specified for the next form.

Form project name

The name of the form project that must be returned.

Reset variables

By default, all variables that exist when the project script is executed are
returned. The values of these variables can be used in the returned
form. You can control this with Script Action: Delete variable on page 562.
To reset all variables, select this option.

5.44. Form action - Set variable value
With this action, you can setup the value of a variable. In most cases this
action is used for a checkbox or when a form has multiple submit
buttons. To configure this action you need to specify the name and the
value of the variable.

5.45. Form action - Execute command line at client
workstation
With this form action, a command line can be executed by the UMRA
Forms client application. The command line is executed when a form is
submitted and the action is configured for the button that was clicked to

UMRA Help

submit the form. When the form is submitted, the command line is
prepared by the UMRA Service and send back to the UMRA Forms client.
If the command line specification contains variables, these will be
resolved by the UMRA Service. When the UMRA Forms client processes
the returned data, as the last action, it will execute the command line.
When the command line is started, the UMRA Forms client continues to
run.

Note: when multiple 'Execute command line at client workstation'
actions are configured for a single button, only the last action will be
executed. The other actions are ignored.

5.46. Form fields - Button
The Button form field is used to let the user sumit or reset a form. In the
screenshot below the last field, Unlock account, is a button form field.

To add a button form field:

1. Activate the Actions-Network-Form fields window and drag the
Button form field to the Form tab of your project. This will
activate the Form window.

2. Drop the form field at the required location. The Configure form

field dialog box will appear:

UMRA Help

Button type - Reset button

Select this option to make the button a reset button. When a reset
button is clicked, the form is re-initialized, e.g. all fields of the form are
reset to their original values. No other actions are executed.

Button type - Action button

Select this option to make the button an action button. With an action
button, the form is submitted and sent to the UMRA service. The
contents of the form fields are stored as variables values to be used in
scripts by the UMRA service. A number of form actions can be executed
by pressing an action button.

Examples: run script of the form, set variable value. etc.

Button type - Manage actions...

Click this button to configure the actions for the button. Note that
different buttons can have different actions.

See Form action - General on page 635 for more information on form
actions.

Appearance - Button text

The text displayed on the button.

Fixed button width of ... pixels

When selected, the width of the button is fixed and specified as a
number of pixels.

5.47. Form fields - Checkbox
The Checkbox form field is used to enable or disable a specific feature in
a form. In the screenshot below, a checkbox form field is used for option

Password never expires.

With a checkbox form field, you can associate different form actions to
be executed with different checkbox states. In other words, the action

UMRA Help

will depend on whether the checkbox has been checked or unchecked.
In most cases, the Set variable on page 638 action is executed when the
checkbox is in a checked state.

Adding a checkbox form field

1. Activate the Actions-Network-Form fields window and drag the
Checkbox form field to the Form tab of your project. This will
activate the Form window.

2. Drop the form field at the required location. The Configure form

field dialog box will appear:

Appearance - Text
Enter the text shown next to checkbox.

Initial state - Not checked
Select this option if the checkbox must have an unchecked state when
the form is loaded:

Initial state - Checked
Select this option if the checkbox must have a checked state when the
form is loaded:

Determined by variable
Select this option if you want the checkbox state to be determined by
the value of a variable (e.g. to show for a selected user whether the user
should change his password or not).

Unlike the options Initial state - Not checked, and Initial state -

checked, where the administrator predetermines the initial state of a
checkbox, it is also possible to use the value of a variable to set the
initial state of a checkbox.

Example
Suppose you want to create a two-step Wizard for resetting passwords.
In step 1, the user is selected from a generic table and in step 2 the
Password never expires checkbox needs to be displayed. The state of

UMRA Help

this checkbox should reflect the Password never expires setting for the
selected user in Active Directory.

In this case, you would need to create two forms. The first form will
contain a generic table with user data, including the values for the
attribute userAccountControl "Password never expires" which is either
"Yes" or "No". This value is then stored in the variable
%NeverExpired%. In the second form, a checkbox is inserted with the
following properties:

If the variable %NeverExpires% holds the value "Yes" for the selected
user, the initial state of the checkbox will be checked. If
%NeverExpires% is "No", the initial state of the checkbox will be
unchecked.

Note - the example given above does not work for all the
userAccountControl user flags. Property flags such as
PASSWORD_EXPIRED and DONT_EXPIRE_PASSWORD cannot be
retrieved using an LDAP query (it is possible to set the values for these
attributes, but not to retrieve them).

Configure actions when form is submitted - Actions when checked
Click the Configure button to setup the actions that must be executed
when the form is submitted and the checkbox is checked. See Form action

- General on page 635 for more information on form actions.

Configure actions when form is submitted - Actions when unchecked
Press the Configure button to setup the actions that must be executed
when the form is submitted and the checkbox is unchecked. See Form

action - General on page 635 for more information on form actions.

5.48. Form fields - Display
When designing a form, you can configure a number of display
characters for each form field. These display characteristics determine
how the form fields are presented on the form. With the display
characteristics, you can also configure the position of form fields relative
to each other.

UMRA Help

Configuring the display characteristics

1. Double click the form field element or select the form field
element and press Enter.

2. Select the Display tab. The Configure form field dialog box will
appear:

Horizontal alignment
With this option you specify the horizontal alignment of the form field. If
the width of the form field does not exceed the with of the area used to
draw the field in the form, this specification has no meaning (for
instance for an picture form field, or vertical space form field).

Font style
The font used to draw the text of a form field. For each form field, you
can use a different font. For more information on fonts in forms, see
Form properties - Fonts.

Left margin
Specify the left margin of the form field in percentages of the total form.
The left margin is used to shift form fields to the right on a form. By
default, form fields are drawn below each other with a fixed left margin on
page 768. By specifying a non-zero left margin, the form field shifts to
the right. If the cursor position is not increased when the previous form
field was drawn, the left margin is relative to the right side of the
previously drawn form field. See the option Position control further in
this topic. Since the left margin is specified as a percentage of the total
form width, the actual margin varies if the size of the form window
changes.

Field width - Limit width to ... % of form
By default, a form field can use all horizontal space from the current
horizontal position to the right margin of the form window. By limiting
the width of the form field, you can control the area of the form used to
draw the form field.

Vertical offset
To align form fields better, you can shift individual form fields in vertical
direction by specifying this field.

Position control - Move cursor to next line for next field
This is an important field, used to place form fields next to each other.

UMRA Help

By default, form fields are drawn below each other with a fixed left margin
on page 768. If you unselect this option, the current form field is drawn
and the next form field will be drawn next to it. If you select this option,
you must specify the option Field width and limit the width of the
current form field.

Tab control - Activated when pressing tab characters
In a form with multiple fields, the focus jumps to the next field if you
press the TAB character. If you press the TAB key with the SHIFT key
pressed, the focus moves back to the previous form field. By checking
this option, the current form field becomes part of the loop. If the
option is unchecked, pressing the TAB character cannot bring the focus
to this form field.

Text - foreground color
The specification of the foreground color, usually the text of a form field.
Click the Edit button to change the current color. By default, the
foreground color is black.

Background color
The specification of the background color. Click the Edit button to
change the current color. By default, the background color is white.

5.49. Form fields - Input text
The Input text form field is used to let the user of the form
specify a text value. Examples: first, middle and last name,
password, phone number, description of a user account, extra
SMTP E- mail address. In the screenshot below the fields next to
the text New password and Confirm password are input text
fields.

Adding an input text field

1. Activate the Actions-Network-Form fields window and drag the
Input text field form field to the Form tab of your project. This
will activate the Form window.

UMRA Help

2. Drop the form field at the required location. The Configure form

field dialog box will appear:

Text
Specify the text that is initially displayed in the input text field.
When you tab through the form and the form field gets the
focus, all of the content of the input field is selected. When you
start typing the input text, the selection is removed.
Variables
Select a variable from the list and click the Insert button to insert
the variable name at the current position in the Text field. At
runtime, when the form is shown, the value of the variable is
shown.
Text field support multiple lines with ... visible lines
Select this option to make the text field a multi-line input field. In
this case, the form user can specify a number of input lines for
the input field. When the user enters the text, the form field will
wrap to the next line automatically. If you do not select this
option, the field height is limited to a single line of text.
Margin between field border and text of ... pixels
The specified margin is used to draw a border around the input
text field when specified.
Password style, all characters shown as an asterisk (*)
When the user enters text in the input text field, each character
is represented as an *-character. This style is normally used to
specify passwords.
Draw border of input field
Draw a border around the input text field. The border clearly
indicates the position of the input text field.
Accept carriage return (<Enter>) characters
When selected, the text in the input field can be entered using
<Enter> characters. Such a character moves the cursor to the
next line in a multi-line input text field.
Variable - On submit, store contents in variable
Specify the name of the variable that is used to pass information
entered in the input text field, to for instance the script of the
form project. When a submit button is pressed, the entered text
is stored as the value of the specified variable. If you do not

UMRA Help

specify a variable name in this field, the input text field cannot
be stored. The list shows the names of the variables found in the
various project components. Instead of selecting a variable from
the list, you can also simply enter the name of a (new) variable.

5.50. Form fields - Name
Each form field can have a name. The name is used to refer to the form
field. The name of a form field is optional if no other item refers to the
form field. If a form field is referred to, the form field must have a name.
The form field name can be any text. It is recommended to use a short
descriptive name for a form field.

Specifying the name of a form field

1. Select a form field from the list of form fields.

2. Right click the mouse and select the menu option Edit form field.

3. Select the Name tab.

4. Specify the name and click Apply or OK. The name should be
unique within the form.

5.51. Form fields - Picture
The Picture form field is used to clarify a form, design the form
according to your company standards and mae a form more easy to use.
A form can contain multiple pictures of any size. The most common
image standards, e.g. jpg, gif, and bmp are supported. At design time,
the picture are selected from image files and then embedded into the
form.

Adding a picture form field

1. Activate the Actions-Network-Form fields window and drag the
Picture form field to the Form tab of your project. This will
activate the Form window.

2. Drop the form field at the required location. The Configure form

field dialog box will appear:

UMRA Help

Image file name
The original name of the file that contains the image. An image is
selected by specifying the file that stores the image. Click the browse (...)
button to select an image file. Once the picture field is created, the file
name no longer has a meaning: The image itself is embedded into the
form. Once a form is designed, you can even delete the image files of
corresponding picture without changing the form.

Scale (form)
You can scale the image with respect to its size in the form. A scale
factor of 1.0 does not change the size of the image in the form relative
to the original image size. A factor of 2 enlarges the image both in the
horizontal and vertical direction.

Preview (scaled to fit)
Once an image file name is selected, the preview shows the image. If the
total image does not fit into the window, it is scaled to make it fit. Note
that in the form, the image is scale by specifying the scale.

5.52. Form fields - Radio button
The radio button form field is typically used to present the user with
various options in a form. In UMRA, you can either present the user with
a static list of options and assign the selected choice to a variable, or you
can set the initial state of a radio button using a variable.

Creating static Radio buttons

1. Enter a name for the radio button variable in the Radio button

variable field (e.g. %SelectedRadioButton%).

2. Create the radio buttons you wish to display. Click the Add button in
the Radio buttons section . The following dialog box will appear:

In the Display text field, you can enter the text for the radio button.

In the Variable value field, you can either enter a fixed value to be
associated with this radio button or a variable (e.g. %DeleteDirectory%).
When the user selects a radio button, the value associated with the

UMRA Help

selected radio button will be stored in the radio button variable you
specified in step 1 (%SelectedRadioButton%.)

In other words, if the user selects the option Delete directory in the
example given above, the variable %SelectedRadioButton% will be set to
"0" or "%DeleteDirectory%" .

Creating dynamic Radio buttons

It is also possible to determine the initial state of a radio button by a
variable value. Suppose you have the following three radio buttons:

"Delete directory", variable value "0"

"Move directory", variable value "1"

"Copy directory", variable value "2"

Depending on the value of a variable (e.g. %Check%), the initial state of
a variable can be set. If the value of %Check% is 0, the first option will be
set, if the value equals "1" the second option will be set, and so on.

See also:

Button form field on page 639

Checkbox form field on page 640

5.53. Form fields - Static text
A static text form field is used to explain the form, form fields and form
usage. In the form shown below, the text Unlock account is a static text
field.

UMRA Help

Adding a static text form field

1. Activate the Actions-Network-Form fields window and drag the
Static text field form field to the Form tab of your project. This
will activate the Form window.

2. Drop the form field at the required location. The Configure form

field dialog box will appear:

Text
Specify any text you would like to show in the form in this field.
According to the display settings of the form field, the text will be shown
automatically on multiple lines.

Variables
Enter any variable name (examples: %Domain%, %CallThisNumber%) in
the Text field. When the form is shown, these variables will be replaced
with their actual values (if no variable with the name exists, the name of
the variable is shown).

See also:

UMRA Basics on page 3

5.54. Form fields - Table - Columns
In this window, you can configure the table columns for the form table:

 Specifying the columns to be included in the form table

 Linking columns to variables

 Sort order, positioning and display

Specifying the columns to be included in the form table

Available columns

Shows the available columns for the specified table. The list with
available columns is shown in the Available columns section.

Current column configuration

UMRA Help

This is the list of columns which will be displayed in the form table. Use
the --> and <-- buttons to add and remove columns from Available

columns to the Current column configuration list. In the form table,
these columns will be displayed from left to right.

When you select a column in the list Current column configuration, the
controls in the bottom of the window show detailed information for the
selected item. At the bottom section, Column specification (selected
column) you can setup the selected column.

Name

The name of the column. The name is predefined and cannot be
changed.

Variable

The name of the variable linked to this column.

At runtime, this variable will be filled with the value of the selected table
entry. In the example shown below for instance, the variable
%UserName% has been linked to the Username column. The selected
entry, limedeca, will be stored in the %UserName% variable and
submitted to the UMRA Service when the submit button Unlock account
is clicked.

Column width

The width of the column, specified as an percentage of the total column
width. Note that you can specify a column with zero width if you want to
link a column to a variable without showing the column to the end user.

UMRA Help

Sort on this column

You can sort an each column in a network table and the sorting can be
based on multiple columns. Normally the specification of a 1st criterion
only is sufficient. Depending on the interface that is used to show the
form, the end-user can change the sorting when the table is shown.
Note that you can sort only on columns that are actually shown in the
form.

Sort direction

Specifies the sort direction of the selected column.

Alignment

Specifies the horizontal alignment of a table column item.

See also:

UMRA tables on page 9

5.55. Form fields - Vertical space
By default, UMRA places all form fields just below each other with no
margin. In most cases, you probably want to separate the fields in a
vertical direction. With the Vertical space form field you can create
some vertical spacing between form fields. Specify the vertical space as
the number of pixels. A default value of 10 pixels is used.

For more options on formatting the display of a form, see Form fields -

Display on page 642.

5.56. Form fields - Table - Data refresh
To improve performance and limit network traffic, the actual contents of
a network data table are stored by the UMRA service. To do this, the
UMRA service uses a local internal database in RAM that is completely
self managed. The first time the information is collected, the database is
empty and it might take some time to collect the data and present the
form. Typically, this can take from 1 to 30 seconds. Once the data have
been collected and stored, the response is much faster. The data of the
internal database is shared by all forms.

UMRA Help

Because of this mechanism, the data can be out of date. Therefore, you
can specify a maximum age of the data: the network data refresh period.
When the form is generated, the database is checked for its contents. If
it contains the network data, and that data is not older then the
specified number of seconds, the data is loaded from the database. In all
other cases, the data is collected from the network and the database is
updated.

The default value used for the network data refresh period is 900
seconds (15 minutes). If you specify a value of 0 seconds, the data is
always collected from the network. This makes the data very accurate
but increases network traffic and slows down performance.

Note that user management actions executed by the UMRA service
itself, will update the internal database automatically.

Example: if you have a form to delete user accounts from an OU, the
users of the OU are probably shown in a table. The contents of this table
are stored in the internal database. Now, if you select a user from the
table, and the user is removed by the UMRA service, the data of the
internal database is updated and no longer shown in the form table.

You can configure the network data refresh period for each form table
individually. To do so, start the Configure table window. See Table form

field - Type on page 660 for more information. Once a Network data type
on page 657has been selected, select the tab Data refresh and follow
the instructions.

UMRA Help

5.57. Form fields - Table - Exclusions
In some circumstances you might want to exclude certain accounts from
a network table. In a Windows NT4 environment for instance, a table
contains all users of a domain. The table is used in a form to reset
passwords. In this case, you probably want to exclude the administrator
accounts from the table.

Use the Add, Add (browse), Edit and Delete buttons to configure the list
with items that must be excluded.

At this moment, you can exclude members of one or more global
groups. At runtime, UMRA resolves the items of the exclusion list. If an
error occurs, all items will be excluded.

Example: in the example shown above, the members of group
SEASONS\Domain Admins are determined when the content of the table
is setup. If this fails for whatever reason, the table will be empty.

UMRA Help

5.58. Form fields - Table - Fixed data
A fixed data table always has the same contents. The contents is
determined at design time. This type of table is used to let an end-user
select a class, division, department, OU, domain etc. in a form. The
selected item of the table is stored in a variable when the form is
submitted. This variable can be used in a UMRA script. By using the
script actionScript Action: Map variable on page 567 the variable can be
used to determine the value of other variables. A fixed data table has
one column only. The number of items (rows) is not limited. To setup
the height of the table as shown in the form, see Table form field - Options
on page 659.

To start setting up a fixed table or editing an existing table, see Table form

field - Type on page 660.

Table data
The contents of the fixed data table. The field shows the current
contents of the fixed data table.

Add
Click the Add button to add new items to the table. Note that you can
specify multiple items with one add operation.

Edit
Edits the currently selected item of the table data. A single item must be
selected to activate this button.

Delete
Deletes all of the selected entries from the table.

Import
Imports the contents of a text file to the table. Each line of the text file is
imported as a new item in the table.

Variable
Specifies the name of the variable. This variable can be used to pass the
selected item to the project script. At run-time, when the form is
submitted, the selected table item is determined. If an item is selected,

UMRA Help

the item is stored in the value of the specified variable. The variable can
be used in subsequent actions performed by UMRA. If you do not specify
a variable name in this field, the table selection can not be used in any
subsequent action. You can select a variable from the list, or simply
enter the name of a (new) variable.

Sort table contents
When checked, the table contents is sorted in ascending order when
shown in the form. If not checked, the table contents is shown in the
form as entered in the field Table data. In this case, you can use the up
and down arrows to setup the order of table items.

5.59. Form fields - Table - Generic table
A generic table can contain data from a file, database query, network
query or fixed data.

By including a generic table in a form, data from these sources can be
displayed to the end user. Selected form data can then be used as input
for an UMRA project script.

See also:

Form fields - Table - Fixed data on page 654

Form fields - Table - Network table on page 657

UMRA Basics on page 3

UMRA tables on page 9

5.60. Form fields - Table - Network call parameters
The network arguments complete the specification of the network data
table. The network call parameters depend on the specified network data

type on page 657. If you change the network data type, you must also
change the the network arguments. In the example shown below, the
specification is as follows:

1. Network data type: User accounts of an organizational unit (OU)

UMRA Help

2. Network arguments:
LDAP://SPRING/OU=USA,OU=Sales,DC=seasons,DC=tools4ever,D
C=local and
LDAP://SPRING/OU=Schools,DC=seasons,DC=tools4ever,DC=loca
l+

The network data table shows the user accounts obtained from the
specified OU's.

For each network data type, the syntax of the network call parameter is
different. To specify the network call parameters, start the Configure

table window. See Table form field - Type on page 660 for more
information. Once a Network data type on page 657is selected, select the
Arguments tab. The following window is presented:

Network data collection parameters
The list shows the arguments used to collect the network data. For each
type of network data, you can specify multiple entries. The results of all
entries will be presented in the network data table. If an argument can
have child objects (for instance an OU having child OU's), you need to
specify a + sign at the end of the argument parameter specification to
include the items from the child objects as well. If different arguments
share resulting items, these will be filtered out automatically. Note that
each entry can contain variables on page 770. In that case, the exact
network data that must be collected is determined when the form is
generated.

Add, Add (browse), Edit, Delete
Use these buttons to manage the contents of the list with Network data
collection parameters. Note that each entry can contain variables. In
that case, the exact network data that must be collected is determined
when the form is generated.

Network data type
The type of network data for this table. See Table form field - Network data

type on page 657 for more information.

UMRA Help

Syntax
The syntax used to specify a single argument parameter. Note that the
syntax is different for each network data type on page 657. Multiple
different syntaxes can be supported for a particular network data type.

Examples
Some examples according to the syntax specified for the network data
type.

5.61. Form fields - Table - Network table
The contents of a network data table is collected from the network.

Examples: User accounts of an OU, domain or group.

The network data are collected automatically. The contents of the table
changes dynamically when the network is updated. When the form is
designed, the type of the network data and the network call arguments on
page 655 are setup. At run-time, when the form is shown, the contents
of the table is determined by accessing the network. The results are
presented in the table. To prevent excessive network load, the table
contents is stored for some period of time on page 651. In the screenshot
below, a network table is shown with the Common name and Username

of user accounts in a specific OU.

A network data type can have multiple columns, depending on the type
of network data shown. Each table column can be linked to a variable. At
run-time, when the user selects an item in the table and presses a
submit button, the values of the selected item are stored in the
corresponding values of the variables. The variables can then be used in
a project script. In the screenshot shown above for instance, the column
Username has been linked to the variable %UserName%. When the
Unlock account submit button is pressed, the selected value limedeca is
stored in the variable %Username%.

To start setting up or edit an existing form table, see Table form field -

Type on page 660. The network data table is configured using several
windows. The first one, network data type determines the type of the

UMRA Help

network data. If this parameter is changed, the contents of other
configuration settings is lost.

The following network data types are available:

Network data type Description

User accounts of an
organizational unit (OU)

Shows all user accounts of one or more OU's.
Optionally, you can include the user accounts of child
OU's of the configured OU's (Active Directory only).

User accounts of a
global group

Shows all user accounts that are a member of one or
more groups.

User accounts of a
domain

Shows all user accounts that exist in a domain.

User accounts
maintained on a
computer

Shows all user accounts that are maintained on a
computer, not necessarily a domain controller.

Note that the Network data type does not determine the data that must
be collected from the network. It only determines the type of network
data. Once the network data type is determined, you must specify the
actual parameters or arguments that are used to collect the network
data.

Example: the network data type User accounts of an organizational unit

(OU) specifies that the type of network data equals user accounts that
are collected from an OU. But the specification of the data type alone
does not include the name of the OU from the user accounts must be
collected.

The specification of the network data type determines the type of calls
that will be executed by UMRA and the columns that can be shown in
the corresponding network data table. But additional information is
required to complete the network data table configuration. See Table

form field - Network call parameters on page 655 for more information.

See also:

UMRA tables on page 9

UMRA Help

5.62. Form fields - Table - Options
For a form table, there are some additional behaviour controls:

Table height specification - Specify the table height in numbers of rows
shown
A table in a form can contain any number of rows. The number of rows
shown at a single point in time can be specified in this field. If the table
contains more rows then the number specified, vertical scrolling is
automatically enabled.

Multiple selection - Enable multiple selection
Allows you to select multiple items in the table. When the end user
selects multiple table entries in UMRA Forms, these selected entries will
be stored in a multi- value variable.

Store indices of selected rows in table variable
Allows you to store the indices of selected form table rows in the
specified variable. The indices table is created for both single as multiple
selection tables. The resulting table always has one column. The number
of rows corresponds with the number of selected rows of the form
table. For each row, the integer value is equal to the index of the
selected form table row. The first form table row has an index of zero
(0).

Double-click handling - When a table item is doubleclicked, select
(click) the default (ENTER) button
By default, this option is switched off. If it is activated, the default
button [ENTER] is executed when the user doubleclicks a table entry.

User input state restore settings
In this field, you can specify the items that define the user input state of
the table. When a form is submitted by an end-user, the same form can
be shown again. The contents of the form fields can be:

 Reset to the initial value(s): The field is shown as if the form is
presented for the first time.

 Restored from the previous form: The field state (selection,
entered text) is copied from the form that was submitted.

See Form action - Return current form on page 637 for more information.

Selection of table item(s)
When a submit button is pressed and the same form is shown again, the

UMRA Help

selection of the table is not changed if you select this option and if the
user input state is restored for this table. See Form action - Return current

form on page 637 on how to do this.

Table scroll position
When a submit button is pressed and the same form is shown again, the
table scroll position is not changed if you select this option and if the
user input state is restored for this table. See Form action - Return current

form on page 637 on how to do this.

5.63. Form fields - Table - Row icon image
For a form table, you can configure an icon to be shown in front of each
row. The available icons are preconfigured and cannot be shown. If you
want to present a different icon, please contact your UMRA reseller. In
the window, the index of the current row icon image is selected. To
change the selection, select another icon and click Apply or OK.

5.64. Form fields - Table - Type
In a project form, a table form field can be included. The following table
types are available:

Table type Subtype Description

Network table Used to obtain the user accounts
of an OU, global group, domain
or single computer using an NT
network call.

Fixed table Used to display a list of fixed
content in a table (e.g. a list of
department names).

Generic table LDAP Used to show the results of an
LDAP query in a table.

Generic table File Used to show the content of a
text file (CSV file) in a table.

UMRA Help

Generic table Database Used to show the results of a
database query in a table.

Generic table Variable Used to show the content of a
variable in a form table.

If you are not familiar with the use of tables in UMRA, then please read
UMRA tables on page 9 first.

5.65. Form project - Form fields
The form fields make up a form. Different types of form fields are
available to design a form. The form fields have several functions:

 explain the form to the user (static text, picture)

 let the user specify input data for the form project (input text,
table, checkbox)

 initiate the execution of form actions - submit (button)

 make the form look appealing (picture, vertical space, status
text)

To pass the form information to the script of a form project, variables
are used. By specifying the value of a form field, the user sets the value
of a variable. Some form fields can also be associated with an action.
Actions include the execution of the script of a form project, setting a
variable to a specific value etc.

The following table summarizes the usage of the different types of form
fields. The column Variable indicates if a form fields of the
corresponding type can be used to setup a variable. The column Actions

shows if form actions can be executed by activating or configuring the
corresponding field type.

UMRA Help

Form
field type

Variable Actions Description

static text
on page
648

No No Used to describe the form and form
fields.

input text
on page
644

Yes No Used to specify a text. Examples: first,
middle and last name, passwords,
description fields, phone number etc.
When the form is submitted, the text
entered is stored as the value of the field
variable. This variable can be used in the
script of the form project.

table on
page 660

Yes No Used to select an entry from a list.
Examples of table contents: user
accounts of an OU, domain or group,
departments. Each column of the table
can be linked to a variable. When the
form is submitted, the value of the
selected table entry is stored as the
variable value. These variable can be
used in the script of the form project.

checkbox
on page
640

No Yes Used to enable or disable a specific
function. Examples: disable an account,
create and Exchange mailbox. The action
Form action - Set variable value on page 638
can be used to pass to state of the
checkbox to the form script.

radio
buttons on
page 647

Yes Yes Used to offer a set of predefined options.

button No Yes Used to submit or reset the form. When
a form us submitted, a number of actions
can be executed. See Form action - General
on page 635 for more information.

UMRA Help

picture on
page 646

No No Any picture can be embedded in the
form to clarify the purpose of the form,
make the form according to the company
standards etc.

vertical
space

No No Used to create some vertical spacing
between form fields.

5.66. Function modules
All features and functions of User Management are divided into function
modules and interface modules. The function modules are used to group
related script actions. Each function module contains a number of script
actions. Vice versa, each script actions belongs to one of the function
modules. The following table shows all of the available script actions,
and the corresponding function module for each of them.

Script action Base
function

Exchange
function

Lotus Notes
function

Advanced
function

User - Active
Directory

Create user (AD) V

Create contact
(AD)

V

Get user (AD) V

Edit user (AD) V

Edit user logon V

Get user table
(locked
out/disabled)(AD)

 V

Delete user (AD) V

UMRA Help

Set user group
memberships
(AD)

V

Remove user
group
memberships
(AD)

V

Move - rename
user (AD)

 V

Move cross
domain (AD)

 V

Create Exchange
mailbox
(2000/2003)

 V

Edit Exchange
mailbox
(2000/2003)

 V

Modify Exchange
mailbox
permissions
(2000/2003)

 V

Move Exchange
mailbox
(2000/2003)

 V

Delete Exchange
mailbox
(2000/2003)

 V

Manage
Exchange
recipient mail
addresses
(2000/2003)

 V

User - non
Active Directory

Create user (no
AD)

V

Edit user (no AD) V

UMRA Help

Edit user logon V

Delete user (no
AD)

V

Setup user global
group
memberships

V

Add account to
local group

V

Remove group
member

V

Set primary
group (non AD)

V

User - General
user actions

Edit user logon V

Get user info V

Set Terminal
Services user
settings

V

Get Terminal
Services user
settings

V

Dial-in user
settings

V

Active Directory

Create object
(AD)

 V

Delete object
(AD)

V

Get attribute
(AD)

V

Set attribute (AD) V

UMRA Help

Delete attribute
value (AD)

V

Set group
memberships
(AD)

V

Remove specific
group
memberships
(AD)

V

Create group
(AD)

 V

Get object (AD) V

Search object
(AD)

 V

Get primary
group (AD)

V

Set primary
group (AD)

V

File system

Create directory V

Get file/directory
info

V

Copy directory V

Rename file or
directory

V

Setup security V

Delete file(s) V

Delete directory V

Create share V

Edit share V

Delete share V

UMRA Help

List files and/or
directories

V

Other actions

Execute
command line

V

Services

List services
status

V

Execute service
command

V

Configure
service

V

Printer

List printer
documents

V

Execute print job
command

V

LDAP

Setup LDAP
session

 V

Load LDAP
modification data

 V

Add directory
service object
(LDAP)

 V

Modify directory
service object
(LDAP)

 V

Rename directory
service object
(LDAP)

 V

UMRA Help

Delete directory
service object
(LDAP)

 V

Search LDAP V

Lotus Notes

All Lotus Notes
Actions in this
folder

 V

Variable actions
(table)

Generate generic
table

Manage table
data

 V

Variable actions
(database)

Update database V

Variable actions
(name
generation)

Generate
name(s)

V

Variable actions
(Variable
operations)

Set variable V

Set encrypted
variable

V

Split variable V

Format variable
value

V

Update numeric
variable

V

UMRA Help

Convert value of
variable

V

Convert text to
date/time

V

Convert to multi-
value value
variable

V

Manage multi-
text value
variable

V

Merge multi-text
variable value

V

Export variables V

Delete variable V

Encrypt text V

Generate random
number

V

Generate
password

V

Log variables V

Variable actions
(Programming)

Map variable V

Go to label V

If-Then-Else V

Execute script V

For-Each V

Delay V

No operation V

Variable actions
(Mail)

UMRA Help

Send mail
message

 V

See also:

License model on page 707

Interface modules on page 675

5.67. Generic table - Introduction
The possibility of using generic tables is one of the most powerful
features in UMRA. The use of generic tables has several key advantages:

Easy selection of data

First of all, it allows you to create very user friendly solutions for
delegating user management tasks by offering table data in a form
which the end user only needs to select. The table data could either be
the result of a database query on page 672, an LDAP query on page 672or
a variable on page 672. A wide range of script actions can then be applied
to the selected data.

Link to other information systems

The data you can retrieve in a generic table is not limited to Active
Directory. With UMRA you can establish a link between Active Directory
and any other database (SAP, SQL, Oracle,etc.) containing relevant user
resource information. Using UMRA, record sets can also be updated.
When an employee leaves the company for instance, UMRA could
update all associated resources.

Next step:

Choosing a table type on page 672

See also:

Form fields - Table - Fixed data on page 654

UMRA Help

Form fields - Table - Network table on page 657

5.68. Generic table - Run test
In this window, you can run a test to ensure that the generic table data
are correctly retrieved as a result of the database query, LDAP query or
text file import.

Running a test

Click the Test button to start the test. The generated table data will be
displayed in the Table data section (see screenshot below)

Run test on UMRA Service

This image cannot currently be displayed.

UMRA Help

Use this option to check if the search request can also be handled
correctly by the UMRA service. If the UMRA service does not have
sufficient security privileges to run the query, you will receive an error.

For instance, if a database query is run against an MDB file which is
located on a share to which the UMRA service has no access, you will
receive the following error message:

5.69. Generic table - Table type
A generic table can hold data from various different sources:

 a file - Used to store the content of a CSV file in a table

 a database - Used to store the results of a database query in a
table;

 an LDAP query - Used to store the results of an LDAP query in
a table;

 variable - used to store the content of a variable in a table

These types are listed in the Table type dropdown list.

File

The content of a text file (CSV) file can be converted to a generic table
and shown in a form.

To setup a generic table containing data from a text file, you need to
specify how the text file should be read.

See also Specify file input data on page 756.

LDAP query

Using an LDAP query, you can specify which objects you would like to
retrieve from the Active Directory (list of users, list of groups, last logon,
etc.). These objects can be shown in a table. Selected table entries can
be linked to a variable and used as input for an UMRA project script.

UMRA Help

To setup a generic table containing an LDAP query, the following
information has to be specified:

1. LDAP binding on page 694,

2. LDAP filter on page 697

3. LDAP attributes on page 689.

Database query

Many user related data are stored outside the Active Directory, possibly
in another information system (e.g. a list of departments). Using a
generic table, these data can be accessed and combined with
information from Active Directory or other directory services supporting
LDAP..

Example

Imagine a company X where the administrator would like to see the
relation between user groups and departments. Based on this
information he wants to perform certain actions such as removing group
memberships, adding group memberships, etc. The user group data are
stored in the Active Directory, but the relation between user groups and
departments is stored in an MS Access database. Using a generic table in
UMRA, these data can be accessed and queried.

To setup a generic table containing an LDAP query, the following
information has to be specified:

1. Database on page 626

2. Database query on page 626

Variable

Many script actions collect data which are stored in table format in a
variable (e.g. List printer documents and List services status). The
content of these variables can be shown in a generic table, type
Variable. If other table data manipulations are necessary for the
required output, you can use the Manage table data on page 528 script
action.

UMRA Help

To setup a generic table of the Variable type, you need to specify the
variable containing the table data and the columns for the table. See
also Specifying the table type Variable on page 776

See also:

Table form field - Generic table on page 655

UMRA tables on page 9

UMRA Basics on page 3

5.70. Generic table - Column names
Specify here the names for the columns for the resulting table. The first
name listed will be used for the first column, the second one for the
second column, and so on.

If no names are specified, default column names are used
("Column_01","Column_02", etc) , unless the column names are already
determined by other means. For instance, if a option "First line contains
headers" is specified when creating a table from a file, the column
names are read from the file instead.

The column names can be used in several script actions to refer to a
particular column of the table.

5.71. Generic table - Variable
The table content of a generic table can be stored in a variable. This
variable can be used in the project script.

See also:

UMRA tables on page 9

UMRA Basics on page 3

UMRA Help

5.72. Interface modules
An interface module specifies the User Management Resource
Administrator interface that can be used to execute projects and scripts.
At this moment, 4 interface modules exist:

1. UMRA Mass module: Mass projects to create-update-delete user
accounts and resources in Active Directory and NT4-local
computer networks in bulk. Mass projects are executed using the
graphical UMRA Console application.

2. UMRA Forms Module: Form projects to execute any script to
create-update-delete user accounts and resources in Active
Directory and NT4-local computer networks. Form projects are
executed by the UMRA Service. The forms are shown in the
UMRA Forms application and managed using the UMRA Console
application.

3. UMRA Automation Module: Supports the execution of UMRA
Form and UMRA Mass projects through command-line interfaces
for mass and by external applications through the COM object
model. Also required for the execution of projects by means of
the UMRA Task scheduler.

4. SSRPM Module. Allows the SSRPM (Self Service Reset Password
Management) program of Tools4ever to communicate with the
umra service.

See also:

License model on page 705

Function modules on page 663

License code on page 705

5.73. LDAP attributes - Attribute specification
Apart from selecting a default attribute settings (see LDAP search -

Attributes on page 689), you can also specify the required attribute
yourself in this window.

UMRA Help

1. Click the Add button. The following dialog box will appear:

1. Select the LDAP display name of the attribute in the LDAP name
list box. This list includes the names of the most commonly used
attributes of a user object:

LDAP name Description

c The country/region in the address of the user. The
country/region is represented as the 2- character
country code based on ISO-3166.

cn The name that represents an object. Used to
perform searches.

co The 'co' (Friendly Country Name) attribute
specifies names of countries in human-readable
format. It is commonly used in conjunction with
the 'c' (Country Name) [Schema] attribute (whose
values are restricted to the two-letter codes
defined in [ISO3166]).

company The user's company name.

countryCode Specifies the country code for the user's language
of choice. This value is not used by Windows 2000.

department Contains the name for the department in which
the user works.

description Contains the description to display for an object.
This value is treated as single-valued by the
system.

displayName The display name for an object. This is usually the
combination of the users first name, middle initial,
and last name.

distinguishedName Same as the Distinguished Name for an object.
Used by Exchange.

facsimileTelephoneNumber Contains telephone number of the user's business
fax machine.

givenName Contains the given name (first name) of the user.

UMRA Help

homeDirectory The home directory for the account. If homeDrive
is set and specifies a drive letter, homeDirectory
must be a UNC path. Otherwise, homeDirectory is
a fully qualified local path including the drive letter
(e.g. "c:\directory\folder"). This value can be a null
string.

homeDrive Specifies the drive letter to which to map the UNC
path specified by homeDirectory. The drive letter
must be specified in the form "<DriveLetter>:"
where <DriveLetter> is the letter of the drive to
map. The <DriveLetter> must be a single,
uppercase letter and the colon (:) is required.

homePhone The user's main home phone number.

info The user's comments. This string can be a null
string.

initials Contains the initials for parts of the user's full
name.

ipPhone The TCP/IP address for the phone.

l Represents the name of a locality, such as a town
or city.

lastLogon The last time the user logged on. This value is
stored as a large integer that represents the
number of 100 nanosecond intervals since January
1, 1601 (UTC). A value of zero means that the last
logon time is unknown.

lDAPDisplayName The name used by LDAP clients, such as the ADSI
LDAP provider, to read and write the attribute
using the LDAP protocol.

mail The list of email addresses for a contact.

memberOf The distinguished name of the groups to which
this object belongs.

mobile The primary cell phone number.

pager The primary pager number.

physicalDeliveryOfficeName Contains the office location in the user's place of
business.

postalCode The postal or zip code for mail delivery.

UMRA Help

postOfficeBox The P.O. Box number for this object.

profilePath Specifies a path to the user's profile. This value can
be a null string, a local absolute path, or a UNC
path.

sAMAccountName The logon name used to support clients and
servers running older versions of the operating
system, such as Windows NT 4.0, Windows 95,
Windows 98, and LAN Manager. This attribute
must be less than 20 characters to support older
clients.

scriptPath This attribute specifies the path for the user's
logon script. The string can be null.

sn This attribute contains the family or last name for
a user.

st The name of a user's state or province.

streetAddress The street address.

telephoneNumber The primary telephone number.

title Contains the user's job title. This property is
commonly used to indicate the formal job title,
such as Senior Programmer, rather than
occupational class, such as programmer. It is not
typically used for suffix titles such as Esq. or DDS.

userAccountControl Flags that control the behavior of the user
account.

userPrincipalName This attribute contains the UPN that is an Internet-
style login name for a user based on the Internet
standard RFC 822. The UPN is shorter than the
distinguished name and easier to remember. By
convention, this should map to the user e-mail
name. The value set for this attribute is equal to
the length of the user's ID and the domain name.

UMRA Help

userWorkstations Contains the NetBIOS or DNS names of the
computers running Windows NT
Workstation/Windows 2000 Professional from
which the user can log on. Each NetBIOS name is
separated by a comma. The NetBIOS name of a
computer is the sAMAccountName property of a
computer object. Multiple names should be
separated by commas.

wWWHomePage The primary web page.

You are not limited to using the above listed attributes. For a full list of
attributes, see http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/adschema/adschema/attributes_all.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/adschema/adschema/attributes_all.aspor check the MSDN library.

Attribute value conversions

Some attributes contain values which require data conversion. For more
information about this topic, see LDAP attributes - Data conversion on page
679 and LDAP attributes - Data conversion routine on page 680.

5.74. LDAP attributes - Data conversion
Some attributes contain values which are hard to interpret. The
attribute lastLogon for instance, which is used to check when a user last
logged on, returns a value which represents the number of 100
nanosecond intervals since January 1, 1601 (UTC). A value of zero means
that the last logon time is unknown. The following screenshot gives you
an idea what this looks like:

In such cases you would probably want to present these values in a
more user friendly way. This can easily be achieved using data
conversions.

5.75.

Example - Specifying data conversion for the lastLogon attribute

1. Select the Attribute tab and click the Add button. This will bring
up the LDAP Attribute specification dialog box

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adschema/adschema/attributes_all.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adschema/adschema/attributes_all.asp

UMRA Help

2. In the LDAP name field, enter "lastLogon" (this attribute is not
included in the default list of attributes)

3. Click the Setup... button under Data conversion:

4. Click the Add button in the Data conversion dialog box

5. Select the operation Convert large integer (100ns,1-1-1601) to

date-time (last logon).

6. Click OK. The data conversion routine is now added to the Data

conversion routines window.

7. Click OK twice to return to the Setup Generic table dialog box.

Note that the lastLogon attribute has now been added and that
data conversion has been set to "Yes".

8. Select the Run test tab and click the Test... button. You will see

that the original value representing the last logon for the
Administrator has been converted to an understandable date-
time format.

For more information on data conversion routines, see LDAP attributes -

Data conversion routine on page 680.

5.76. LDAP attributes - Data conversion routine
In UMRA, data conversion routines are used to present returned
attribute values in a more user- friendly way. In LDAP attributes - Data

conversion on page 679 an example was given on how to convert large

UMRA Help

integers to a date-time format. In total UMRA offers three data
conversion routines:

1. Perform logical AND on the input value and specified argument

2. Convert large integer (100ns, 1-1-1601) to date-time (last logon) on
page 679

3. Convert large integer to specified text if zero.

In this topic we will describe the use of operation 1 and 3 and zoom in
on some other options in the Data conversion routine dialog box.

Perform logical AND on the input name and specified argument

The routine Perform logical AND on the input value and specified
argument is used to evaluate so called bitmask attribute values on page
697. A bitmask attribute is a single attribute that contains multiple
properties and property values. For the sake of clarity, just consider a
bitmask to be a bank of switches, with each switch representing a
different property. If the switch for Account is disabled is on, then the
account is disabled. If the switch is on, the user account is enabled. The
only difficult part is that these "switches” do not have intuitive names
such as "Account disabled". Instead, they have hexadecimal values like
&H0040.

The userAccountControl attribute for instance, holds the following
properties and hex values:

Property Value

Logon script will be executed &H0001

Account is disabled &H0002

Account requires a home directory &H0008

Account is locked out &H0010

Account does not require a password &H0020

User cannot change password &H0040

Encrypted text password allowed &H0080

Account password never expires &H10000

Smartcard required for logon &H40000

UMRA Help

Password has expired &H800000

If you want to create a generic table which returns a list of all users with
a disabled account, you need to do the following:

1. Select the Attribute tab and click the Add button. This will bring
up the LDAP Attribute specification dialog box.

2. In the LDAP name field, select the userAccountControl attribute
and enter "Disabled account" as the display name.

3. Click the Setup... button under Data conversion.

4. Click the Add button in the Data conversion dialog box.

5. Select the operation Perform logical AND on the input value and

specified argument.

This operation requires that you specify the value of the property
as an argument in decimal format (not in hex format). The table
above shows that the hex value for the property "Account is
disabled" is "&H0002". This hexadecimal value needs to be
converted to a decimal before it can be entered as an argument.
This conversion can be done in any Windows calculator. In this
case, the decimal value is "2".

6. Enter 2 in the Argument text field.

7. Click OK. The data conversion routine is now added to the Data

conversion routines window.

8. Click OK twice to return to the Setup Generic table dialog box.

Note that the lastLogon attribute has now been added and that
data conversion has been set to "Yes".

9. Select the Run test tab and click the Test... button. Users with a
disabled account are now displayed in the Disabled accounts

column ("Yes" is disabled, "No" is enabled).

UMRA Help

Converting a large integer to specified text if zero

The lastLogon attribute contains a value which tells us when a user last
logged in. If the query returns a zero, it means that the last logon time is
unknown. By default, this is not displayed. In the following screenshot
for instance, the last logon time for the users "Guest" and "Frédéric
Vallenet" is unknown, but not displayed as such.

By making use of the routine Convert large integer to specified text if

zero. we can include a string to be displayed when the value of the
lastLogon attribute is zero.

1. Select the Attribute tab and click the Add button. This will bring
up the LDAP Attribute specification dialog box.

2. In the LDAP name field, enter "lastLogon" (this attribute is not
included in the default list of attributes).

3. Click the Setup... button under Data conversion.

4. Click the Add button in the Data conversion dialog box.

5. Select the operation Convert large integer to specified text if

zero.

6. In the Argument field, enter "Unknown". This will display the
string "Unknown" for all user objects where the lastLogon
attribute value is zero,. Click OK.

7. Click OK. The data conversion routine is now added to the Data

conversion routines window.

8. Click OK twice to return to the Setup Generic table dialog box.

Note that the lastLogon attribute has now been added and that
data conversion has been set to "Yes".

9. Select the Run test tab and click the Test... button. You will see
that the zero value for the two user objects is now displayed as
"Unknown".

UMRA Help

5.77. LDAP Directory Service - Encrypt input
Important: This script action is one of a series of script actions to
manage LDAP directory services using UMRA. If you are not familiar with
this topic yet, then please read Managing LDAP directory services using UMRA
on page 25 first.

In this window you can specify the password of the user with property
"User name".

Normal value: Here you can enter a user password directly. When you
click OK, the password will be automatically encrypted.

Encrypted value: If the password has been encrypted using the Set
encrypted variable script action, this variable can be entered or selected
in the Encrypted value field.

In an UMRA script, the passwords are always stored encrypted. When an
LDAP session is established however, the password is automatically
decrypted and there will be two possible options:

1. Non-secure communication (No SSL enctyption) - All
communication with the LDAP Server and the UMRA software is
not encrypted. Authentication is accomplished using an account
name and the password which was encrypted in UMRA will be
decrypted automatically and sent as clear text. Although simple
to implement, this option is not recommended because of
security reasons. The option can be used for testing purposes.

2. Secure with SSL (SSL Encryption flag set to "Yes" - All
communication between the LDAP client, e.g. the UMRA
software and the LDAP Server is encrypted using the SSL
standard. This option is recommended and secure. All data is
sent encrypted.

Generating your own key for encryption and decryption

UMRA uses the same key for encrypton and decryption which is
automatically generated when you install the UMRA service. For security
reasons, you may decide to generate your own key, in which case you
must ensure that the key which is generated on the UMRA Console side
is identical to the one on the UMRA service side. Ho to do this, is
described in the following procedure.

UMRA Help

Generating a key on the UMRA Service side

1. 1. In Windows, select Start-->All Programs-->Administrative

Tools-->Active Directory Users and Computers. Select the
\Users folder.

2. Right-click the UMRA Service (called UmraSvcAccount) and select
the Reset Password command.

3. Enter a new password in the Reset Password dialog box and

confirm your password. Note that you can only do this if you are
currently logged in with an administrator password.

4. Log off by selecting Start-->Log Off

Next, we need to log on using the UMRA Service account and the
password we have just entered to create a new registry key.

5. Press Ctrl-Alt-Delete and enter the UMRA Service account
(UMRASvcAccount) and password:

6. Start the registry editor by selecting Start-->Run and entering
"Regedit".

7. Create the following key:

HKEY_CURRENT_USER\Software\tools4ever\UMRA\Communic
ation

8. In the Communication folder, create a new String value called
"Key" and enter a password. This key and the password should
be exactly the same on the UMRA Console side!!!

9. Log off.

Generating a key on the UMRA Console side

1. Log in using an account with administrative rights. Repeat steps
6-8 as described under Generating a key on the UMRA Service

side. The key has now been successfully changed.

UMRA Help

See also:

Script Action: Set encrypted variable on page 546

5.78. LDAP Directory Service - LDAP Search
Important: This script action is one of a series of script actions to
manage LDAP directory services using UMRA. If you are not familiar with
this topic yet, then please read Managing LDAP directory services using UMRA
on page 25 first.

The LDAP Search window is used to specify the LDAP search.

Session
The variable representing the LDAP Session that is initialized with action
Setup LDAP session.

Result

The name of the variable that is used to store the result of the search.
The search result is always stored as a table. The variable does not need
to exist when the action is executed. If it does not exist, the old value is
overwritten.

Base (DN)
The distinguished name of the directory service tree where the search
should start. The search is executed at the specified base, and optionally
in the immediate or all subtrees of the directory service.

Filter
The specification of the filter to perform the search. The standard search
specification according to RFC2254 can be used to execute the search.

Scope

Base only Limits the search to the specified base only. The maximum
number of matching directory service items is 1.

One level The search is performed in all entries of the first level below the
base entry, excluding the base entry.

Subtree The search is performed in the base entry and all levels below
the base entry.

UMRA Help

Options

Time out
interval

When enabled, the specified value is the time-out value of the
LDAP search and the operation time. If disabled, no time-out
value is used.

Size limit When enabled, the maximum number of matching values is
limited to the specified value. When disabled, the maximum
number of items is not limited.

See also:

Managing LDAP directory services using UMRA on page 25

5.79. LDAP Directory Service - LDAP Search
Attributes
Important: This script action is one of a series of script actions to
manage LDAP directory services using UMRA. If you are not familiar with
this topic yet, then please read Managing LDAP directory services using UMRA
on page 25 first.

In the Attributes window, the attributes that must be returned for each
matching directory service item are specified. The attributes are
specified using the LDAP name as specified in the schema definition of
the directory service. In the figure below, an example is shown:

The result of the search is a table. In the table, the rows correspond with
matching directory service items. Each column corresponds with an
attribute. The distinguished name is by default stored in the last column
of the table. So the example shown in the figure above will result in a
table with 4 columns. The distinguished name is normally used to
identify a directory service item.

UMRA Help

Note: The column names are not stored as part of the table data. If the
variable is in a form to show the table data, the column names need to
be specified as part of the table form field specification. See Variable

generic table on page 776 for more information.

See also:

Variable generic table on page 776

Script action: Setup LDAP session on page 5

Script action: Load LDAP modification data on page 7

Script action: Add directory service object (LDAP) on page 10

Script action: Modify directory service object (LDAP) on page 10

Script action: Delete directory service object (LDAP) on page 11

Script Action: Search LDAP
http://www.tools4ever.com/resources/manual/usermanagement6/scrip
t_action_search_ldap.htm \t t4ehelppopup

5.80. LDAP Directory Service - Setup LDAP
modification data
Important: This script action is one of a series of script actions to
manage LDAP directory services using UMRA. If you are not familiar with
this topic yet, then please read Managing LDAP directory services using UMRA
on page 25 first.

The Setup LDAP modification data window is used to specify the values
of an attribute.

For the attribute you need to specify the following:

1. Type of modification: Either Add, Delete or Replace, depending
on the required type of modification.

2. Add: add the specified values to the attribute. Existing attributes
values are not removed. If the attribute already contains one of
the specified values, an error occurs.

3. Delete: delete the specified value from the attribute. If the
specified value is not a value of the attribute, an error occurs.

http://www.tools4ever.com/resources/manual/usermanagement6/script_action_search_ldap.htm%20t%20t4ehelppopup
http://www.tools4ever.com/resources/manual/usermanagement6/script_action_search_ldap.htm%20t%20t4ehelppopup

UMRA Help

4. Replace: delete all of the existing attribute values and add the
specified values to the attribute.

5. Type of data: The type of the data, either text or binary. Almost
all attribute values, including text, numbers, Boolean flags, date
and time values can be specified using text.

6. Data specification: The attribute values. These values can be
specified as fixed values or variables.

See also:

Managing LDAP directory services using UMRA on page 25

Script action: Setup LDAP session on page 5

Script action: Load LDAP modification data on page 7

Script action: Add directory service object (LDAP) on page 10

Script action: Modify directory service object (LDAP) on page 10

Script action: Delete directory service object (LDAP) on page 11

Script Action: Search LDAP
http://www.tools4ever.com/resources/manual/usermanagement6/scrip
t_action_search_ldap.htm \t t4ehelppopup

5.81. LDAP search - Attributes

Previous actions:

1. Specifying the table type on page 655

2. Specifying the LDAP binding method on page 694

3. Defining the LDAP filter on page 697

General

Each object in Active Directory has a set of attributes, defined by and
depending on its type and class. Using the LDAP filter you have filtered

http://www.tools4ever.com/resources/manual/usermanagement6/script_action_search_ldap.htm%20t%20t4ehelppopup
http://www.tools4ever.com/resources/manual/usermanagement6/script_action_search_ldap.htm%20t%20t4ehelppopup

UMRA Help

on some objects representing single entities (users, computers, printers,
applications, etc.) and their attributes. In the Attributes tab you need to
define which attributes you wish to return for the filtered objects.

Specifying LDAP attributes in UMRA

In the LDAP filter you have defined which objects you want to retrieve.
The next step is to define the attributes you want to have returned for
these objects. In UMRA, you can either specify an LDAP attribute
yourself or select a default attribute setting.

1. Selecting a default attribute setting

You can select one or more predefined attributes from the Default

attribute settings list to include in your query. The table below shows
the corresponding LDAP name which is inserted in the Attributes

window when you click the Set button.

If you select the
Attribute
example setting

The following
attributes are
returned

Display
Name

Description

A. Users - general
information

cn Name Name that
represents an
object

 description Description Contains the
description to
display for an
object.

B. Users - locked
out, disabled

A plus the following:

 userAccountControl Locked out Flags controlling
the user account
behaviour.

 userAccountControl Disabled

UMRA Help

C. Users - locked
out, disabled +
more options

A+B+D

D. Users - password
options

A plus the following:

 userAccountControl User must
change
password at
next logon

 userAccountControl User cannot
change
password

 userAccountControl Password never
expires

E. Users - full details C plus the following

 profilePath Profile path Specifies a path
to the user's
profile. This
value can be a
null string, a
local absolute
path, or a UNC
path.

 scriptPath Script path The path to the
user's logon
script

 home drive Home directory
drive

Specifies the
drive letter to
which to map
the UNC path
specified by
homeDirectory.

UMRA Help

 homeDirectory Home directory The home
directory for the
account. If
homeDrive is set
and specifies a
drive letter,
homeDirectory
must be a UNC
path.

F. Users - names cn Name

 displayName Display name The display
name for an
object. This is
usually the
combination of
the users first
name, middle
initial, and last
name.

 givenName First name First name of
the user

 initials Initials Contains the
initials for parts
of the user's full
name.

 sn Last name Contains the last
name for a user

 sAMAccountName SAM Account
Name

The logon name
used to support
clients and
servers running
older versions of
the operating
system, such as
Windows NT
4.0, Windows
95, Windows 98,
and LAN
Manager.

UMRA Help

 userPrincipalName User Principal
Name

This attribute
contains the
UPN which is an
Internet- style
login name for a
user based on
the Internet
standard RFC
822. By
convention, this
should map to
the user e-mail
name. The value
set for this
attribute is
equal to the
length of the
users ID and the
domain name.

 distinguishedName Object
Distinguished
Name

Same as the
Distinguished
Name for an
object. Used by
Exchange.

G. Users - last logon A plus the following:

 lastLogon Last Logon The last time the
user logged on.
This value is
stored as a large
integer that
represents the
number of 100
nanosecond
intervals since
January 1, 1601
(UTC). A value of
zero means that
the last logon
time is
unknown.

UMRA Help

For a complete overview of Active Directory attributes, please see the
Microsoft website
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/adschema/adschema/attributes_all.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/adschema/adschema/attributes_all.asp

2. Specifying an LDAP attribute

Apart from selecting a default attribute setting based on its description
(Users - last logon, Users - names) you can also specify an attribute
yourself. For more information, see LDAP attributes - Attribute specification
on page 675.

Next action:

Generic table - Run test on page 671

See also:

UMRA tables on page 9

5.82. LDAP search - LDAP binding

Previous actions:

1. Specifying the table type on page 655

Starting with Windows 2000, the LDAP provider is used to access Active
Directory. This binding method requires a binding string, which can be
defined in three different ways in UMRA:

1. Global Catalog - Binding to the global catalog

The global catalog is a searchable master index containing directory data
of all domains in a forest. It contains an entry for every object in the
forest, but it does not include all properties of each object. The Global
Catalog is used to improve the response time of LDAP searches. The
properties included in the Global Catalog are generally useful for
searches and are considered static (dynamic properties would cause
excess replication). Note that if you are searching for a property which is

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adschema/adschema/attributes_all.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adschema/adschema/attributes_all.asp

UMRA Help

not included in the Global Catalog, the search will only be conducted in
the current domain.

In UMRA, there are two ways of binding to the Global Catalog. You can
either select the option Global Catalog or select the Binding String
option and enter the binding string manually.

2. Active Directory root - Binding to the Active Directory root

This option will bind to the Active Directory root of a domain controller.
The Active Directory contains all the network information for the forest.

3a. Binding string - Binding to Active Directory using a binding string

You can also enter a binding string manually. This binding string is the
AdsPath of an object in Active Directory, consisting of the LDAP provider
moniker (LDAP://) appended to the Distinguished Name of the object.
The Distinguished Name specifies both the name and the location of an
object in the Active Directory hierarchy.

The Distinguished Name consists of a series of components separated by
commas. Each component consists of a moniker, an equals sign, and the
name of the component. Below are examples of statements that bind to
objects with the LDAP provider. The binding string is the string in quotes.

 “LDAP://cn=John Smith,ou=Sales,dc=MyDomain,dc=com”

 “LDAP://cn=Test2,cn=Users,dc=MyDomain,dc=com”

 "LDAP://cn=Engr,ou=East,dc=MyDomain,dc=net"

 "LDAP://ou=Sales,ou=East,dc=MyDomain,dc=MyFirm,dc=com
"

In the table below, the various components are explained:

Component Description

LDAP The provider (case sensitive)

cn=John
Smith,ou=Sales,ou=East,dc=MyDomain,dc=net

Distinguished Name of user
"John Smith"

cn=John Smith Relative Distinguished Name of
user "John Smith"

dc=MyDomain,dc=com DNS domain name
(MyDomain.com)

UMRA Help

cn=Users Relative Distinguished Name of
container "Users'

ou=Sales Organizational Unit where user
"John Smith" resides

cn Common Name

ou Organizational Unit

dc Domain

As an example, the Distinguished Name "cn=John
Smith,ou=Sales,dc=MyDomain,dc=com" has four components. The first
(lowest level) component of the Distinguished Name is the Relative
Distinguished Name (RDN) of the object. In this case, the RDN is
"cn=John Smith". The RDN of an object is the name of the object in its
container. The remainder of the components are the Distinguished
Name of the container, which is the parent of the object. In this case,
the object "cn=John Smith" is in the container whose Distinguished
Name is "ou=Sales,dc=MyDomain,dc=com". In this case, the parent
container is an organizational unit. The parent of the "ou=Sales"
organizational unit is the domain "MyDomain.com". This domain has
domain components "dc=MyDomain" and "dc=com". The full DNS name
of the domain is "dc=MyDomain,dc=com".

Container objects can be containers, organizational units, or domains.
Container objects are objects that can "contain" other objects, such as
user objects, group objects, and computer objects. Group objects are
not containers. Groups can have members, but the members are not
children of the group object.

3b. Binding string - Binding to the Global Catalog using a binding string

You can also bind to the server holding the global catalog using the GC
provider. "GC:" uses the LDAP provider to bind to the Global Catalog
service to execute fast queries.

The syntax is:

GC://<host name>/<object name>

where <host name> specifies the (DNS) name of the server holding the
Global Catalog and <object name> represents a specific Active Directory
object.

UMRA Help

Next actions:

1. Defining the LDAP filter on page 697

2. Defining LDAP attributes on page 689

3. Setting LDAP options (optional) on page 702

4. Specifying a table variable (optional) on page 674

5. Running a search filter test (optional) on page 671

See also:

UMRA tables on page 9

5.83. LDAP search - LDAP Filter

Previous actions:

1. Specifying the table type on page 655

2. Specifying the LDAP binding method on page 694

LDAP filter - General

Once you have specified the data source for your generic table (see Table

form field - Generic table on page 655) and the LDAP binding method, (see
LDAP search - LDAP binding on page 694) you will need to specify which
objects you would like to retrieve by defining a search filter. A search
filter can be defined as a clause specifying the conditions that must be
met for records to be included in the resulting record set.

UMRA Help

LDAP filter - Syntax

As mentioned above, you define all conditions that must be met for an
object in the search filter. A condition takes the form of of a conditional
statement, such as "(cn=TestUser)". Each condition must be enclosed in
parenthesis. In general, a condition includes an attribute and a value,
separated by an operator.

Conditions can be combined using the following operators (note that the
operators "<" and ">" are not supported).

Operator Description

= Equal to

~= Approximately equal to

<= Less than or equal to

>= Greater than or equal to

& AND

| OR

! NOT

Conditions can also be nested using parenthesis. Furthermore, you can
use the "*" wildcard character in the search filter.

The LDAP filter in UMRA

For the LDAP filter in UMRA you can either make a choice from a list of
predefined search filters under Example LDAP search filters or enter
your own search filter directly in the LDAP Search filter window.

UMRA Help

To select all users for example, simply select the All users option and
click the Insert button. The actual LDAP search syntax for this filter,
"(objectClass=user)" will now appear in the LDAP search filter window.

Some examples of filtering actions

To Use the following LDAP filter

Return all
user objects
except
those
whose
surname
attribute
equals
"Macintosh
"

(&(objectClass=user)(!(sn=Macintosh)))

Return all
user objects
with a
surname
that starts
with sm

(sn=sm*)

Return all
contacts
with a
surname
equal to
Smith or
Johnson

(&(objectClass=contact)(|(sn=Bridges) (sn=Macintosh)))

UMRA Help

Return all
user objects
with cn
(Common
Name)
beginning
with the
string "Joe"

(&(objectCategory=person)(objectClass=user)(cn=Joe*))

Return all
computer
objects with
no entry for
description

(&(objectCategory=computer)(!description=*))

Return all
user and
contact
objects

(objectCategory=person)

Return all
group
objects with
an entry for
description

(&(objCategory=group)(description=*))

Return all
groups with
cn starting
with
"Helpdesk"
or "Admin"

(&(objectCategory=group)(|(cn=Test*)(cn=Admin*)))

Return all
users with
"Password
Never
Expires" set

(&(objectCategory=person)(objectClass=user)
(userAccountControl:1.2.840.113556.1.4.803:=65536))

The attribute userAccountControl is a bitmask attribute. See the
section Bitmask attributes below for a detailed explanation.

Return all
users with
disabled
accounts

(&(objectCategory=person)(objectClass=user)
(userAccountControl:1.2.840.113556.1.4.803:=2))

The attribute userAccountControl is a bitmask attribute. See the
section Bitmask attributes below for a detailed explanation.

UMRA Help

Return all
users with
"Allow
access"
checked on
the "Dial-
in" tab of
the user
properties
dialog of
Active
Directory
Users &
Computers.
These are
all users
allowed to
dial in. Note
that "TRUE"
is case
sensitive
(for this
query to
work, you
need to
bind to the
Active
Directory
root)

(&(objectCategory=person)(objectClass=user)&(msNPAllowDialin=
TRUE))

Return all
user objects
created
after a
specified
date
(01/01/200
5)

(&(objectCategory=person)(objectClass=user)
(whenCreated>=20050101000000.0Z))

UMRA Help

Return all
users that
must
change
their
password
the next
time they
logon (for
this query
to work,
you need to
bind to the
Active
Directory
root)

(&(objectCategory=person)(objectClass=user)(pwdLastSet=0))

Next action:

LDAP search - Attributes on page 689

See also:

UMRA tables on page 9

5.84. LDAP search - Options

Previous actions:

1. Specifying the table type on page 655

2. Specifying the LDAP binding method on page 694

3. Creating an LDAP filter on page 697

UMRA Help

LDAP search options

In this section you can define the scope of you LDAP search and some
additional options for your LDAP search. The following sections describe
in detail the various possible configurations.

Time limit options (by default
not set)

Description

Maximum search time Specifies the maximum time for the
LDAP search. If the time limit is
reached, the search is ended.

Page time limit Specifies the amount of time the
UMRA client waits for a result set
before terminating the search request.

Size limit options (by default not set)

Total size limit Specifies the size of the result set. If
the result set reaches search he
specified size, the result set is
considered complete.

Page size limit The maximum number of records to be
processed by the domain controller
and returned to the UMRA client
before continuing the search.

Cache results options (set by default)

Cache result Specifies whether the result set should
be cached to the client. For very large
result sets, disabling caching will
reduce memory consumption on the
client.

Scope options

Search subtree, including all the
children and the base object (default)

The search includes the entire Active
Directory structure below the search
base

UMRA Help

Search one level of the immediate
children, excluding the base object

The search includes any immediate
children (sub containers or OUs)

Search base object only (result
contains one object maximum)

This means that only the search base
object is included in the search and no
child containers or OUs. The maximum
number of objects returned is one..

Referral chasing options

Never

Subordinate referrals only This option needs to be selected if the
LDAP search requires proceeding into
parts of the directory tree that are not
stored on the current domain
controller.

External referrals only The LDAP search needs to follow up
references to an LDAP directory on
another domain.

Always

Referrals

Every domain controller holds information about the other domains in
the forest in the domain controller's Configuration container. When an
LDAP search in Active Directory requires action on objects that are
located on another domain controller, the client is referred to a domain
controller that holds the requested object. This way, clients can query
the root domain and reach the appropriate domain controller without
having to know the name or location of the child domain.

See also:

UMRA tables on page 9

UMRA Help

5.85. License code
A UMRA license code contains the following information:

1. The licensing model: demo, domain/OU or site on page 707;

2. Name of the domain/OU or site;

3. Maximum number of users (domain/OU license only)

4. Function on page 663 modules

5. Interface on page 675 modules

Dependent on the UMRA installation, UMRA license codes must be
installed for one or more UMRA components:

Feature UMRA applications used UMRA License Code
installed for

Run mass
projects

UMRA console UMRA console

Run
delegated
forms

1. UMRA console to setup form
projects and manage the UMRA service

2. UMRA forms used by helpdesk
employees to view and submit forms

3. UMRA service to execute submitted
forms

UMRA console and
UMRA service

Note: A single license code can contain any combination of function and
interface modules.

Required information to obtain a license

To obtain a license code for User Management Resource Administrator,
you need to contact your UMRA reseller. Please note that you are
required to pass some network specific information in order to obtain a
valid license code. In most cases, you will need a license code for either
an entire domain or an organizational unit. Note that such a code is also
valid for all child organizational units in the domain - organizational unit.
If you want to manage user accounts in multiple domains or
organizational units that do not have a parent-child relationship, you will
also need multiple license codes.

UMRA Help

The following information is required in order to generate a license
code:

1. The name of the domain or organizational unit. If you need a
license for a domain (and all child organizational units), you can
specify the domain name either in NETBIOS format (example:
TOOLS4EVER) or use the DNS name (example: tools4ever.com).
In order to license a organizational unit (and all child
organizational units) you need to specify the name of the
organizational units in the following form: [domain DNS
name]/[name of organizational unit]. Examples:
tools4ever.com/Development,
tools4ever.com/Development/UserManagementTeam.

2. The maximum number of user accounts of the domain or

organizational unit. You need to include all user accounts of
child organizational units as well. The number should be
specified as one of the available tier levels: 100, 200, 250, 500,
750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,
10000 (10k), 20k, 30k, 40k, 50k, 60k, 70k, 80k, 90k, 100k, 110k,
120k, 130k, 140k, 150k, 200k, 250k, unlimited. Select the nearest
tier level that exceeds the expected maximum number of user
accounts (examples: 180 -> 200, 4560 -> 5000, 37000 -> 40000).

3. The function on page 663 and interface on page 675 modules that
must be supported by the license code.

Specification of a license code

A license code looks like this:

BEGIN_CODE
Ni4m6jZkCD-4kDG33rASG-SWF15Ym7em
SWFsjY5dMm-x85WWny7ny-Efdm3D3mQF
745kFn77ny-B6EZQj8kyD-pXDs2fDXmQ
Tools4ever
END_CODE

The code contains 6 lines of text, begins with BEGIN_CODE and ends
with END_CODE. Lines 2,3 and 4 contain the actual license code with a
total of 90 characters, split over 3 lines with 30 characters per line ([10
chars] - [10 chars] - [10 chars]). Line 5 contains the registered license

UMRA Help

name. This can be the domain name, name of the organizational unit or
the name of the site. The syntax of the license code is:

BEGIN_CODE
[10-chars] - [10 chars] - [10 chars]
[10-chars] - [10 chars] - [10 chars]
[10-chars] - [10 chars] - [10 chars]
[registered name]
END_CODE

To configure a license code for UMRA console, start the application and
selection menu option Help, License. The presented window shows all
installed licenses. Press Add. Although not required, it is most
convenient to copy-paste a license code into the section License code. If
the license code is already in the clipboard (press Ctrl-C when the license
code is selected in a text editor as notepad) you only need to press
Paste. Once the license code is specified, press OK. The license code is
now installed. Once the code is installed, press OK. When you no longer
need a license code, it is advised to remove the license code.

For more information on how to setup a license code for UMRA service,
see UMRA service - license on page 773.

See also:

License model on page 707

Interface modules on page 675

Function modules on page 663

5.86. License model

Introduction

To setup a licensed version of User Management Resource
Administrator you need to have one or more valid license codes. You can

UMRA Help

obtain a license code for UMRA from your reseller. Note that the license
codes of UserManagemeNT 5.x (UserManagemeNT Professional,
Delegation and Import) cannot be used for User Management Resource
Administrator.

Licensing model

User Management Resource Administrator supports three licensing
models:

1. Demo license - A demo license has a limited lifetime. The default
demo period is 30 days. During the demo period, script
execution is limited to 5 times per session, which can be reset by
restarting the application. The demo license supports all function
modules for the Console Interface Module (see further). When
started for the first time, a demo license is automatically
installed.

2. Domain - Organizational Unit license: This is default license
model when purchased. The license is related to a domain or
organizational unit (and all child organizational units). This type
of license grants access to the functions of User Management
Resource Administrator as long as the managed user accounts
are a member of the licensed domain or organizational unit. A
Domain - Organizational Unit license is further based on the
maximum number of user accounts that exist in the domain
(organizational unit) and all child organizational units. If the
actual number of users exceeds the maximum number of the
license, the license is no longer valid and User Management
Resource Administrator will not execute any script or project.
(For more complex scenario's, additional licensing options are
available. Contact your reseller for more information).

3. Site license - A site license grants access to the functions of User
Management Resource Administrator, regardless of the number
of user accounts managed with User Management Resource
Administrator.

Once a license is installed, you can always change to another licensing
model if you have a valid license code. All configuration settings are
preserved in this procedure.

UMRA Help

Function and Interface modules

All features and functions of User Management Resource Administrator
are divided into modules. Each module has its own specific feature set.
Two types of modules are defined for UMRA:

1. Function modules - A function module contains a number of
script actions. The script actions can be regarded as the
instruction set of UMRA. Each script action belongs to a specific
function module. For an overview of script actions and functions
modules, see Function modules for more information. For more
general information on script actions, see UMRA Basics on page 3.

2. Interface modules - An interface module contains one or more
UMRA applications that are used to run the UMRA scripts. The
currently available interface modules are: (1) UMRA Mass
Module (2) UMRA Forms Module and (3) UMRA Automation
Module.

License code

An UMRA license is installed by the configuration of a license code. A
license code contains information regarding the licensing model and the
function and interface modules. When the demo version is expired, you
need to install a license code in order to continue working with UMRA. A
license code can be obtained from your UMRA reseller. For more
information, see License code on page 705.

See also:

Interface modules on page 675

Function modules on page 663

License code on page 705

5.87. License matrix
UMRA consists of the following software applications:

1. UMRA Console - The main application that is primarily used to
manage all UMRA projects and manage the UMRA service. To
use UMRA, you always start with the UMRA Console application.

UMRA Help

2. UMRA Service - The UMRA service is used to execute delegated
tasks. The UMRA Service is accessed through the UMRA Console,
UMRA Forms and UMRA Automation software. See UMRA Basics
on page 3 and Getting Started on page 3 for more information.

3. UMRA Forms - The Windows interface to show and submit
delegated forms. The UMRA Forms application is most often
used by helpdesk employees. The UMRA Forms application
interfaces with the UMRA Service application directly. See UMRA

Basics on page 3 for more information.

4. UMRA Automation - UMRA can be integrated with other
employee management systems to automate Active Directory
user account management tasks. For instance: When an
employee leaves an organization and is excluded from an
employee information system, Active Directory needs to be
updated, by disabling or removal of the associated user account
and network resources. With UMRA, the UMRA service can
execute these tasks automatically when the employee
information system is updated. See UMRA Basics on page 3 and
Integrate UMRA with other applications using COM on page 75 for
more information.

The combination of supported functions on page 663 and required
interface modules on page 675 of User Management Resource
Administrator is shown in the license matrix table below.

Function UMRA software Required
Interface
Modules
license

Function
Module license

Run mass
projects with the
graphical UMRA
Console user
interface

UMRA Console UMRA Mass
Module

Base Function
Module
Exchange
Function Module
Advanced
Function Module

UMRA Help

Run mass
projects with the
command line
options of the
UMRA Console
application.

UMRA Console
UMRA
Automation

UMRA
Automation
Module

Base Function
Module
Exchange
Function Module
Advanced
Function Module

Run form
projects with
UMRA Forms

UMRA Console
UMRA Service
UMRA Forms

UMRA Forms
Module

Base Function
Module
Exchange
Function Module
Advanced
Function Module

Run form
projects from a
command line

UMRA Console
UMRA Service
UMRA
Automation

UMRA
Automation
Module

Base Function
Module
Exchange
Function Module
Advanced
Function Module

Run form
projects using
COM objects
(ASP, Office, etc.)

UMRA Console
UMRA Service
UMRA
Automation

UMRA
Automation
Module

Base Function
Module
Exchange
Function Module
Advanced
Function Module

See also:

Function modules on page 663

Interface modules on page 675

License code on page 705

5.88. Log information
User Management Resource Administrator logs extensive project
information to the log window and log file. Each time a project is run, a

UMRA Help

new log file is generated. In the log window, at the bottom of the screen,
the same log information is written. To setup the various log options,
select Tools-->Options-->Log settings from the main menu.

This window contains the following fields:

Automatically show the log window when a job is started
With the menu option View-->Log Bar, you can toggle the log
bar on and off. When this option is selected, the log bar is
automatically shown when a job is started.
Reset the log window when a job is started
Select this option if you want to clear the content of the log
window each time a new job is started.
Store log information in files - Log file directory
When selected, the information is logged to files. For each User
Management Resource Administrator session, a new log file id
generated in the specified log directory. The name of the file has
the following syntax:

UMLOG_mm_dd_yyyy.txt

where mm,dd and yyyy represent the current month, day and
year respectively.

See also:

UMRA Basics on page 3

Getting Started on page 3

Help on help

5.89. Manage script actions
Every UMRA project contains at least a project script to perform a
specific task. A project script consists of one or more script actions.

The available actions that can be added to a script are predefined and
shown in the Actions-Network-Form fields window.

UMRA Help

Adding a script action to a project script

1. Click the Actions tab in the Actions-Network-Form fields
window.

2. Select the required script action and drop it in the Script window
of the project.

Moving a script action within a project script

The position of a script action in a script is important. If the order is not
correct, the script cannot be executed correctly. Example: if you create a
user account and Exchange mailbox, the action to create the user must
precede the action that creates the Exchange mailbox. To move a script

UMRA Help

action in the script to another position, drag and drop the script action
to the desired position.

Deleting a script action from a project script

To delete a script action from a script, select the action and press the Del
key.

Script action execution order

By default, script actions are executed in the order as they appear in the
script. But depending on the result of script actions and by special
variable actions you can control the order in which script actions are
executed. With these possibilities the script becomes a program with
conditional jumps and better controller action execution. From this
point of view, User Management Resource Administrator is a
programming language to program the Windows network. To change
the order in which actions are executed, labels are used for script
actions. A label refers to a script action. To set a label for a script action,
select the action in the script of the project (lower left part of the project
window) and select menu option Actions, Set script action label. Each
action can have only one label. When script execution continues at a
label, the next action executed is the action with the specified label. If
no action has the label specified, an error is generated and script
execution is stopped. Note: since you can also jump to previous script
actions, you can introduce deadlock situations where script execution
never ends. It is the responsibility of the user to prevent this situation
from happening. There are two general ways to change the order used
to execute the script actions, described in the sections below.

Script action execution order: Error handling

When the execution of an script action fails, you have several options to
control the execution of script actions. To specify these settings, select
the action in the script of the project (lower left part of the project
window) and select menu option Actions-->Script action error handling.

Option Description

Continue with the script
.

If this script actions encounters an error, it will (try to)
continue normally with the next consecutive script
action in the script

UMRA Help

Jump to the script action
with label xxxx

If this script actions encounters an error, it will jump
to the script actions specified by the here specified
destination label

Terminate the script but
continue the session
with the next line

If this script actions encounters an error the current
script execution is terminated. The session continues
by running the script with the next line of input.

Terminate the session If this script actions encounters an error the current
script execution is terminated and also the current
session is terminated

Script action execution order: Variable actions

The Script Action: Go to Label on page 569 is used to continue script
execution with another script action than the next script action. The
referenced label can be a variable name.

See also:

UMRA Basics on page 3

Getting started on page 3

Help on Help

5.90. Lotus Notes Document Item Specification
In this dialog you can specify a Lotus Notes item that must be added to
the list of items that will be collected for each document that is returned
from the query.

In other words, you specify here the contents of a particular column in
the resulting table.

Item specification

Specifies which item of the Document will be shown in the current
column

Name: The name of the Item as know in Lotus Notes

UMRA Help

Type: The data type of the resulting item in UMRA. Default is Auto. use
a different value only if the auto conversion does not convert to the
preferred type.

Error Handling

Specifies what should be done if the specified item does not exist in the
document.

 Generate an error. If the item does not exist in the document, the
script action Query document items will report an error, and
perform the general error actions that are configured. Use this if
the existence of the item is required for further processing

 Use an empty value. Use this for instance if the item is not
expected or required in all documents.

 Use the value of variable. If the item is not found in the document,
the specified value contained in the variable will be added to the
table instead. Use this if an empty value may cause confusion. This
can be used for instance to show the text <not found> in the
resulting table.

 Error if conversion fails. If it is not possible to convert the field to
the specified data format, generate an error.

5.91. Lotus Notes Item Specification: General
Specify here instructions how to create or modify a specific Document
Item (field)

Item specification

Item Name. The name of the Document Item to add. This is the name of
the field as it is (or will be) known within Lotus Notes, for example
"Fullname", or "ProxyAction"

Item type.

Indicates the data type of the value associated with the item. The
options available on the value tab reflect the choice specified here.

Text: The value of the item is a simple text string.

UMRA Help

Text list: The value of the item is a list of text strings

date-time: The value of the item represents a date and time.

numeric: The value of the item is an integer number.

Notes reference: The value of the item is a reference to a different
notes document.

Options

Specifies what to do if there already is a field with the specified item
name in the current document

Error if exist: The entire script action will not be performed and and an error will
be generated, if any of the fields with this setting already exist in the document

Delete existing first: If the current document already contains this field, the
entire field is removed before the new field is added.

Append if exist: The new value will be merged with the existing value as
specified in the value options. If there are no special options, the value will be
appended at the end of the current one.

Item creation flags

Several flags that determine specific notes setting regarding the field.

Sign: Items where this flag is set will be sealed when the document is
signed, for instance with Script Action: Sign document on page 468.

Encrypted: Items where this flag is set will be encrypted, when the
document itself is encrypted. Fields without this flag will not be
encrypted.

Protected: Editor access is required to change the item.

Names: The item is a text field that contains a list of users or groups.
often used together with the "readers" or "Authors" option.

Readers: The item is a item containing a list of readers, used for access
control. The "names" option must also be specified if this option is
specified.

Authors: The item is a item containing a list of authors, used for access
control. the "names" option must also be specified if this option is
specified.

UMRA Help

Placeholder: The item is a placeholder field.

Summary: The item added to the document, and is also placed in the
summary buffer of Lotus Notes. This is required for the item to be visible
in any view. If the item is larger than 32 k it does not fit in the summary
buffer and an error is generated. Use this setting if it is required that the
particular field is always visible in views, or if you need to know that it
cannot be shown. Your UMRA script may then react on the error
situation either by making sure that the value is smaller than 32 k, add it
without this flag, or perform some other required action. Only specify
this flag if you really need to know if an item does not fit.

Auto-summary: The item is added to Lotus notes, and if it is smaller then
32 k it is also placed in the summary buffer which is required for it to be
visible in any view. No error is reported if it is larger than 32 k. By default
this is on. If you require a notification if an item does not fit, used the
"summary" instead.

See also

Script Action: Set items(s)

5.92. Lotus Notes Settings dialog
If you want to use UMRA to manage a Lotus Notes environment, you can
here specify the general settings used by UMRA to connect to your Lotus
Notes environment. Note that filling out this dialog is by itself not
sufficient to configure UMRA for use with Lotus notes.

For detailed instructions how to set up UMRA for use with Lotus Notes
see the UMRA Lotus Notes user guide on page 36

Important note

If you reached this dialog by means of the tools/options menu, than all
specified configurations are settings for the UMRA console application,
and are used for all projects that are directly executed by the UMRA
console.

If you reached this dialog by means of the "UMRA service/service
properties" menu then all settings are used for scripts that are executed

UMRA Help

by the Service. Make sure that all specified resources are specified so
that the UMRA service has access to them.

Enable Lotus Notes functions

Check this box to instruct UMRA to initialize its connection with the
Lotus notes environment using the below settings when the dialog is
closed.

Lotus Notes Settings

Lotus Notes Ini File

The location of the Lotus Notes Ini file UMRA uses to setup the
connection with the Notes environment. This can basically be a copy of
the Notes.ini file which is used by the IBM Lotus notes client to connect
to the Domino server. There are a few additions required to this file for
proper operation. see the UMRA Lotus Notes user guide on page 36 for
more information.

Most importantly, this file specifies the Notes security context (user.id)
that UMRA uses to connect to the Lotus notes environment. For most
purposes this should be a Notes user Id with administrative privileges.

Password:

Specify here the password for the Notes User ID file specified in the
Lotus Notes .ini file.

5.93. Managing service projects
As a rule, UMRA projects containing a script which takes its input from
either a form (also known as Form projects) or another application
(Automation projects), are stored on the server running the UMRA

Service. To work with these projects, the UMRA Console application
must be connected to the UMRA Service. See UMRA Basics on page 3 for
general information on these topics and Appendix B of the Getting Started

Started on page 69 for detailed instructions on installing the UMRA
Service.

UMRA Help

Once connected, you can manage the service projects on the UMRA

Service. The following options are available:

New
Start a new service project. You will need to specify a name for the
project before the project window is opened.

Open
Open the selected service project.

Rename
Rename an existing service project.

Copy Project
Copy the selected service project. The application proposes a new
unique name for the copy of the project. Next, the new service project is
opened.

Delete
Delete the selected service project. Note that when you select this
option, the service projects are completely removed and you cannot
undo this operation.

Import
Import service project(s) from file(s). You need to specify the file(s) that
contains the service project you want to import. If you import a service
project which already exists, you will be prompted to either replace the
existing service project or create a new one. You can use the Import and
Export options for restore and backup purposes.

Export
Export the selected service projects to a specified directory. You can use
the Import and Export options for restore and backup purposes. Note
that the files are stored in a single directory the folders do not represent
subdirectories when exported. However, the folder names are stored in
the project files themselves, so that on a subsequent import the project
will be visible in the correct folder.

Create folder
Projects can be organized in a tree structure. Create folder creates a
folder where you can store releated projects. Note that the folder

UMRA Help

structure is virtual, it does not reflect the layout of the actual project
files on disk.

Cut/paste
Used to move selected project to a different folder

Expand/Collapse
Expand or collapes the selected folders

Expand all
Expand all folders

Collapse all
Collapse all folders

Setup access

Set or modify the access (execution) rights for all selected projects. This
is convenient if you want to specify the same access rights for multiple
projects at the same time

Setup logging

Set or modify project specific logging setting for multiple projects. For
general logging options of the server, see the advanced tab of UMRA
Service.

Close
Exit this window.

5.94. Name Generation Algorithms
User Management Resource Administrator supports the creation of
unique user names automatically. This features is mainly used when
creating user accounts in Active Directory or NT4 domains. In these
environments, a user account has multiple names. Some of these names
must be unique, e.g. no user accounts with the same names might exist.
To generate these names automatically and to make sure they are
unique, User Name uses name generation algorithms.

Name Generation Algorithms

A name generation algorithm is a set of rules that define how one ore
more names can be composed from other names and how the resulting
names can be made unique. Example: when creating user accounts in

UMRA Help

Active Directory 2 names must be unique. For this moment, we use the
terminology Username and Full name for these names. For user
accounts that are generated from a input file, the input data usually
contains the First name, Middle name, Last name or a similar set of
names. To generate the unique names, the name generation algorithm
takes the three input names and according to the rules of the name
generation algorithm it composes the 2 output names. If the names are
not unique, the algorithm continues to iterate the generation cycle until
the names are unique.

In User Management Resource Administrator, the number of input and
output names, the methods used to convert the input names to output
names and the way the names are made unique are completely
configurable. All these configuration settings together are called a name
generation algorithm. Name generation algorithms can be stored in files
(.uga extension) and multiple name generation algorithms are shipped
with User Management Resource Administrator. In most organizations, a
policy is used how the user account names need to be composed. By
choosing and perhaps customizing one of these algorithms you can let
User Management Resource Administrator create unique names that
adhere to your company's syntax requirements.

To choose an algorithm, select Tools-->Options from the main menu.
Next, select the tab Name generation and click the Manage button:

The window shows example values for the input names and a list with
available algorithms and the results of these algorithms according to the
specified values for the input names. By specifying values for the
%FirstName%, %MiddleName% and %LastName% variables you can
see the results of each of the available name generation algorithm. In
this window, you can Add, Edit, Delete and Copy algorithms. It is advised
to copy algorithms first before you customize them.

UMRA Help

In practice, User Management Resource Administrator uses variables to
specify the input and output names of algorithms. So the input names of
the algorithm are specified by passing variables. The results of the name
generation algorithm is stored as a value for other variables. For more
information on using variables, see UMRA Basics on page 3.

See also:

Script Action: Create User (AD) on page 3

Script Action: Create User (no AD) on page 68

UMRA Basics on page 3

5.95. Name Generation: Default input names
By default, the name generation algorithms can use the first, middle,
and last name to compose the output name. To offer more flexibility,
you can configure this. You can use any number of input variables and
you can use any variable you like to compose output name. Further, for
every input name, you can specify a sample value that shows up in the
various dialogs and windows to help you configure the algorithms.

In the Configure name generation settings window you can configure
the default input variables that can be selected from various dialogs and
windows that are used to setup name generation algorithms. Use the
Add, Edit and Delete buttons to manage the individual entries.

Note: If a variable is not part of this list, you can still use it in the name
generation algorithms. The specification of these names is used only for
displaying purposes.

See also:

Name Generation Algorithms on page 721

UMRA Basics on page 3

UMRA Help

5.96. Name Generation: Embedded algorithms
Name generation algorithms are stored with the actions that use the
algorithm. Examples:Script Action: Create User (AD) on page 3 and Script

Action: Create User (no AD) on page 68. These actions have a property that
specify the name generation algorithm. By configuring this property you
can select and specify the name generation algorithm.

To manage name generation algorithms, you can export and import the
algorithms using files. Normally these files have the .uga extension.
When User Management Resource Administrator is installed, a number
of default name generation algorithms are installed. To view and
manage these algorithms, select menu option Tools-->Options-->User

name generation-->Manage.

See also:

Name Generation Algorithms on page 721

Name Generation: Formatting functions on page 724

UMRA Basics on page 3

5.97. Name Generation: Formatting functions
The formatting functions are used to change the value of an input name
to a new value that is part of the output name. Each function converts a
single input text to an output text. The formatting functions are
executed in order. Each next function takes the result of the previous
function as its input value. Some functions require additional arguments,
some just operate on the input text.

Test

Here you can specify a test input name. The result of the selected format
function is shown in the field Result.

Formatting functions

This is a list with all of the available formatting functions. When you
select a function from the list, a description of the function is shown at
the bottom of the window.

Arguments

UMRA Help

If a formatting function requires arguments, you can specify these in the
Arguments section.

See also:

Script Action: Format Variable Value on page 549

Name Generation Algorithms on page 721

UMRA Basics on page 3

5.98. Name Generation: Iteration
The Iteration name part is used to make the output name of a name

generation algorithm method on page 729 unique. The value of the iteration
name part changes every iteration cycle. A simple example of a iteration
name part is an increasing number, usually added at the end of the
output name: 1,2,3,... . To specify the iterator field, open the Configure

name generation algorithm on page 726 window and select a method in the
lower section and click Edit or click Add to create a new method. The
Configure method of name generation algorithm is shown. Click the
Iteration button. The Iteration name part window is shown:

The window contains all options to specify the iteration name part. You
can choose if the iteration name part must be an increasing number of
an arbitrary sequence. For an increasing number, you can specify if the
number of iterations should be limited. For arbitrary sequences, the
number of iterations is limited to the number of entries in the sequence
automatically.

If the output name uses an iteration name part, the iteration name part
is always included, e.g. every time the method is accessed to generate a
value for the output name. This holds even for the first time the method
is called. For the first time, you might want to omit the iteration name
part. This can be accomplished by using an empty value for iteration
name part. To enable this feature, select the option Always start the

first iteration as an empty value.

This image cannot currently be displayed.

UMRA Help

See also:

Name Generation Algorithms on page 721

UMRA Basics on page 3

5.99. Name Generation: Manage algorithms
A name generation algorithm generates one or more output names. For
each output name, one or more name generation methods exist. A
name generation method (short: method) in detail specifies how a single
output name is generated from one or more input names. Further, the
method specifies how to make the output name unique, e.g. iterate the
method. The number of possible iterations with different outcome for
the output name can be one, any other number, or unlimited. The most
simple way to iterate the method is to add an increasing number at the
end of the name: Jonh1, John2, John3,

The purpose behind name generation methods is to support complete
different ways (methods) of composing the output name if the first
results are not unique. So the algorithm starts with the first method of
an output name. If the result is not unique, it tries the next iteration of
the same method. If the number of iterations is exhausted, the
algorithm continues with the next method. Example: suppose an
algorithm contains 2 methods to generate an output name. The first one
has 5 iterations, and the second has an unlimited number of iterations.
Then if no single name is unique, the algorithm generates the following
possible names:

1. Method 1, Iteration 1

2. Method 1, Iteration 2

3. Method 1, Iteration 3

4. Method 1, Iteration 4

5. Method 1, Iteration 5

6. Method 2, Iteration 1

7. Method 2, Iteration 2

8. Method 2, Iteration 3

9. ...

10. ...

UMRA Help

The methods 1 and 2 can use completely different rules to compose the
resulting output names. To create a new method for a new algorithm,
select Tools--> Options from the main menu. Next, select the Name

generation tab and click the Manage button. Then click the Add button.

The Configure name generation algorithm window is used as a starting
point to create a new or customize an existing algorithm. The window
contains 2 lists: the upper list shows all of the output variables for the
algorithm. If you select an output variable in the upper list, the lower list
shows the methods configured to generate the selected output variable.
For each method the name of the method is shown and the number of
iterations supported by the method. The order of the methods shown
corresponds with order used by the algorithm to generate the output
name.

The most common operations initiated with this window are:

1. Add a new output variable name: Click the Add button in the
upper section and specify the variable name of the new output
name. If the variable name is not shown in the list, simply enter
the name, enclosed in %-characters. The list only shows the
variable names found in the active script properties. Once the
output variable name is created, add one or more methods for
the output name.

2. Change the methods for an output variable name: Select the
variable output name in the upper list and select the method you
want to change in the lower list. Click the Edit button in the
lower section.

3. Add a method to an output variable name: Select the variable
output name in the upper list and click the Add button in the
lower section.

4. Change the order of the methods for an output variable name:
Select the variable output name in the upper list and select the
method you want to change the order for in the lower list. Use
up and down buttons in the lower section to reposition the
method.

UMRA Help

5. Test the algorithm: To test the name generation for all of the
output names and all methods, click the Test button. The Test

name generation algorithm window is shown in which the
Algorithm results are shown . Click the Test iteration button to
start generating the names. Each time you click the button, the
next iteration cycle is executed and the results are shown.

See also:

Name Generation Algorithms on page 721

Name Generation: Formatting functions on page 724

UMRA Basics on page 3

5.100. Network bar - Count users
If you right-click your domain in the network bar, you can choose the

Count users command to count all the users in the specified domain.

The counting method (_T("(&(objectClass=user)
(!(objectClass=computer)) (!(name=*$)))"),) counts all objects within the
domain, OU and child OUs which are of the User class and not of the
Computer class. The table below lists which objects are counted and
which ones are not.

Counted Not counted

user accounts (Exchange) Contacts

service accounts Computer accounts

disabled accounts Groups

built-in accounts OUs

Computer accounts, always ending on "$", are not included in the count.

UMRA Help

5.101. Network data
In this window you can specify how the network data should be
displayed in project windows. When a project already contains project
data there are three options:

1. A new project is started and the data are shown in the project
window

2. The existing network data are overwritten

3. The network data are merged. This is only possible if the new
and existing data are equal.

Activate the checkbox "Always ask this question when applicable" when
you always want this option to be displayed in such cases.

5.102. Open UMRA project
An UMRA project either resides in a local file or on a server:

 Local - As a rule, UMRA projects with a project script taking its
input data from a file (Mass projects), are stored locally.

 Server - As a rule, UMRA projects with a project script taking
its data from a form selection (also known as Forms &
delegation projects) or an external application (also known as
Automation projects) are stored on the server running the
UMRA service.

5.103. Name Generation: Setup algorithm methods
A name generation method (short: method) in detail specifies how a
single output name is generated from one or more input names. For
more information, see the topic Name Generation: Setup algorithm methods
on page 729. To setup a method for a name generation algorithm you
basically need to do three things:

1. Specify the input names that must be contained somehow in the
output name: These name parts are specified as input variables.
Note that the input names are not necessarily copied into the
output name. Instead you can format these name parts.
Example: suppose the output user name is composed of all
characters of the last name and the first characters of the first
and middle names. Then, the output variable %Username% can
be composed from the input name %LastName%,

UMRA Help

%FirstName% and %MiddleName%. Note that the order of the
input names matters.

2. Specify how to format each input name: You can copy an input
name directly into the output name, but you can also format the
input name and copy the formatted result into the output name.
Example: The output variable %Username% contains the first
character of the variable that represents the first name:
%FirstName%. The format function takes the first name as
contained in the %FirstName% variable and converts it into the
first character only: Jonh -> J. A number of formatting functions
are available to change every name part. You can shorten the
name, convert the case, remove and add characters,
conditionally replace and delete characters and so on.

3. Optional: Specify how to iterate the method: One method can
generate multiple names by using an iteration name part
(iterator). The most simple iterator is an increasing number,
added at the end of the output name: 1,2,3,... . Several options
are available to specify the iteration sequence and to position
the iterator in the final output name.

To setup the algorithm method, open the Configure name generation

algorithm on page 726 window and select a method in the lower section
and click Edit or click Add to create a new method. The Configure

method of name generation algorithm window is shown:

In the upper section of the window, you can manage the name parts
that compose the output name. You can add and delete name parts and
add an Iteration name part. Further you can change the order of the
name parts using the arrow buttons. In the lower section of the window,
you can setup the format functions that apply to the name part selected
in the upper list. Note that you cannot format the Iteration name part.
To add a name part, click the Add button. The Specify name part input

variable window is shown:

Select the input variable name from the list. If the list does not contain
the variable name of your choice, simply enter the name in the field. You

This image cannot currently be displayed.

This image cannot currently be displayed.

UMRA Help

can customize the input names shown in the list. See the topic Name

Generation: Default input names on page 723 for more information. Once
the input name has been selected, the corresponding sample value for
the input name is shown. When you have finished, click OK.

When you setup the method, the result is shown at the bottom of the
window. The Temporary result name shows the value of the output
name according to the sample values of the input variables and current
configuration of name parts and formatting functions. Again you can
format this result by clicking the Advanced button. The final result is
shown in the Result name field. If you do not specify any formatting
functions in the Advanced section, both result names are equal.

See also:

Name Generation Algorithms on page 721

Name Generation: Formatting functions on page 724

Help on help

5.104. Password generation
For security reasons, User Management Resource Administrator support
automatic password generation. For each user account that is created, a
password can be generated automatically. You can configure the
complexity of the generated passwords from simple (examples: sbjg,
kyfd) to very strong (examples: 2v>`<J)G\0unOY, 3|}3aca9i>4H8Q{v`TS).
User Management Resource Administrator further supports the
password complexity rules as used in Microsoft Windows 2003/2000/NT
networks. When the password is generated, it is stored in a variable.
Next, this variable is used to actually set the password for the user
account and export the password to an export file. As an alternative, you
can also use no password, read the password from the input data or set
the password to a constant value.

In the Password generation window, you can specify the rules used to
generate a password. Note that this property can only be specified for
the Create User (AD) on page 3 or Create user (no AD) on page 68 script
action.

The Password generator window contains the following options:

Predefined settings

UMRA Help

The section Predefined settings contains a number of generation
settings that are most easy to specify. Each setting specifies the value for
the Password generation settings. These settings specify the minimum
and maximum length of the password and the minimum and maximum
number of characters of a specific type used to generate the password.
Instead of selecting a predefined setting you can enter these values
manually.

Test password generation

To see an example of a password generated according to the current
settings, press the Test button.

Output variable

In the section Output variable you need to specify the name of the
variable that must store the generated password. By default, this is the
%Password% variable. It is advised not to change the name of this
variable since it is used in related properties as well.

More information:

Script Action: Create User (AD) on page 3

Script Action: Create User (no AD) on page 68

UMRA Basics on page 3

Help on help

5.105. Script action property value
Every script action in UMRA holds a number of script action properties
which specify how the script action should be executed. In this window
you can set the value for a specific script action property. There are
three options:

1. Value specified as a constant value: Select option Use the

following value. In this case, the value of the property is set to a
fixed constant value. You can use this option only if the property

UMRA Help

value must be the same each time the script is executed. This
method is advised for fixed constant properties that have a value
that is not used for other properties of the same or other script
actions. Examples: the password flags (user cannot change
password, password expired), the flag indicating if a share must
be created for a home directory. These values are probably the
same each time the script is executed.

2. Value specified as a variable: Select option Use the following

value. With this option instead of specifying a value you specify
the name of a variable. By default, the name of a variable should
be enclosed in %-characters (e.g. %domain%). At run-time, the
name of the variable is replaced by the value of the variable.

3. Value not specified: Select option Do not specify a value for this

property. Some action properties are mandatory, others are
optional. For optional properties, you do not always need to
specify the property value. For instance, if you don't want to use
it, you don't need to specify Active Directory attribute Phone

number for a user account.

See also:

UMRA Basics on page 3

5.106. Scheduler
The Scheduler is used to schedule UMRA projects. The script of these
projects will then be executed by the UMRA Service using the specified
scheduling information. First of all however, you need to specify how the
project script should be executed by the Scheduler. There are three
options:

1. Execute script once - the project script is executed only once
using the specified scheduling configuration.

2. File data input - the input file data (e.g. from a CSV file) are read
and the UMRA Service executes the project script for each line of
input data using the specified scheduling configuration.

3. Network input data - network data are retrieved and the UMRA

Service executes the project script for each network item found,
using the specified scheduling configuration.

UMRA Help

Scheduling configuration

Every possible configuration on page 735 can be specified, together with
scheduling exceptions on page 739. These are time intervals which can
either be included or excluded from the scheduling method.

When a project has been scheduled, it will appear under Current

scheduling settings. In the example shown below for instance, a
scheduling method has been defined which executes the project every
Wednesday at 03:45.

It is also possible to test the scheduling specification by previewing on
page 747 the first 10 scheduled times based on the selected scheduling
configuration.

To define a new scheduling method or to edit an existing one, click the
Configure button.

See also:

Setup scheduling on page 735

UMRA Help

Setup scheduling - Exceptions on page 739

Setup scheduling - Adding an exception on page 745

Setup scheduling - Preview on page 747

5.107. Set items
Specify here the Notes document to modify.

Document Specification

Document variable:

The name of the variable that contains a reference to the document that
must be edited. This variable may be obtained by using the action Script

Action: Get document on page 454 prior to this action in the script.

Document Items

The list with instructions for the creation or modification of the fields
(a.k.a items) in the document. For each field to create/modify there is a
separate entry in the list that specifies in detail how to create or modify
the specific field.

Add: Specify a new field to create or modify.

Edit: Alter the specification for a particular field.

Delete: Delete the selected modification instruction.

5.108. Setup scheduling
Using the options in this window, a scheduling method can be
configured.

Scheduling method

 Not scheduled, never

 Every N seconds, where N is the specified number of seconds.

UMRA Help

 Hourly, at N minutes, where N is the number of minutes (e.g.
"0" is every whole hour, "30" is every half hour).

 Daily, at hh:mm where "hh" specifies the hour in two digits
and "mm" the minutes.

 Once, at hh:mm dd/mm/yyyy. E.g. 7 July 2006 at 12.00 PM
would be specified as "12:00 07/07/2006".

Include these days

Specify the days of the week to include in the schedule. You can either
select individual days or use the buttons All days, Weekends and
Working days to include every day of the week, the weekend, or all
working days respectively.

Examples:

1. To execute a project every day, every 60 seconds:

UMRA Help

2. To execute a project every (whole) hour every Monday, set the
following options:

UMRA Help

3. To execute a project every working day at 6.00 AM, set the following
options:

UMRA Help

3. To execute a project once only on the 1st of January 2007 (midnight):

See also:

Scheduler on page 733

Setup scheduling - Exceptions on page 739

Setup scheduling - Adding an exception on page 745

Setup scheduling - Preview on page 747

5.109. Setup scheduling - Exceptions
Exception intervals

In addition to a scheduling method, you can specify exception intervals
as part of a scheduling setup. This determines if a project should be

UMRA Help

executed or not if the scheduled time is within the specified interval(s).
If this time is excluded from the schedule, the project script is not
executed. If it is included, the UMRA Service will execute the project
script.

Options

Exclude time if in a single interval - if the specified time falls into this
repeat interval, it will be excluded from the schedule.

Consider a situation where you wish to execute a project every hour on
every working day, but not during working hours (09:00 - 17:00). This
can be achieved by setting the scheduling method to Hourly, at 0

minutes and including all working days. Next, an exception interval is
defined which specifies that the time interval from 09:00 - 17:00 will be
excluded from the schedule.

Exclude time if in all intervals - if the specified time falls into all of the
defined repeat intervals, it will be excluded from the schedule.

UMRA Help

Suppose now that you have a server A and B and that the project should
not be executed during the time that BOTH servers are under
maintenance. Server A is under maintenance from 08:00 - 11:00, server
B from 09:00 - 11.30. If these intervals are specified in combination with
the option Exclude time if in all intervals, the time period 09:00 -11.00
will be excluded from the schedule.

Include if time in single interval - if the specified time falls into (any of)
the defined repeat interval(s), it will be included in the schedule.

This image cannot currently be displayed.

UMRA Help

For example, if you wish to run a project every three hours on Mondays
from 09:00 to 17.00, you could set the scheduling method to Every

10808 seconds and include Monday. Next, an exception interval can be
defined which specifies that the project will only be executed if the
specified time is between the 09:00 AM and 17:00 PM interval:

Another example could be a situation where you wish to execute a
project hourly every Monday from 09:00 - 12:00 and from 18:00 - 21:00.

UMRA Help

This can be achieved by scheduling the project Hourly, at 0 minutes on

Monday. Next, an exception interval is specified which defines that the
project is executed if the specified time falls in the 09:00 - 12:00 repeat
interval OR in the 18:00 - 21:00 repeat interval.

Include if time in all intervals - the project is only executed when the
scheduled time falls into all of the specified repeat intervals.

Consider a project which should only be executed during the time which
all exception intervals have in common. The first exception interval runs
from July 4th - July 7th, the second is a daily interval running from 18:00
- 08:00.

UMRA Help

If the scheduling method has been configured to execute a project every
hour every day, activating the option Include if time in all intervals
using the above mentioned intervals will execute the project every hour
from 18:00 PM on July 4th to 08:00 AM on July 7th.

See also:

Scheduler on page 733

Setup scheduling on page 735

Setup scheduling - Adding an exception on page 745

Setup scheduling - Preview on page 747

UMRA Help

5.110. Setup scheduling - Adding an exception
In this window, an exception interval can be specified.

Hourly repeated interval - Here you can specify an hourly repeated
exception interval between [First Minute] and [Last Minute] where First

Minute and Last Minute can be any number between 0 and 59.

Daily repeated interval - Here you can specify a daily repeated exception
interval between HH:MM and HH:MM. For example, you want a project
to be executed every working day and every hour, except between 18:00
and 08:00.

Non-repeating interval - Here you can specify an exception interval as a
single day or as a consecutive number of days, starting and ending at a
specific time. To set the time, you can either enter the time directly in
the Start time and End time fields or use the UP and DOWN arrows to
select the required time.

UMRA Help

This exception configuration can be used for instance, if the project
should not be executed on Christmas Day or during your vacation.

In the example below, the non-repeating exception interval runs from
00:00:00 07/10/2006 until 00:00:00 07/21/2006.

See also:

Scheduler on page 733

Setup scheduling on page 735

Setup scheduling - Exceptions on page 739

Setup scheduling - Preview on page 747

UMRA Help

5.111. Setup scheduling - Preview
In this window, the next 10 scheduled times will be displayed according
to the current scheduling specification when you hit the Show button. If
the preview shows unexpected results, please check the scheduling
parameters and exception intervals you have specified.

Example

If you have specified that the project should be executed every half hour
at HH:30, the next 10 scheduled times may look as follows:

See also:

Scheduler on page 733

Setup scheduling on page 735

Setup scheduling - Exceptions on page 739

Setup scheduling - Adding an exception on page 745

UMRA Help

5.112. Script action property value with yes/no
option
This window is similar to the one described in Script action property value
on page 748, but this specific property can also be specified by selecting
Yes or No.

See also:

UMRA Basics on page 3

5.113. Script action property value output
The result of some script actions can be used by subsequent script
actions. In User Management Resource Administrator, this is
accomplished by using output properties. For these properties, the
result corresponds with a value that is stored in a variable. This variable
can then be used as a property value in subsequent script actions.

See also:

UMRA Basics on page 3

5.114. Script action property value - Output only
For this script action property, the value is determined automatically by
UMRA. If necessary, this property value can be stored in a variable so
that it can be used as input for other script actions.

5.115. Search and replace
With search and replace, you can search for text strings through all
specified properties of the all the actions in the projects that are
contained in the current workspace.

Its main purpose is to find where a specific variable or text is used in the
relevant projects, and optionally replace the contents. For instance if
you have specified a specific domain name at several places in the script,
and you need to change it to an other one, you can use Search and
Replace locate and rename all of the used names.

Text Specification

Find What: Specify here the text or variable to search for.

Replace With: Optionally, specify here the text to replace it with.

UMRA Help

Options

Match case: Find only occurrences of text with the same case as the
search string.

Confirm replacement: The program will ask to confirm each
replacement.

UMRA Help

5.116. Security - Access Control Settings
To specify detailed permissions settings you should use the Access

Control Settings window. To start, select the action Create directory in
the script section (lower left) of the project window. The properties of
the script action are presented in the properties section (lower right) of
the project window. Double click property Security or select the
property and select menu option Actions, Properties of action property.
Select option Use the following value and press the Edit button. The
Directory security properties window is presented. Select a user account
in the upper list or create a new account. Next, press the Advanced
button. The Access Control Settings window is shown:

The window shows a list with all permissions setup for the account. For
each permissions entry, a single line is shown. Use the Add, Remove,
View/Edit buttons to manage individual permissions entries.

UMRA Help

In Windows 2003/2000/NT, you can setup permissions that are inherited
(copied) from the parent object. For directories, the parent object is the
directory of which the target directory is a subdirectory. You can specify
if inheritable permissions (as specified for the parent object), should be
inherited by the target object. Use the option Allow inheritable
permissions from parent to propagate to this object. If you do not select
this option, the permissions of the target object are called protected
since inheritable permissions from the parent object will not be copied
to the target object.

See also:

Security - Overview on page 754

Script Action: Create Directory on page 341

UMRA Basics on page 3

Help on help

5.117. Security - Adding accounts and permissions
Access control settings are organized per account. For each account,
permissions are specified. To start setting up a permission entry, you
need to specify an account first. Then, you can set the permissions for
the new account. To add an account, press the Add button in the
Directory security properties window. See Security - Overview on page 754
for more information and how to access this window.

The Specify input name window is used to specify the name of an
account for which permission settings are setup. The name can be
specified as:

An existing account name of a user or group: Enter the name or press
the Search button to search for the account name. Example: the
administrators group of domain SEASONS, e.g. SEASONS/Administrators.

UMRA Help

Note: at run time, User Management Resource Administrator converts
the actual name into it's Windows 2003/2000/NT Security Identifier
(SID). In order for this conversion to succeed, User Management
Resource Administrator must be able to access a domain controller that
maintains the specified account name.

A name containing a variable(s): In this case the variable name is
resolved at runtime. This construction is often used for names
containing 2 components with one well-known name. Examples:
%Domain%\Administrators, %Domain%\Users. To select a variable,
select it from the Variables list or enter the variable name and press
Insert.

A single variable name: In this case, the name corresponds with the
value of a single variable. The type of the variable can differ from the
regular text type. For instance, when a user is created by User
Management Resource Administrator in Active Directory, a specific
object is created, which is the Security Identifier (SID) of the user
account. This object uniquely identifies the new user account and where
possible you should use the variable that holds this object. The object is
by default stored in an output property variable - %UserSid% - and it
should be used to identify the user account in subsequent script action
properties. So if you create a user account in Active Directory and want
to setup permissions for a directory that include the user account, use
the variable %UserSid%.

See also:

UMRA Basics on page 3

Help on help

5.118. Security - Detailed permissions settings
With the Permissions entry windows you can specify detailed
permissions for an account. You can specify the permission settings itself
and the objects to which the permissions apply. To access the window,
open the Access Control Settings window first. Select an entry from the

UMRA Help

list with permissions and press Edit. To add a new entry, press Add. You
will be presented the Permission entry window.

The window contains several sections:

Name
Specify the name of the account for which you want to setup
permissions. The account name can contain variables. For more
information, see Security - Adding accounts and permissions on page 751

Apply onto
Specify the objects to which this permission entry specification applies
by specifying one of the possible options. With this specification you
determine if the specified permission applies to the target object
(directory), contained child objects (files), contained subfolders or a
combination of these options.

Permissions
A list with possible permissions. For each permissions you can either
Allow, Deny or not specify the permission.

Apply these permissions to objects and/or containers within this
container only
This option is almost never used.

See also:

Security - Overview on page 754

UMRA Help

Script Action: Create Directory
http://www.tools4ever.com/resources/manual/usermanagement6/scrip
t_action_create_directory.htm \t t4ehelppopup

UMRA Basics on page 3

Help on help

5.119. Security - Overview
User Management Resource Administrator supports Windows
2003/2000/NT permissions for all objects with security settings. For files
and directories you can setup the specific security settings that should
apply. User Management Resource Administrator uses similar windows
as the Windows 2003/2000 graphical user interface to facilitate the
configuration of the permission settings.

In User Management Resource Administrator, the security settings can
contain variables. At runtime, these variables are replaced by their
actual values to calculate and set the effective permissions. The security
settings are primarily used for directories created with script action
Create directory on page 341.

The window contains two lists containing names of accounts (upper list)
and permission settings (lower list). The upper list shows the accounts
for which permissions are defined for the target object (e.g. the
directory). These accounts can be specified using existing account names
or names containing a variable (As opposed to the equivalent Windows
2003/2000/NT window). By using variables, you can setup security
settings for User Management Resource Administrator scripts, e.g.
permissions for user accounts that do not already exist buit are specified
only by a variable name. To add new accounts, click Add. See Directory

security - Adding accounts and permissions on page 751 for more
information.

http://www.tools4ever.com/resources/manual/usermanagement6/script_action_create_directory.htm%20t%20t4ehelppopup
http://www.tools4ever.com/resources/manual/usermanagement6/script_action_create_directory.htm%20t%20t4ehelppopup

UMRA Help

In the lower section of the window, you can setup the basic permissions
for the account selected in the upper list. For the permission values
shown, simply check the Allow or Deny option to configure the
permission setting. In this permission list, you can setup only basic
permissions. For most purposes, this will be sufficient. To setup more
advanced permission settings, click the Advanced button.

In Windows 2003/2000/NT, you can setup permissions that are inherited
(copied) from the parent object. For directories, the parent object is the
directory of which the target directory is a subdirectory. You can specify
if inheritable permissions (as specified for the parent object), should be
inherited by the target object. Use the option Allow inheritable

permissions from parent to propagate to this object. If you do not select
this option, the permissions of the target object are called protected
since inheritable permissions from the parent object will not be copied
to the target object.

See also:

Script Action: Create Directory on page 341

Help on help

5.120. Security - Owner
For new directories and other items, you can specify the permissions
and optionally the owner. See Security - Overview on page 754 for an
introduction on this topic. To specify the owner, select the Owner tab in
the Directory security properties window.

You can either specify the owner or let the operating system generate
the owner for you. By explicitly specifying the owner of an item, you
have more control. The owner can be specified using a fixed name or by
using variables.

See also:

Security - Overview on page 754

Script Action: Create Directory on page 341

UMRA Help

Help on help

5.121. Specify file input data
In this window you can specify how the text file should be read. The
following options are available:

File name

This is the name of the text file that should be used as an input file.

File type

This specifies the delimiter for the individual fields.

Text qualifier

Specifies if the text is contained in double or single quotes. Select "none"
if this is not applicable.

Fixed width

If the field width needs to be determined using specific character
positions, these can be entered here.

Additional settings

First line contains headers - Activate this option if the first line of the
text file contains the column headers.

Insert row number column - Activate this option if a column should be
added containing row numbers.

Field can contain multiple lines - Activate this option if a field can be
distributed over several lines.

See also:

UMRA Basics on page 3

UMRA tables on page 9

UMRA Help

5.122. Specify group names
In this window the group name can be specified. A group name is
specified using two different formats:

Display - This is the display name of the group. It is used only to refer to
the group (e.g. Tools4ever\Users)

LDAP - This is the LDAP name of the group. This is the name which is
actually used to identify the group in Active Directory.

5.123. Specify input
This window is used to specify various different kinds of input for a script
action. This can be a list of groups of which a user account should
become a member, a list of e-mail addresses for a mail recipient, etc.

5.124. Specify input name
In the Specify input name window you can specify a name to be used as
part of a configuration.

UMRA Help

5.125. Specify new name for UMRA project
UMRA projects with a project script taking its input from a form or
another application, are saved on the server running the UMRA Service.
In the Project name field, you can specify a new name for your UMRA
project.

5.126. Specify radio button text info
In this window you can specify the text which needs to be displayed for
the radio button.

Display text

Here you can enter the text for the radio button

Variable value

You can either enter a fixed value to be associated with the radio button
or a variable. When the user selects a radio button, the value associated
with the selected radio button will be stored in a variable.

See also:

Form fields - Radio button on page 647

5.127. Specify variable info
In this window you can specify the name and value of a variable:

Variable

Select the variable from the list. The list shows the variables that are
found in the script.

Description

The comment field describing the variable. From this description, the
end user should understand what the variable is used for.

Value

C H A P T E R

UMRA Help

The value for the variable or an instruction for the variable that is used.
If the value is specified as a constant value, this value is shown in the
corresponding field of the wizard.

Example values

Some possible values to help the end user to specify the value.

5.128. Task scheduler overview settings
Update Specification

Update the task scheduler information every ... seconds.

Specifies if the information in the overview window is refreshed
automatically, and how often.

If the check box is selected, the information shown in the overview
window is retrieved from the UMRA service automatically at the
specified intervals. The default setting is once every 60 seconds.

If not selected, the overview window is not refreshed automatically. In
both cases pressing F5 in the overview window will manually refresh the
overview.

5.129. Task scheduler overview window
This table shows all projects that are known to the UMRA service, and
for which scheduling settings have been specified. It also lets you
configure several project settings with a right mouse context menu.

If a project is not in the table because no scheduling settings have yet
been specified, and the project should be scheduled, open the project
and choose Actions-->Scheduler from the main menu. Now an extra tab
in the project named "Scheduler" is visible. After specifying the

UMRA Help

configuration in this tab, save the project. Within one minute or less it
will be visible in this window.

For each project in the table the columns mentioned below can be
shown. Columns shown can be added or deleted by using the right
mouse context menu that appears when clicking in the header of the
table.

Available Columns
Enabled/Disabled

Enabled: Project scripts will be executed at the times specified by its
scheduling specification.

Disabled: The scheduling has been disabled, so the project will not be
executed at the scheduled times.

Task Type

Currently there is only one type defined, in the future it is expected
there will be more types.

 Scheduled Project- The project will be executed at the specified
times.

Description

A description of the action performed at the scheduled time. Shows the
name of the project.

Execution Status

 OK The last time the script run it encountered no errors.
 Running The project is currently being executed by the service.

 x Error The last time the script run in encountered x errors.
Last time

The last time the project started.

Next Time

The next configured time the project will start. Note that this value has
no meaning while the project is in the running state, as the next time is
calculated only after the project has finished.

Last duration

UMRA Help

The time it took the service to execute the project the previous time.

Scheduling

Short description of the chosen scheduling method (interval, daily,
hourly, on-demand, etc).

Scheduler info

Some further details applicable to the chosen scheduling method.

Actions available from this window

Clicking with the right mouse button on a project, shows a context menu
with several options pertaining to the project.

Open project

Opens the complete selected project, so it can be edited, usually chosen
if you want to modify the script.

Enable

Directly enables the scheduling if it has been disabled.

Disable

Directly disables the scheduling. Current running projects will continue
until finished, but will not be started again at the scheduled time.

Run now

Runs the specified project immediately.

Refresh

Refreshes immediately the display in the overview. By default it is
refreshed once each minute.

Delete

Clears the scheduling settings of the project, and deletes the project from
the Task scheduler overview window.

The project with it scripts are however not removed from the server, and
can opened again with file/open from the main console menu.

View log

Makes a copy of the projects associated eventlog file, and shows it in a
window. When de window is closed the copy is removed.

UMRA Help

Overview properties

Opens a window with the properties of the task overview window.
Currently it has one option, to specify the frequency with which the
window is refreshed with information from the service.

Properties

Opens the scheduling of the project, so these can be modified.

UMRA Help

5.130. UMRA Console - Command Line Options
To support automatic execution of UMRA mass projects, the UMRA
console application supports automatic startup command line options.
When the UMRA console application is started using these options, the
UMRA console application loads a projects when started and
automatically starts the execution of the project. The command line
options can be specified directly on the command line, or in a command
line option file:

 UMgui.exe [options]

 UMgui.exe -commandfile=G:\UMRA\CommandFile.txt

In the command line option file, each line must contain a single option.
Each option has a name. Some option have a value. Options can be
specified using the following format.

 -option_name=option_value

 /option_name:option_value

 option_name=option_value

 -option_name

 /option_name

 option_name

The following table shows the available options:

Option
name

Option
value

Example Descriptio
n

-AUTOSTART -AUTOSTART Option must
be specified
to enable
automatic
execution. If
not specified,
all other
options are
ignored.

UMRA Help

-Project File name of
the project

project="G:\UMRA\CreateUser.upj
"

The name of
the mass
project file
that must be
started. The
project file
can contain
input data or
the input
data can be
loaded from
another file
with option -
inputfile.

-Inputfile File name of
the .csv, .txt
file that
contains the
input data
for the
project

inputfile=G:\UMRA\Students.txt The name of
the file that
contains the
input data for
the project.
When not
specified, the
input data
from the
project is
used.

-Separator specificatio
n of input
data
separator
characters

,; Optional: the
specification
of input data
separators. If
not specified,
the comma
(,) - character
is used.

-Textqualifier Specificatio
n of the text
qualifier
used to
read the
input data
from the
input file.

" (double quote) Optional: the
specification
of the input
data text
qualifier.

UMRA Help

-
IgnoreFirstLin
e

 -IgnoreFirstLine Optional: if
specified, the
first line of
data of the
input file is
ignored.

-AutoQuit -AutoQuit Terminate
the
application
automatically
when ready.

5.131. UMRA Project Component - File data
The information an UMRA project script needs to work with, may come
from a (CSV) file. This category is also known as a MASS project, since
the project script will update all the resources included in the file.

For more information on using file data as input for an UMRA project
script, see UMRA Basics on page 3.

5.132. UMRA Project Component - Form
The information an UMRA project script needs to work with, can come
from a form. The end user can enter or select data in a simple form.
These data can be linked to a variable which in turn can be used by the
project script.

The form mentioned above is created by the administrator using the
UMRA Console and delegated to a non-admin (e.g. Helpdesk
employees). This category is therefore also known as Forms &
Delegation.

For more information on UMRA projects, forms and variables, see UMRA

Basics on page 3.

5.133. UMRA Project Component - Network data
The information an UMRA project script needs to work with, may come
from a network selection. Network resources can be added to the
project by activating the Actions-Network-Form fields window. Right-

UMRA Help

click the required network resource and choose the data you wish to
add:

 All users

 All user details

 Local groups

 Global groups

 Domain controllers

 Servers

 Workstations

For more information on using data as input for an UMRA project script,
see UMRA Basics on page 3.

5.134. UMRA Project Component - Preview
If an UMRA project includes a form, the form-layout can be previewed.
By default, changes in the form will be instantly reflected in the form
preview.

5.135. UMRA Project Component - Script
Each and every UMRA project contains at least a project script. An
UMRA script is used to perform a specific user account or network
management task. This can be the creation of a user account for
instance, together with a home directory, home share, group
memberships, etc. for the new user.

In addition, you can specify the input data the project script needs to
work with. This can be file data, network data, data from a form
selection or external application data.

For more information on UMRA project scripts, see UMRA Basics on page
3.

To get context help on a particular script action, select the script action
in the general actions tree, and press F1

UMRA Help

5.136. UMRA Project Properties - Description
In the Project description field you can enter a description of the current
project. Since UMRA projects can become very complex depending on
the solution you want to build, it is strongly advised to fill this in.
Especially when you are working with multiple projects, it will make it

easier to manage your projects.

5.137. UMRA Project Properties - Form Fonts
In a form, you can use multiple fonts. For all form fields containing text,
the font can be configured. UMRA works with font styles. A number of
predefined font styles are used to draw all of the text. For each
applicable form field, you can specify the font style that must be used
for the form field text.

In UMRA, a form can have its own specification of all font styles or it can
use the global font styles.

5.138. UMRA Project Properties - Form options
In this window you can set some form control options.

Initial project

An initial project is specified for all form projects where the script of
another project needs to be executed before the form is shown for
which you have specified an initial project. This concept is shown in the
figure below. The initial project contains a script action of which the
output is stored in a table variable. In the second project, project B, the
content of this variable is displayed in a generic table. This is only
possible when the script of project A is executed before showing project
B. Project A is therefore defined as an initial project for Project B.

Project name

C H A P T E R

UMRA Help

The name of the UMRA project which needs to be set as an
initial project.

UMRA Forms client
Show form project in Available forms window of UMRA Forms.
If this option is checked (default) the form is shown in the UMRA
Forms application if the UMRA Forms user has sufficient access
rights to use and run the form. This option is used when multiple
forms together are used as a wizard. In this scenario, the UMRA
Forms end-user should be able to select the first form of the
wizard from the list shown in UMRA Forms. In that case the
other forms of the wizard will not be displayed in the list.

Popup message options
Status information stored in the %ScriptMessage% variable.
Select this option if a popup message must be shown in the
UMRA Forms application when a form is submitted. Note that
the project script must set this variable (example:
%ScriptMessage% = Creating user account %UserName%). If the
variable is not set, no popup message will be shown.

Error message

Select this option if a popup message must be shown if an error
occurs upon submitting a form.

Preview update option
Update form preview when preview window is activated.
Deselect this checkbox if you do not wish to have the form
content constantly updated during the design phase.

5.139. UMRA Project Properties - Format
In this window you can specify the display characteristics for the form.
Note that these settings only apply to the overall form. The display
settings for the individual form fields have to be specified in the display
tab of the relevant form field.

Left margin

UMRA Help

Left margin, specified in pixels. Default is "10".

Right margin

Left margin, specified in pixels. Default is "10".

Top margin

Top margin, specified in pixels. Default is "10".

Vertical spacing

This is the vertical space between the individual form fields of the form,
specified in pixels.

Background color

Background colour for the form. By default, the background colour is
white. Click the Edit button if you want to change this or if you want to
specify a custom colour.

5.140. UMRA Project Properties - General
In this window a summary is given of all project information.

Project identification

These options are all related to how the project is identified:

Project name

Name of the project.

Display name

Display name of the project

Project ID

A unique identification number generated by the UMRA service. The
Project file shows the name of the file that stores the form project for
local projects. For server projects, the name includes the name of the
UMRA server.

UMRA Help

Project location

The project location field indicates where the project is located. There
are two possibilities:

Server project maintained on server

By default, projects with a project script taking its input from a
form or an external application are stored on the server running
the UMRA Service. The name of this server will be displayed in this
field (e.g. "Server project, maintained by UMRA Server Server-A")
Local projects

By default, projects with a project script taking its input from a
input data file are stored locally. The path to the local file is
displayed in this field (e.g. C:\Program Files\Tools4ever\User
Management Resource Administrator\Projects\CreateUsers.uwp).

Note that it is possible to change a local project to a server project and
vice versa by clicking the Change button. In that case you will run the
risk that the project needs to be (partly) reconfigured. A warning to this
effect will appear and you will be asked for a confirmation.

5.141. UMRA workspace
An UMRA workspace is a collection of one or more UMRA projects. An
UMRA project is always part of a workspace. Projects can be added to an
existing workspace or you can create a new workspace.

When you create a new Mass, Form, or Automation project, UMRA will
automatically create a workspace for you. The name of this workspace
will initially be UMRAWorkspace.uws, but this can be changed by
choosing the Save workspace as command from the File menu. Please
note that a workspace project only contains references to UMRA
projects.

For more information on UMRA's key concepts and architecture, see
UMRA Basics on page 3.

5.142. UMRA Project Properties - Initial variables
Initial variables are usually specified for a Form Wizard (i.e. a solution
consisting of multiple form projects). In such a scenario, you want to
make sure that variables which are used in the project script, have an
empty value when the project script is executed for the first time.

UMRA Help

5.143. UMRA Project Properties - Network data
Network data can be specified as input for the project script. If network
data have been specified, the Network data description field indicates
where these network data originate from.

5.144. UMRA Project Properties - Options
Script execution time-out value (seconds).

Script execution always continues, regardless of whether a time-out has
been specified or not. This option is to avoid a situation for instance,
where script execution goes into an eternal loop because of errors in the
script. When the script does not finish within the specified time-out
period, script execution will continue, but an error is generated and the
script result variables are not returned.

5.145. UMRA Project Properties - Security
When an UMRA project is maintained by the UMRA service you can
specify the user accounts that are allowed to execute the form and
project script.

For UMRA, there can be three different kinds of user accounts:

User account
with

Description

Full control These user have access to push forms to the UMRA service,
setup, delete, manage all forms, project scripts and
security settings. The number of user accounts with this
type of access should obviously be very limited.

UMRA Help

Form access only These users can see and submit a form. When such a user
connects to the UMRA service using the UMRA Forms
client, the form is presented to them. The user can then
specify the various fields of the form and let the UMRA
service execute the script of the form project. The accounts
can be configured for each individual form.

No access These users can connect to the UMRA service but no
projects will be shown.

5.146. UMRA service - Advanced options
UMRA service network data cache

The UMRA Service maintains a cache with network data. When a UMRA
form project contains network data, for instance a table with user
accounts and the UMRA Service is requested to produce the contents of
a form, the UMRA Service accesses the cache to find the data.

The purpose of the cache is to minimize network traffic. By using the
cache with network data, the amount of network traffic caused by the
UMRA Service is greatly reduced. The drawback is that the data is less
accurate. Example: if the user account is deleted with another
application, the deleted user account might show up in an UMRA form
because the cache is not up-to-date.

The data in the cache is valid for a certain period of time. Once expired,
the data is refreshed. The refresh period is specify in seconds. The
default is 900 seconds (15 minutes).

An additional option is available to empty the cache completely. When
selected, the cache is automatically rebuilt when form data is requested
from the UMRA Service.

User specific log files

The UMRA service can be configured to use user account specific log
files. That way, when a user executes a form project with the UMRA
forms client, the log messages of his project are logged in a user-specific
log file, instead of in the general log file. All files are stored in the "Log"
subdirectory of the UMRA service.

UMRA Help

5.147. UMRA service - license
A UMRA service license is enabled by configuring one or more license
codes for the UMRA service. A license code for the UMRA service can be
obtained from your UMRA reseller. To install the UMRA license code,
connect to the UMRA service. Select menu option UMRA Service,

Connect... When connected, select UMRA Service, Service properties...
and select the Service License tab.

In the Configure service - Service license window you can:

1. Configure UMRA service licenses - Add and delete license codes
to the UMRA service.

2. Copy to service - Copy the service license codes installed for the
UMRA console application to the UMRA service. You should only
do this, if the installed license code enable the service functions.

3. Console - View and configure the UMRA console licenses. This
option is available to manage and setup the UMRA console
licenses. You can choose the main menu option Help, License...
to setup the UMRA console licenses.

When the UMRA service is installed for the first time, a demo license is
installed automatically. The demo license will run for 30 days. For more
information on UMRA licensing, see License model on page 707.

5.148. UMRA Service - service access
A limited number of users should have full control to manage the UMRA
service. These user accounts have full access to:

 configure the UMRA service

 add, manage and delete all form projects maintained by the
UMRA service

 setup the security for each form project maintained by the
UMRA service

 setup the security for the UMRA service itself

UMRA Help

In the User and groups allowed to manage the service window, the
users and groups are listed which are currently allowed to manage the
UMRA Service.

Adding users

Click the Add button if you wish to add a user or group to the current list

Editing users

If you wish to edit an entry, then select the user or group you wish to
change and click the Edit button.

Deleting users

If you wish to remove a user or group from the list, then click the Delete

button.

5.149. UMRA service deletion - Delete all files
When the UMRA Service is running, the service will create a number of
files directories. For instance, all logging information and UMRA form
projects are stored in files. When the service is deleted, you have two
options:

1. Delete all files found in the UMRA Service directory and the
directory itself: This will delete all the files originally installed when
the service was installed and all files created in the UMRA Service
directory.

2. Only delete the files that were originally installed.

5.150. UMRA service installation - Admin group
The UMRA service must have sufficient administrative privileges to
execute its tasks. These privileges are determined by the service account
used by the UMRA service. By adding the service account to one or more
administrative groups, the account can be granted sufficient access
rights.

5.151. UMRA service installation - Server
The UMRA service is setup from with the UMRA console application
using a wizard. To start, select menu option UMRA Service, Install or

UMRA Help

Upgrade service...Select option Install or upgrade the service and press
Next.

Enter the name of the server on which you want to install the UMRA
service. This can be any computer running Windows 2003/2000. It is
recommended to install the UMRA service on a server that is close to a
domain controller or on the domain controller itself.

Click Next to continue.

5.152. UMRA service installation - Port
The UMRA service communicates with the UMRA console and UMRA
forms client using the TCP/IP protocol. For this communication a port
must be specified. By default, port number 56814 is used by the UMRA
service to communicate but you can specify any other port.

When starting up the communication with the UMRA service, the UMRA
console and UMRA forms applications will try to connect using the
default port number first. If this fails, the port can be configured
differently. It is recommended to use the default port.

5.153. UMRA service installation - Service account
The UMRA service uses an Windows 2003/2000 account to run. If the
account does not exist already, it is created by the UMRA service
installation wizard. It is recommended to use an Active Directory domain
account, not a server local account.

All scripts executed by the UMRA service are executed by this account
with respect to the Active Directory - Window 2003/2000 security
settings. Therefor, this account must have sufficient administrative
privileges. In the next step of the wizard on page 774, the group can be
added to an administrative group.

By default, the UMRA service installation wizard specifies the following
name for the service account: DOMAIN\UmraSvcAccount. Further, a
random strong password is generated. This password is not known to
anyone. If the account does not exist, the account is created with the
generated password.

UMRA Help

If the account does already exist, the password will be incorrect. In this
case, you must specify the correct password or change the name of the
service account to a non-existing name.

5.154. UMRA service installation - Service directory
Before the UMRA service is created on the remote machine, the UMRA
service executable files are copied to the computer in a particular
directory. The UMRA service installation wizard automatically
determines the target directory but you can specify any other directory.

Note that the name of the directory is specified relative to the target
computer, e.g. G:\UMRAService means the the directory UMRAService
on the local drive G:\ of the computer on which the UMRA service is

installed.

5.155. Variable generic table
In UMRA, there are several script actions for which the output variable is
stored in table format. The Variable generic table window is used to
specify the name of the variable and to define the columns of the table

Note that a table variable only holds the data of the table, not the
names of columns. You therefore need to add the names of the columns
that can be shown with the generic table.

Specifying columns for table type variable

The special table type Variable takes its input from a variable containing
table data. This variable (which is the the result of script actions such as
Generate Generic table on page 527, List services status on page 373, Get User

Table) on page 51 does not contain any header info. This means that you
need to specify the correct column names. For variables which are the
result of one of the before mentioned script actions, this is simply a
matter of selecting the right column template.

Template Description

4 columns 4 columns (Column1, Column2, etc.) to hold data.

8 columns 8 columns (Column1, Column2, etc.) to hold data

UMRA Help

12 columns 12 columns (Column1, Column2, etc.) to hold
data

User info To be used in combination with the Get user table
on page 51 script action. It will set the columns
for the %UsersTable% variable.

Services status (without
config info)

To be used in combination with the List services
status on page 373 script action. It will set the
available columns for the %ServicesTable%
variable, but without the columns start up type
(text), start up type (code), binary file and log on
as.

Services status (with config
info)

To be used in combination with the List services
status on page 373 script action. It will set the
available columns for the %ServicesTable%
variable, including he columns start up type
(text), start up type (code), binary file and log on
as.

Printer documents To be used in combination with the List printer
documents on page 380 script action. It will set
the available columns for the %DocumentsTable%
variable

List files and or directories To be used in combination with the List files
and/or directories on page 367 script action. The
name of the output variable is user defined.

When you have selected the required template and click the Set

columns button, the columns for the specified template will be added.

See also:

UMRA tables on page 9

Script action: List services status on page 373

Script Action: List printer documents on page 380

Script Action: Get user table (AD) on page 51

UMRA Help

5.156. Variable list
In this window, you can define a list of variables to be used for testing
purposes. A variable is defined by its name and value. These testing
variables are resolved at runtime.

Click the Add button to add a test variable name and its corresponding
value.

6. No help available

There is no help available for this window.

C H A P T E R

UMRA Help

7. Index

A
Access and Security • 12

Access rights are not propagated to Active
Directory • 10, 11

Access rights of mailboxes when using Out Of
Office actions • 6, 10

Accessing Exchange 2010 functionality from an
UMRA project • 1

Action Property script phrase • 30

ActionProperties • 19

Active Directory • 3, 66

Active Directory permissions • 308

Active Directory utility • 321

Add directory service object • 22

Adding a directory service object • 58, 61

Adding the person directory service item • 44,
46

AddRow • 18

Administration Requests database • 39

Advanced Settings - domains • 325

Advanced Settings - general settings • 325

AFAS Online • 76

Agent service session • 321

Allow access on the whole organization • 13

Allow access per mailbox user • 13, 15

AppendColumn • 18

Appendix A - Script actions • 4, 10, 26, 54

Appendix B - Installing the UMRA Service • 31,
57, 392

Application input data • 16

Aura • 10, 258

Aura connector installation • 88, 258

Aura installation 1 - Architecture • 89

Aura installation 10 - Test the UMRA-Aura-
WebService • 99

Aura installation 2 - Prerequisites • 89

Aura installation 3 - Create user account • 89,
96

Aura installation 4 - Create web site • 90

Aura installation 5 - IIS / ASP.NET 1.1.4322 • 92

Aura installation 6 - Aura license file • 94

Aura installation 7 - Aura data access • 95

Aura installation 8 - Update web.config • 96, 97

Aura installation 9 - Test the web-site • 97

Auxiliary project - Print job list - HP_1220C • 2

B
Background information about access rights on

mailboxes • 10, 11, 16

Basic section • 15

Boolean Value Dependent Action Property
script phrase • 35

Built-in variables • 18, 19, 33, 34, 329

C
ClearVariables • 5

UMRA Help

Component Object Model (COM) • 1

Concept • 1

Condition criteria - Setup • 330

Condition criteria - Setup criterion • 330

Conditional Action Property script phrase • 32

Configuration and settings • 12

Configuration of the Umra Service • 82

Configuration section • 12, 18, 51, 321, 322

Configure predefined variables • 331

Configuring a secure web-site with IIS • 54, 90

Configuring the UMRA console for use with
Lotus Notes • 20, 31, 35, 39

Configuring the UMRA project • 23, 41

Configuring the UMRA service for use with
Lotus Notes • 20, 31, 35

Connect • 5

Contact • 158

Contacts • 20, 30

Context sensitive Help • 322

Control running UMRA service projects • 331

Create replica • 39, 41, 43

CreateTable • 18

CreateTable2 • 18

CreateTable3 • 19

Creating a directory service item • 11

Creating a Forms example project - Reset
password • 5, 26

Creating a MASS example project - Mass create
users • 2, 10

Creating directory service items with OpenLDAP
on Linux • 39, 44

Creating the website • 36

Creating user accounts in Microsoft Active
Directory using LDAP • 49, 58

Creating user accounts in Novell eDirectory • 19

Customizing name generation algorithms • 4

D
Data specification - Text list • 49, 331

Database • 282

Database query - Database specification • 332,
333, 363

Database query - Query • 332, 333, 363

Database setup - MS-Access (Jet) • 332, 333

Database setup - Other databases • 27, 332,
334

Declaration • 15

Delegating user account management tasks -
Forms module • 3, 26

Delete Options • 324

Deleting a directory service item • 12

Deleting user accounts in Novell eDirectory • 32

Deny 'Receive As' access for 'Domain Admins'
on mailboxes • 10, 13

Directory Service tasks • 11

Distribution group • 160

Domain Controller Options • 324

UMRA Help

Dynamic actions library • 39

E
Education • 88, 258

Encrypted properties • 17, 21, 38

Example • 41

Example 1 - Creating an LDAP table showing all
disabled users in a domain • 19

Example 2 - Creating a form table to connect to
a database • 21

Example 3 - Creating a variable with table data
and showing the content in a form table • 26

Exchange • 88

Exchange 2000/2003 • 88

Exchange 2000/2003 requirements • 9

Exchange 2007 • 45, 101

Exchange 2007 Client Access Role • 6, 9

Exchange 2010 • 20

Exchange server • 166

Exchange Web Services certificate • 6, 7

ExecuteProjectScript • 6

Expiration date • 336

F
File input data • 10, 1

File system • 319

File System • 171

Fixed table • 10

For each - Input variables • 304, 305, 337

Form action - Check form input • 25, 337

Form action - Execute command line at client
workstation • 10, 340

Form action - Execute script of form • 338

Form action - General • 338, 341, 342, 343, 356

Form action - Iteratively execute project script •
33, 339

Form action - Return current form • 340, 354

Form action - Return other form • 33, 340

Form action - Set variable value • 340, 342, 355

Form fields - Button • 341, 346

Form fields - Checkbox • 27, 341, 346, 355

Form fields - Display • 343, 348

Form fields - Input text • 344, 355

Form fields - Name • 340, 345

Form fields - Picture • 345, 356

Form fields - Radio button • 346, 356, 418

Form fields - Static text • 347, 355

Form fields - Table - Columns • 347

Form fields - Table - Data refresh • 349, 352

Form fields - Table - Exclusions • 350

Form fields - Table - Fixed data • 350, 351, 361

Form fields - Table - Generic table • 351, 363,
374, 377, 379, 381

Form fields - Table - Network call parameters •
351, 352, 353

Form fields - Table - Network table • 349, 351,
352, 361

UMRA Help

Form fields - Table - Options • 25, 339, 350, 353

Form fields - Table - Row icon image • 354

Form fields - Table - Type • 349, 351, 352, 353,
354, 355

Form fields - Vertical space • 348

Form input data • 12, 1

Form layout • 13

Form project - Form fields • 355

Form projects • 1

Form table return variable • 7

Form table types • 4

Formatting tables • 18

Function modules • 356, 364, 383, 384, 385,
386

G
General • 2

General section • 15

General user Actions • 54

Generate Generic table - Script • 16

Generating user names • 1

Generic table - Column names • 364

Generic table - Database query • 10

Generic table - Introduction • 361

Generic table - LDAP query • 6

Generic table - Run test • 361, 376, 378

Generic table - Table type • 361, 362

Generic table - Variable • 364, 378

GetCellText • 17, 19

GetCellTextEx • 20

GetColumnCount • 20

GetColumnName • 20

GetConnectionInfo • 6

GetConnectionString • 7

GetFormTable • 16

GetHostName • 7

GetLogMsg • 8

GetLogMsgCount • 8

GetLogMsgEx • 8

GetPortNumber • 9

GetRowCount • 21

GetScriptExecutionInfo • 10

Getting Started • 3, 386, 387, 389

GetVariableDataTable • 11

GetVariableInfo • 10

GetVariableText • 11

GetVersion • 12

Goal • 15, 79

Google - Action

Google Setup Connection • 70

Google - Connections • 71

Google - Registry settings • 72

Google - Requirements • 70

Group management • 317

UMRA Help

H
HideVariable • 10, 12

I
ID Vault • 12, 43, 44

IDD_DIALOG_CYCOS_CUSTOMFIELD_OUTPUT •
326

IDD_TAB_ACTIONITEM_CYCOS_GET_ATTACHM
ENT • 326

IDD_TAB_ACTIONITEM_CYCOS_GET_CUSTOM •
326

IDD_TAB_ACTIONITEM_CYCOS_SET_CUSTOM •
326

IDD_TAB_ACTIONITEM_LN_ACL -forwarded •
326

IDD_TAB_ACTIONITEM_LN_QUERY_ITEMS-
forwarded • 326

IIS configuration Windows 2003 • 34

IIS configuration Windows Server 2008 • 49

Initial project specification • 13

Install/upgrade software • 323

Installation • 1, 2

Installation and upgrade wizard - Specify the
target domain • 323

Installation and upgrade wizard - Specify the
target domain controller • 323

Installation and upgrade wizard- Installation
and upgrade options • 323

Installation of the Notification Package • 80

Installing the UMRA program files • 8

Installing UMRA • 8

Installing UMRA PSM for the first time • 79

Integrate UMRA with other applications using
COM • 63, 386

Integrating Active Directory in existing
(Sharepoint) web portals • 6

Interface modules • 361, 364, 383, 384, 385,
386

Introduction • 3, 26, 3, 23, 33, 1, 13, 39, 49, 1

Introduction Exchange 2007 • 19, 1

Introduction Exchange 2010 • 8, 1

Introduction Office 365 • 1

It's Learning • 10, 273

L
LDAP Attributes • 9

LDAP attributes - Attribute specification • 365,
376

LDAP attributes - Data conversion • 367, 368

LDAP attributes - Data conversion routine •
367, 368

LDAP binding • 6

LDAP Directory Service - Encrypt input • 370

LDAP Directory Service - LDAP Search • 372

LDAP Directory Service - LDAP Search Attributes
• 372

LDAP Directory Service - Setup LDAP
modification data • 373

LDAP directory services • 196

LDAP filter • 7

UMRA Help

LDAP search - Attributes • 363, 365, 374, 378,
381

LDAP search - LDAP binding • 363, 374, 377,
379, 381

LDAP search - LDAP Filter • 363, 368, 374, 378,
379, 381

LDAP search - Options • 378, 381

License code • 364, 382, 385, 386

License matrix • 385

License model • 361, 382, 384, 428

Licensing • 12

Linking Active Directory to other information
systems • 6

Linking the auxiliary project to the main project
• 13

Linux OpenLDAP • 39

LoadFormProject • 13

Loading LDAP modification data • 20

Log information • 12, 387

Lotus Notes • 20, 202

Lotus Notes Document Item Specification • 389

Lotus Notes example projects • 11, 12, 43, 226,
246, 251

Lotus Notes Item Specification

General • 390

Lotus Notes Settings dialog • 391

Lotus Notes user guide • 30, 391, 392

M
Mail • 306

Mail contact • 144

Mail user • 131

Mailbox • 165

Mailbox has never been used. • 10

Manage Active Directory with the UMRA
Powershell Agent service • 1, 46, 88, 308,
310, 312, 314, 315, 316, 317, 318

Manage script actions • 331, 339, 387

Manage Services - Adding form fields • 6

Manage Services - Form buttons • 10

Manage Services - Form table • 6

Manage Services - Form, part 1 • 6

Manage Services - Link to project Collect
Services • 18

Manage Services - Script • 14

Managing Exchange 2003 with the UMRA
Powershell Agent service • 2, 46

Managing LDAP directory services using UMRA
• 25, 21, 370, 372, 373

Managing printer queues • 27, 51

Managing printers and printer queues • 194

Managing service projects • 392

Managing UMRA PSM • 83

Managing user account group memberships on
Novell eDirectory • 36

Managing Windows computer services • 27, 17

UMRA Help

Manual installation of the Powershell Agent
service • 11, 9

Mass updating network resources - Mass
module • 1, 10

Microsoft Active Directory • 49

Miscellaneous UMRA PSM topics • 83

Move mail files to another server • 39, 43

MS Access database • 26

Multi-value Dependent Action Property script
phrase • 35

N
N@tSchool • 10, 259

Name generation • 83, 5, 6, 13, 39, 284

Name Generation

Default input names • 394, 399

Embedded algorithms • 395

Formatting functions • 395, 397, 399

Iteration • 395

Manage algorithms • 395, 396, 399

Setup algorithm methods • 395, 398

Name Generation Algorithms • 393, 394, 395,
396, 397, 399

Network bar - Count users • 29, 397

Network data • 398

Network table • 5

No help available • 431

non- Active Directory • 38

Novell eDirectory • 13

O
Office 365 • 3

Office 365 Users • 1

Open UMRA project • 398

Other actions • 187

Out-Of-Office • 98, 168

Output specification • 25

Overview • 79

P
Password generation • 399

Password Synchonization Manager • 78

Password Synchronisation Manager service
settings • 326

Powershell • 308

Powershell Agent connection settings • 3, 4, 45

Powershell Agent service • 19, 1

Powershell Agent service - Edit connection
settings • 4, 5

Powershell Agent service session • 10, 13, 50,
51, 53, 321, 322

Powershell Agent service setup - Procedure • 3

Powershell Agent service setup - Requirements
• 2, 6

Powershell Agent service wizard - Delete all files
• 9

Powershell Agent service wizard - Manage • 4, 5

UMRA Help

Powershell Agent service wizard - Specify
account • 7

Powershell Agent service wizard - Specify
account group • 7

Powershell Agent service wizard - Specify port
number • 6

Powershell Agent service wizard - Specify server
• 5

Powershell Agent service wizard - Specify
service directory • 6

Powershell Agent service wizard - Specify user
account group • 8

Powershell Agent service wizard - Update
Powershell Agent service • 5, 8

Powershell snap-ins • 1, 12, 18, 36, 46, 88

Prerequisites • 2, 79

Principle of operation • 2

Print jobs project - Form • 3

Print jobs project - Form buttons • 7

Print jobs project - Script • 9

Print jobs project - Table with printer
documents • 4

Processing user input • 6, 9, 16

Programmatically creating and evaluating tables
• 13, 16

Programming • 301

Project A - Collecting services • 26

Project B - Inserting a form table to display
table content in a variable • 28

Project definition • 1

Project description • 1

Project execution • 14, 18

Project extensions • 15

Project principle • 2

Project structure • 1

Properties section • 19

Properties specification • 19

PropertiesSeriesSet section • 23

Q
QuoteFormat of a Value Dependent Action

Property script phrase • 36

R
Reboot options • 325

References • 50, 81

Refresh options • 325

Registry settings • 13

Release notes • 1

ReleaseConnection • 13

Remove a dynamic action • 40

Requirement UMRA Exchange 2007 support • 1

RestoreConnection • 13

ReturnData element specification • 27

S
SAP - Action

SAP Setup connection • 73

SAP - Connections • 74

SAP - Example projects • 75

UMRA Help

SAP - Registry settings • 76

SAP - Requirements • 73

SAP - SAP Generic function module • 8, 74

SAP - UMRA SAP child process • 74

SAP actions • 257

Scheduler • 401, 405, 410, 411, 412

Script action

Add directory service object (LDAP) • 3, 4, 6,
11, 373

Delete directory service object (LDAP) • 3, 7,
12, 32, 373, 374

Delete multiple variables • 13, 298

Load LDAP modification data • 3, 4, 7, 11,
373

Modify directory service object (LDAP) • 3, 4,
7, 11, 373, 374

Search directory service (LDAP) • 3, 8, 12

Setup LDAP session • 3, 7, 11, 12, 32, 373

Terminal Services user settings • 54, 58

Update database • 282

Script Action

Add account to local group • 35, 54, 50

Add AD permission • 17, 310

Add directory service object (LDAP) • 25, 55,
198

Check Powershell Agent service session • 10,
274, 321

Check session variable • 54, 301

Configure Out-Of-Office • 17, 231

Configure service • 27, 55, 193

Connect mailbox (Exchange 2007) • 123

Convert text to date/time • 33, 55, 293

Convert to multi-value variable • 33, 55, 294,
295

Convert value of variable • 27, 55, 292

Copy directory • 55, 174, 182, 298

Copy document • 14, 240

Count licensed - domain/OU accounts • 20,
188

Create (enable) mailbox (Exchange 2007) •
104

Create contact (AD) • 32, 54, 11

Create Directory • 35, 55, 3, 6, 22, 38, 171,
177, 182, 287, 414, 416, 417

Create distribution group (Exchange 2007) •
160

Create document • 239

Create Exchange Mailbox (2003/2000) • 23,
54, 88, 92, 93, 94, 95, 96, 98

Create group (AD) • 22, 32, 54, 52, 78

Create local group • 52

Create mail contact (Exchange 2007) • 144

Create mail user (Exchange 2007) • 131

Create object (AD) • 22, 54, 66, 68

Create share • 33, 55, 182, 184, 185

UMRA Help

Create user (AD) • 22, 33, 35, 54, 3, 31, 32,
38, 49, 50, 51, 88, 171, 284, 285, 286,
294, 336, 394, 395, 399, 400

Create User (no AD) • 33, 35, 54, 3, 38, 45,
49, 171, 284, 285, 294, 394, 395, 399, 400

Create user and mailbox (Exchange 2007) •
101

Delay • 56, 306

Delete attribute value (AD) • 25, 54, 72

Delete directory • 55, 174, 177, 180, 185,
298

Delete directory service object (LDAP) • 25,
55, 199

Delete document • 12, 240

Delete Exchange mailbox (2000/2003) • 54,
90, 92, 94, 95, 98

Delete file(s) • 179

Delete Item • 251

Delete Object (AD) • 27, 54, 67

Delete person • 223, 241

Delete session variable • 54, 301

Delete share • 33, 55, 183, 184, 185

Delete user (AD) • 54, 30, 48, 185

Delete user (no AD) • 54, 31, 48, 185

Delete variable • 56, 297, 340

Dial-in user settings • 32, 54, 64

Disable distribution group (Exchange 2007) •
164

Disable mail contact (Exchange 2007) • 152

Disable mail user (Exchange 2007) • 140

Disable mailbox (Exchange 2007) • 120

Edit distribution group (Exchange 2007) •
164

Edit Exchange mailbox (2000/2003) • 54, 90

Edit mail contact (Exchange 2007) • 147, 151

Edit mail user (Exchange 2007) • 135, 140

Edit mailbox (Exchange2007) • 105, 114

Edit person • 215, 236, 246

Edit share • 13, 27, 55, 183, 185

Edit user (AD) • 33, 54, 19, 43, 45, 90, 336

Edit user (no AD) • 33, 54, 43

Edit user logon • 32, 54, 25, 45, 54

Enable distribution group (Exchange 2007) •
162

Enable mail contact (Exchange 2007) • 146

Enable mail user (Exchange 2007) • 134

Encrypt text • 56, 287, 298

Execute agent script • 11, 43, 255

Execute Command Line • 12, 55, 187

Execute print job command • 27, 55, 195

Execute script • 25, 56, 303

Execute service command • 27, 55, 192, 194

Export Variables • 33, 34, 56, 204, 209, 296,
299, 300

For-Each • 22, 30, 56, 304

Format Variable Value • 55, 288, 395

UMRA Help

Generate generic table • 21, 23, 55, 275, 430

Generate name(s) • 33, 55, 284

Generate password • 25, 56, 204, 209, 299

Generate random number • 33, 56, 299

Generate recovery password • 17, 227

Get (nested) group memberships • 17, 318

Get AD permissions • 17, 308

Get attribute (AD) • 54, 68

Get certifier • 202, 203, 208, 221, 222, 225,
336

Get database • 226, 233, 234, 237, 239, 240,
243, 244, 251, 254

Get databases • 234

Get disk space • 17, 319

Get document • 216, 221, 223, 224, 225,
226, 230, 236, 238, 239, 241, 242, 243,
246, 247, 251, 402

Get documents • 235, 237, 244

Get file/directory info • 55, 173, 187

Get item • 241

Get item size • 11, 242

Get mailbox permissions (Exchange 2007) •
126

Get Object (AD) • 33, 54, 68, 70, 71, 73, 76,
81

Get Out-Of-Office info (Exchange
2000/2003) • 13, 98, 100

Get Out-Of-Office info (Exchange 2007) • 10,
168

Get owner • 17, 315

Get PDC (AD) • 17, 321

Get primary group • 30, 55, 87

Get quota • 14, 231

Get session variable • 54, 300

Get terminal services user settings • 27, 54,
63

Get user (AD) • 54, 17, 19, 20, 25, 26, 30, 31,
36, 45, 46, 54, 55, 58, 68, 70, 71, 73, 82,
84, 85, 91, 92, 95, 96, 99, 100, 280, 282,
297

Get user info • 27, 54, 30, 56

Get user table (locked
out/disabled/password) • 25, 54, 27, 72,
430

Get variable length • 288

Get views • 235

Go to Label • 56, 302, 306, 389

If-Then- Else • 31, 56, 291, 303

Join table data • 21, 278

List contacts (Exchange 2007) • 158

List distribution groups (Exchange 2007) •
164

List files and/or directories • 25, 185, 430

List mail contacts (Exchange 2007) • 153

List mail users (Exchange 2007) • 142

List mailbox databases (Exchange 2007) •
166

UMRA Help

List mailbox statistics (Exchange 2007) • 121,
165

List mailboxes (Exchange 2007) • 129

List printer documents • 27, 55, 194, 195,
196, 430

List services status • 27, 55, 189, 192, 194,
430

List users (Exchange 2007) • 156

Load LDAP modification data • 25, 55, 197,
198, 199

Log Specific Variables • 300

Log Variables • 56, 299, 300

Manage Exchange recipient mail addresses
(2003/2000) • 32, 54, 90, 92, 94, 95, 96

Manage mail contact email addresses
(Exchange 2007) • 151

Manage mail user email addresses
(Exchange 2007) • 139

Manage mailbox email addresses (Exchange
2007) • 113

Manage mailbox permissions (Exchange
2007) • 127

Manage multi-text value variable • 33, 55,
76, 295

Manage table data • 13, 14, 21, 22, 31, 55,
238, 245, 275, 276, 282, 291, 305, 363

Map variable • 56, 32, 50, 301, 302, 303,
332, 350

Merge multi-text variable values • 31, 56,
295

Modify directory service object (LDAP) • 25,
55, 198, 199

Modify Exchange mailbox permissions
(2000/2003) • 32, 54, 90, 92, 95, 96, 98

Move - rename (AD) • 54, 20, 25, 27, 31, 35,
37, 38, 46, 48, 54, 56, 84, 87, 298

Move cross-domain (AD) • 27, 54, 37, 86

Move Exchange mailbox • 27, 54, 90, 92, 94,
95, 96, 98

Move mailbox (Exchange 2007) • 124

Move person • 216, 224

Move person (advanced) • 17, 225

No operation • 56, 306

Process all requests • 232

Query Document Items • 244

Recertify person • 222

Recover ID file • 228

Register person • 202, 203, 208, 216, 221,
223, 239

Register person (advanced) • 11, 208

Release Powershell Agent service session •
51, 274, 321, 322

Remove AD permission • 17, 312

Remove distribution group (Exchange 2007)
• 164

Remove group member • 31, 54, 52

Remove mail contact (Exchange 2007) • 153

Remove mail user (Exchange 2007) • 141

Remove SID history • 24, 73

UMRA Help

Remove specific group memberships (AD) •
31, 54, 77

Remove user - mailbox (Exchange 2007) •
121

Remove user group memberships (AD) • 54,
33, 77

Rename directory service object (LDAP) • 24,
200

Rename file or directory • 31, 55, 177

Rename person • 221, 225

Search documents • 216, 221, 223, 224, 225,
226, 230, 237, 243

Search LDAP • 25, 55, 201

Search object (AD) • 54, 17, 82

Send HTML mail message • 6, 7, 307

Send mail message • 31, 56, 306

Set AD permissions (advanced) • 17, 314

Set attribute (AD) • 12, 13, 32, 54, 70, 280,
282

Set client access attributes (Exchange 2007)
• 114

Set encrypted variable • 25, 55, 202, 274,
287, 298, 371

Set group membership (AD) • 32, 54, 76, 294

Set Internet password • 229

Set item(s) • 246

Set Managed By • 17, 317

Set Out-Of-Office info (Exchange 2000/2003)
• 13, 100

Set Out-Of-Office info (Exchange 2007) • 10,
169

Set owner • 17, 316

Set primary group (AD) • 31, 54, 55, 54, 88

Set primary group (non AD) • 53

Set quota • 230

Set session variable • 54, 301

Set user group memberships (AD) • 35, 54,
31, 34, 50, 51

Set Variable • 13, 32, 55, 32, 286, 292, 299,
301, 332

Setup LDAP session • 25, 55, 196, 198, 199

Setup Powershell Agent service session • 51,
274, 321, 322

Setup Security • 55, 178

Setup User Global Group Memberships • 54,
34, 49, 332

Sign/Unsign document • 245, 248, 391

Split Variable • 55, 287

Update ACL • 254

Update database - Database • 55, 282, 284

Update database - Introduction • 27, 55, 282

Update database - SQL Statements • 9, 55,
282, 284

Update database - Test • 55, 282, 283, 284

Update date-time variable • 12, 23, 27, 55,
291

Update group memberships (AD) • 15, 74

UMRA Help

Update numeric variable • 12, 28, 31, 55,
289

Update profile document • 11, 14, 17, 251

Script action 1

Check %DocumentID% • 9

Script action 2

Check %PrinterCommand% • 10

Script action 3

Go-To printer command • 11

Script action 4

Execute print job command • 12

Script action 5

Reset %DocumentID% • 13

Script action overview • 3

Script action property value • 400

Script action property value - Output only • 413

Script action property value output • 412, 413

Script action property value with yes/no option
• 412

Script execution • 10, 15, 16

Script phrase contents • 37

Script section • 28

Scripts, actions and properties • 4

Search and replace • 413

Searching a directory service (LDAP) • 12

Searching accounts and resetting passwords in
Microsoft Active Directory using LDAP • 49,
63

Secure LDAP Active Directory environment • 49

Secure LDAP eDirectory environment • 13

Secure Linux OpenLDAP environment • 39

Security - Access Control Settings • 414

Security - Adding accounts and permissions •
415, 416

Security - Detailed permissions settings • 415

Security - Overview • 177, 414, 415, 416, 417

Security - Owner • 417

Security and authentication • 34

Select domain controller wizard - Specify the
target domain • 325

Select domain controller wizard - welcome •
325

Selecting data using form tables • 3

Series of properties • 23

Session section • 38

Set items • 402

SetCellText • 21

SetColumnName • 22

SetColumnNameEx • 22

Setting a user account password on Novell
eDirectory • 24

Setting up a secure session with Active
Directory domain controller • 58

UMRA Help

Setting up a secure session with Linux LDAP
Server • 44, 45

Setting up an LDAP session • 19

Setting up the Exchange 2007 Management
Tools on a 32-bit platform • 1, 2, 3, 46, 88

Setting up the IIS website • 42

Setting up the List services status action • 3

Setting up the Set variable action • 3

Setting up user account group memberships on
Novell eDirectory • 32

Setup project security • 4

Setup scheduling • 401, 402, 410, 411, 412

Setup scheduling - Adding an exception • 402,
405, 410, 412

Setup scheduling - Exceptions • 401, 405, 411,
412

Setup scheduling - Preview • 401, 402, 405,
410, 411, 412

SetVariableBool • 14

SetVariableLong • 14

SetVariableTable • 14

SetVariableText • 15

Signature of UMRA dynamic actions • 18, 40

Simple script phrase • 30

Simple Value Dependent Action Property script
phrase • 34

Single value output data • 17, 25

SOAP Synchronization template project • 100,
263

Special table type - Generic table Variable • 5,
13

Specify file input data • 363, 417

Specify group names • 418

Specify input • 418

Specify input name • 418

Specify new name for UMRA project • 418

Specify radio button text info • 418

Specify the name of the domain controller •
326

Specify variable info • 419

Specifying Active Directory LDAP attributes •
58, 59

Specifying columns • 13

Specifying columns for table type Variable • 15

Specifying LDAP attributes and values of
directory service item • 44, 45

Starting the UMRA Console • 2

Step 1

Environment setup • 2

Obtain a certificate • 55

Step 1 - Designing the form layout • 28

Step 1 - Importing your input data • 10

Step 2

Form project - Collect Services • 2

Step 2 - Building the form script • 46

Step 2 - Building the project script • 13

UMRA Help

Step 2 - Windows Server 2003

Install the certificate in the IIS website • 55

Step 2 - Windows XP

Install the certificate in the IIS website • 58

Step 3

Form project - Manage Services • 5

Install the Certification Authority root
certificate on the UMRA Powershell
Agent service computer • 67

Step 3 - Specifying security • 49

Step 3 - Testing the project script • 22

Step 4 - Executing the project script • 24

Summary • 5

System requirements • 8

T
Table • 275

Table columns specification • 6

Table value output data • 26

Table variable specification • 6

Task scheduler overview settings • 419

Task scheduler overview window • 419

TeleTOP • 10, 260

Testing the project script • 51

The concept of tables in UMRA • 2

TOPdesk • 10, 257

U
Umra • 5

UMRA Basics • 24, 3, 83, 16, 19, 25, 27, 31, 33,
34, 37, 38, 43, 45, 48, 50, 51, 56, 66, 70, 81,
82, 84, 86, 87, 90, 92, 94, 95, 96, 98, 183, 184,
185, 280, 281, 331, 332, 338, 347, 351, 364,
385, 386, 387, 389, 392, 394, 395, 396, 397,
400, 412, 413, 414, 415, 416, 417, 422, 423,
426

UMRA COM • 16, 18, 1

UMRA COM - Main functions • 1

UMRA COM in IIS • 33

UMRA COM in VB scripts • 23

UMRA COM object reference • 14, 5, 53

UMRA COM objects • 3

UMRA COM on 64-bit platforms • 18, 34, 48

UMRA command line • 18

UMRA components • 17

UMRA Console • 17

UMRA Console - Command Line Options • 32,
421

UMRA dynamic action example

Goal • 41

Import the dynamic action • 40, 44

Using the dynamic action • 45

XML file • 41

XML file - ActionProperties section • 43

XML file - general section • 42

XML file - Script section • 43

UMRA dynamic actions • 14

UMRA Forms client • 18

UMRA Help

UMRA Google Module • 8, 70

UMRA installation • 2

UMRA LDAP script actions • 3

UMRA Powershell Agent configuration • 6, 7

UMRA Project Component - File data • 422

UMRA Project Component - Form • 423

UMRA Project Component - Network data • 423

UMRA Project Component - Preview • 423

UMRA Project Component - Script • 423

UMRA project management • 1

UMRA Project Properties - Description • 423

UMRA Project Properties - Form Fonts • 424

UMRA Project Properties - Form options • 28,
33, 424

UMRA Project Properties - Format • 343, 425

UMRA Project Properties - General • 425

UMRA Project Properties - Initial variables •
352, 426

UMRA Project Properties - Network data • 426

UMRA Project Properties - Options • 426

UMRA Project Properties - Security • 426

UMRA projects • 1

UMRA Projects • 7, 8, 1

UMRA projects for managing printer queues • 1

UMRA PSM Domain Controllers Overview • 322

UMRA PSM Package installation status • 84, 322

UMRA PSM Package registry values • 85

UMRA PSM script variables • 83, 85, 326

UMRA Reference Guide • 1

UMRA SAP module • 8, 13, 73, 257

UMRA scripting • 4

UMRA Service • 17

UMRA service - Advanced options • 427

UMRA service - license • 384, 427

UMRA Service - service access • 428

UMRA service deletion - Delete all files • 428

UMRA service installation - Admin group • 428,
429

UMRA service installation - Port • 429

UMRA service installation - Server • 429

UMRA service installation - Service account •
429

UMRA service installation - Service directory •
429

UMRA Sessions • 7, 13, 53, 300, 301, 321

UMRA setup • 2

UMRA tables • 28, 30, 7, 30, 195, 348, 351, 353,
355, 363, 364, 377, 378, 381, 382, 417, 430

UMRA User Guide • 1

UMRA workspace • 24, 426

UMRA workspaces • 1

UMRA XML project and script files • 15, 2

UmraCheckLicense • 16

UmraDataTable • 17

UMRA Help

UmraFormProject • 16

UmraFormTable • 17

Updating directory service item attributes • 11

Updating group memberships in Microsoft
Active Directory using LDAP • 49, 78

Upgrading MASS projects from older versions •
24, 36

Upgrading UMRA dynamic actions • 17, 39

User • 3, 156

User account provisioning - Automation module
• 6

User mailbox • 101

User Management Resource Administrator
release notes • 1

Using tables in UMRA - Forms & Delegation -
Hands-on • 19

Using the built-in name generation algorithms •
1

Using the Exchange Web Services with UMRA •
6, 168, 169

Using UMRA COM • 3

V
Value Dependent Action Property script phrase

• 32, 33

Value of date-time item • 327

Value of numeric item • 328

Value of text item. • 326

Value of text list item • 327

Variable actions • 275

Variable Conversion of a Value Dependent
Action Property script phrase • 37

Variable generic table • 363, 373, 429

Variable list • 55, 282, 283, 284, 431

Variable operations • 286

Variables • 6

Viewing the current status of PSM Packages •
84

Visual Basic script • 26

W
Welcome to UMRA • 1

Which module should I choose? • 8

Windows computer services • 189

X
XML file specification • 14

	1. Welcome to UMRA
	2. Release notes
	2.1. User Management Resource Administrator release notes
	Build 1263, May 12th, 2006
	Build 1227, January 6th, 2006
	Build 1225, December 23rd, 2005
	Build 1201, September 30th, 2005
	Build 1164, July 1st, 2005
	Build 1141, April 29, 2005
	Build 1030, July 1, 2004

	2.2. Upgrading MASS projects from older versions
	The following text is taken directly from the help of version 1263.

	3. UMRA User Guide
	3.1. UMRA Basics
	3.1.1. Introduction
	3.1.2. UMRA scripting
	Scripts, actions and properties
	Variables

	3.1.3. UMRA Projects
	File input data
	Script execution

	Form input data
	Form layout
	Script execution

	Application input data
	UMRA COM
	Script execution

	3.1.4. UMRA components
	UMRA Console
	UMRA Service
	UMRA Forms client
	UMRA COM
	UMRA command line

	3.1.5. UMRA project management
	UMRA projects
	UMRA workspaces
	UMRA XML project and script files

	3.2. Getting Started
	3.2.1. Introduction
	3.2.2. Mass updating network resources - Mass module
	3.2.3. Delegating user account management tasks - Forms module
	3.2.4.
	3.2.5. User account provisioning - Automation module
	Linking Active Directory to other information systems
	Integrating Active Directory in existing (Sharepoint) web portals

	3.2.6. Installing UMRA
	Which module should I choose?
	System requirements
	Installing the UMRA program files
	Exchange 2000/2003 requirements

	3.2.7. Creating a MASS example project - Mass create users
	Step 1 - Importing your input data
	Step 2 - Building the project script
	Step 3 - Testing the project script
	Step 4 - Executing the project script

	3.2.8. Creating a Forms example project - Reset password
	Introduction
	Step 1 - Designing the form layout
	Step 2 - Building the form script
	Step 3 - Specifying security
	Testing the project script

	3.2.9. Appendix A - Script actions
	3.2.10. Appendix B - Installing the UMRA Service

	3.3. Integrate UMRA with other applications using COM
	3.3.1. UMRA COM
	Component Object Model (COM)
	UMRA COM - Main functions

	3.3.2. UMRA COM objects
	Introduction
	Using UMRA COM
	UMRA COM object reference
	Umra
	ClearVariables
	Connect
	ExecuteProjectScript
	GetConnectionInfo
	GetConnectionString
	GetHostName
	GetLogMsg
	GetLogMsgCount
	GetLogMsgEx
	GetPortNumber
	GetScriptExecutionInfo
	GetVariableInfo
	GetVariableDataTable
	GetVariableText
	GetVersion
	HideVariable
	LoadFormProject
	ReleaseConnection
	RestoreConnection
	SetVariableBool
	SetVariableLong
	SetVariableTable
	SetVariableText
	UmraCheckLicense

	UmraFormProject
	GetFormTable

	UmraFormProject.GetFormTable
	UmraFormTable
	GetCellText

	UmraDataTable
	AppendColumn
	AddRow
	CreateTable
	CreateTable2
	CreateTable3
	GetCellText
	GetCellTextEx
	GetColumnCount
	GetColumnName
	GetRowCount
	SetCellText
	SetColumnName
	SetColumnNameEx

	3.3.3. UMRA COM in VB scripts
	Introduction
	Configuring the UMRA project
	MS Access database
	Visual Basic script
	Script section: Connecting to the UMRA Service
	Script section: Executing projects on UMRA Service
	Testing and executing the script

	3.3.4. UMRA COM in IIS
	Introduction
	Security and authentication
	IIS configuration Windows 2003
	Creating the website
	Configuring the UMRA project
	Setting up the IIS website
	UMRA COM on 64-bit platforms
	IIS configuration Windows Server 2008

	3.3.5. References

	3.4. Managing printer queues
	3.4.1. Introduction
	Printer queue management - Form result

	3.4.2. UMRA projects for managing printer queues
	Project description
	Project principle
	Auxiliary project - Print job list - HP_1220C
	Print jobs project - Form
	Print jobs project - Table with printer documents
	Table variable specification
	Table columns specification
	Form table return variable

	Print jobs project - Form buttons
	Print jobs project - Script
	Script action 1: Check %DocumentID%
	Script action 2: Check %PrinterCommand%
	Script action 3: Go-To printer command
	Script action 4: Execute print job command
	Script action 5: Reset %DocumentID%

	Linking the auxiliary project to the main project
	Initial project specification

	Project execution
	Project execution log
	Project extensions

	3.5. Managing Windows computer services
	3.5.1. Project definition
	3.5.2. Project structure
	Form projects
	Principle of operation

	3.5.3. Step 1: Environment setup
	Prerequisites
	UMRA installation
	UMRA setup

	3.5.4. Step 2: Form project - Collect Services
	Starting the UMRA Console
	Setting up the Set variable action
	Setting up the List services status action
	Setup project security
	Summary

	3.5.5. Step 3: Form project - Manage Services
	Manage Services - Form, part 1
	Manage Services - Adding form fields
	Manage Services - Form table
	Manage Services - Form buttons
	Manage Services - Script
	Manage Services - Link to project Collect Services

	3.5.6. Project execution
	3.5.7. Contacts

	3.6. Managing LDAP directory services using UMRA
	3.6.1. Introduction
	3.6.2. Concept
	Security

	3.6.3. UMRA LDAP script actions
	Script action: Setup LDAP session
	Script action: Load LDAP modification data
	Directory service schema
	Script action: Add directory service object (LDAP)
	Script action: Modify directory service object (LDAP)
	Script action: Delete directory service object (LDAP)
	Script action: Search directory service (LDAP)
	Distinguished name

	3.6.4. Directory Service tasks
	Creating a directory service item
	Updating directory service item attributes
	Deleting a directory service item
	Searching a directory service (LDAP)

	3.6.5. Novell eDirectory
	Introduction
	Secure LDAP eDirectory environment
	Creating user accounts in Novell eDirectory
	Setting up an LDAP session
	Loading LDAP modification data
	Add directory service object

	Setting a user account password on Novell eDirectory
	Deleting user accounts in Novell eDirectory
	Setting up user account group memberships on Novell eDirectory
	Managing user account group memberships on Novell eDirectory

	3.6.6. Linux OpenLDAP
	Introduction
	Secure Linux OpenLDAP environment
	Creating directory service items with OpenLDAP on Linux
	Setting up a secure session with Linux LDAP Server
	Specifying LDAP attributes and values of directory service item
	Adding the person directory service item

	3.6.7. Microsoft Active Directory
	Introduction
	Secure LDAP Active Directory environment
	Creating user accounts in Microsoft Active Directory using LDAP
	Setting up a secure session with Active Directory domain controller
	Specifying Active Directory LDAP attributes
	Adding a directory service object

	Searching accounts and resetting passwords in Microsoft Active Directory using LDAP
	Table columns and return variable

	Updating group memberships in Microsoft Active Directory using LDAP
	Script action: Modify directory service object (LDAP)

	3.6.8. References

	3.7. Name generation
	3.7.1. Generating user names
	Using the built-in name generation algorithms
	Using variables to specify output names
	Customizing name generation algorithms

	3.8. UMRA tables
	3.8.1. Introduction
	3.8.2. The concept of tables in UMRA
	General
	Selecting data using form tables
	Form table types
	Network table
	Generic table - LDAP query
	LDAP binding
	LDAP filter
	LDAP Attributes

	Fixed table
	Generic table - Database query

	Specifying columns

	3.8.3. Special table type - Generic table Variable
	Specifying columns for table type Variable
	Generate Generic table - Script
	Programmatically creating and evaluating tables

	3.8.4. Processing user input
	3.8.5. Formatting tables
	3.8.6. Using tables in UMRA - Forms & Delegation - Hands-on
	Example 1 - Creating an LDAP table showing all disabled users in a domain
	LDAP table - Creating a table listing all disabled users in a domain
	Example 2 - Creating a form table to connect to a database
	LDAP table - Linking UMRA to an MS-Access database containing phone numbers for all employees, listed by department
	Example 3 - Creating a variable with table data and showing the content in a form table
	Project A - Collecting services
	Project B - Inserting a form table to display table content in a variable

	3.8.7. Contacts

	3.9. Lotus Notes user guide
	3.9.1. Configuring the UMRA console for use with Lotus Notes
	3.9.2. Configuring the UMRA service for use with Lotus Notes
	3.9.3. Administration Requests database
	Move mail files to another server
	Create replica

	3.9.4. Lotus Notes example projects
	ID Vault

	3.10. Exchange 2007
	3.10.1. Introduction Exchange 2007
	3.10.2. Requirement UMRA Exchange 2007 support
	3.10.3. Manage Active Directory with the UMRA Powershell Agent service
	3.10.4. Managing Exchange 2003 with the UMRA Powershell Agent service
	3.10.5. Setting up the Exchange 2007 Management Tools on a 32-bit platform
	3.10.6. Using the Exchange Web Services with UMRA
	Exchange 2007 Client Access Role
	UMRA Powershell Agent configuration
	Exchange Web Services certificate
	Access rights of mailboxes when using Out Of Office actions
	Mailbox has never been used.
	Access rights are not propagated to Active Directory
	Deny 'Receive As' access for 'Domain Admins' on mailboxes
	Allow access on the whole organization
	Allow access per mailbox user

	Background information about access rights on mailboxes

	3.11. Exchange 2010
	3.11.1. Introduction Exchange 2010
	3.11.2. Accessing Exchange 2010 functionality from an UMRA project

	3.12. Office 365
	3.12.1. Introduction Office 365
	3.12.2. Office 365 Users

	3.13. Powershell Agent service
	3.13.1. Powershell Agent service
	3.13.2. UMRA - Powershell Agent service
	3.13.3. UMRA action - Powershell script conversion
	3.13.4. UMRA dynamic actions
	3.13.5. Installation
	Powershell Agent service setup - Requirements
	Powershell Agent service setup - Procedure
	Powershell Agent connection settings
	Powershell Agent service - Edit connection settings
	Powershell Agent service wizard - Manage
	Powershell Agent service wizard - Specify server
	Powershell Agent service wizard - Specify port number
	Powershell Agent service wizard - Specify service directory
	Powershell Agent service wizard - Specify account
	Powershell Agent service wizard - Specify account group
	Powershell Agent service wizard - Specify user account group
	Powershell Agent service wizard - Update Powershell Agent service
	Powershell Agent service wizard - Delete all files
	Manual installation of the Powershell Agent service

	3.13.6. Configuration and settings
	Access and Security
	Licensing
	Log information
	Powershell snap-ins
	Registry settings

	3.13.7. UMRA dynamic actions
	XML file specification
	Basic section
	Declaration
	General section
	Configuration section

	Properties section
	Properties specification
	ActionProperties

	Series of properties
	PropertiesSeriesSet section

	Output specification
	Single value output data
	Table value output data
	ReturnData element specification

	Script section
	Simple script phrase
	Action Property script phrase
	Conditional Action Property script phrase
	Value Dependent Action Property script phrase
	Simple Value Dependent Action Property script phrase
	Multi-value Dependent Action Property script phrase
	Boolean Value Dependent Action Property script phrase

	QuoteFormat of a Value Dependent Action Property script phrase
	Variable Conversion of a Value Dependent Action Property script phrase

	Script phrase contents

	Session section
	Encrypted properties

	Dynamic actions library
	Upgrading UMRA dynamic actions
	Signature of UMRA dynamic actions
	Remove a dynamic action

	Example
	UMRA dynamic action example: Goal
	UMRA dynamic action example: XML file
	UMRA dynamic action example: XML file - general section
	UMRA dynamic action example: XML file - ActionProperties section
	UMRA dynamic action example: XML file - Script section
	UMRA dynamic action example: Import the dynamic action
	UMRA dynamic action example: Using the dynamic action

	3.13.8. Manage Active Directory with the UMRA Powershell Agent service
	3.13.9. Managing Exchange 2003 with the UMRA Powershell Agent service
	3.13.10. Setting up the Exchange 2007 Management Tools on a 32-bit platform
	3.13.11. Powershell Agent service session
	3.13.12. UMRA Sessions
	3.13.13. Configuring a secure web-site with IIS
	Step 1: Obtain a certificate
	Step 2 - Windows Server 2003: Install the certificate in the IIS website
	Step 2 - Windows XP: Install the certificate in the IIS website
	Step 3: Install the Certification Authority root certificate on the UMRA Powershell Agent service computer

	3.14. UMRA Google Module
	3.14.1. Google - Requirements
	3.14.2. Google - Action: Google Setup Connection
	3.14.3. Google - Connections
	3.14.4. Google - Registry settings

	3.15. UMRA SAP module
	3.15.1. SAP - Requirements
	3.15.2. SAP - Action: SAP Setup connection
	3.15.3. SAP - Connections
	3.15.4. SAP - UMRA SAP child process
	3.15.5. SAP - SAP Generic function module
	3.15.6. SAP - Example projects
	3.15.7. SAP - Registry settings

	3.16. AFAS Online
	3.17. Setup connection
	3.18. AFAS get employees
	3.19. AFAS get employees contract
	3.20. AFAS Get organigram
	3.21. AFAS Export Date
	3.22. AFAS Update employee
	3.23. Password Synchonization Manager
	3.23.1. Goal
	3.23.2. Installing UMRA PSM for the first time
	Prerequisites
	Overview
	Installation of the Notification Package
	Configuration of the Umra Service

	3.23.3. Miscellaneous UMRA PSM topics
	Managing UMRA PSM
	Viewing the current status of PSM Packages
	UMRA PSM Package installation status

	UMRA PSM script variables
	Password related variables
	Umra PSM package variables
	UMRA PSM Package registry values
	Values affecting Registration with Windows
	Values affecting package behaviour.

	3.23.4. Manage Active Directory with the UMRA Powershell Agent service

	3.24. Education
	3.24.1. Aura connector installation
	Aura installation 1 - Architecture
	Aura installation 2 - Prerequisites
	Aura installation 3 - Create user account
	Aura installation 4 - Create web site
	Aura installation 5 - IIS / ASP.NET 1.1.4322
	Aura installation 6 - Aura license file
	Aura installation 7 - Aura data access
	Aura installation 8 - Update web.config
	Aura installation 9 - Test the web-site
	Aura installation 10 - Test the UMRA-Aura-WebService

	3.25. SOAP Synchronization template project

	4. UMRA Reference Guide
	4.1. Script action overview
	4.1.1. User
	Active Directory
	Script Action: Create user (AD)
	Domain / OU / Container / LDAP -specification
	Script Action: Create contact (AD)
	Script Action: Get user (AD)

	Related information:
	Script Action: Edit user (AD)
	Script Action: Edit user logon
	Script Action: Get user table (locked out/disabled/password)
	Script Action: Delete user (AD)
	Script Action: Set user group memberships (AD)
	Script Action: Remove user group memberships (AD)
	Script Action: Move - rename (AD)
	Script Action: Move cross-domain (AD)

	non- Active Directory
	Script Action: Create User (no AD)
	Script Action: Edit user (no AD)
	Script Action: Edit user logon
	Script Action: Delete user (no AD)
	Script Action: Setup User Global Group Memberships
	Script Action: Add account to local group

	4.1.2.
	Script Action: Create local group
	Script Action: Remove group member
	Script Action: Set primary group (non AD)
	General user Actions
	Script Action: Edit user logon
	Script Action: Get user info
	Script action: Terminal Services user settings
	Script Action: Get terminal services user settings
	Script Action: Dial-in user settings

	4.1.3. Active Directory
	Script Action: Create object (AD)
	Script Action: Delete Object (AD)
	Script Action: Get attribute (AD)
	Script Action: Set attribute (AD)
	Script Action: Delete attribute value (AD)
	Script Action: Remove SID history
	Script Action: Update group memberships (AD)
	Script Action: Set group membership (AD)
	Script Action: Remove specific group memberships (AD)
	Script Action: Create group (AD)
	Script Action: Get Object (AD)
	Script Action: Search object (AD)
	Script Action: Move - rename (AD)
	Script Action: Move cross-domain (AD)
	Script Action: Get primary group
	Script Action: Set primary group (AD)
	Properties

	4.1.4. Exchange
	Exchange 2000/2003
	Script Action: Create Exchange Mailbox (2003/2000)
	Script Action: Edit Exchange mailbox (2000/2003)

	4.2.
	Script Action: Modify Exchange mailbox permissions (2000/2003)
	Script Action: Move Exchange mailbox

	4.3.
	Script Action: Delete Exchange mailbox (2000/2003)
	Properties
	Script Action: Manage Exchange recipient mail addresses (2003/2000)
	Out-Of-Office
	Script Action: Get Out-Of-Office info (Exchange 2000/2003)
	Script Action: Set Out-Of-Office info (Exchange 2000/2003)

	Exchange 2007
	User mailbox
	Script Action: Create user and mailbox (Exchange 2007)
	Script Action: Create (enable) mailbox (Exchange 2007)
	Script Action: Edit mailbox (Exchange2007)
	Script Action: Manage mailbox email addresses (Exchange 2007)
	Script Action: Set client access attributes (Exchange 2007)
	Script Action: Disable mailbox (Exchange 2007)
	Script Action: Remove user - mailbox (Exchange 2007)
	Script Action: Connect mailbox (Exchange 2007)
	Script Action: Move mailbox (Exchange 2007)
	Script Action: Get mailbox permissions (Exchange 2007)
	Script Action: Manage mailbox permissions (Exchange 2007)
	Script Action: List mailboxes (Exchange 2007)

	Mail user
	Script Action: Create mail user (Exchange 2007)
	Script Action: Enable mail user (Exchange 2007)
	Script Action: Edit mail user (Exchange 2007)
	Script Action: Manage mail user email addresses (Exchange 2007)
	Script Action: Disable mail user (Exchange 2007)
	Script Action: Remove mail user (Exchange 2007)
	Script Action: List mail users (Exchange 2007)

	Mail contact
	Script Action: Create mail contact (Exchange 2007)
	Script Action: Enable mail contact (Exchange 2007)
	Script Action: Edit mail contact (Exchange 2007)
	Script Action: Manage mail contact email addresses (Exchange 2007)
	Script Action: Disable mail contact (Exchange 2007)
	Script Action: Remove mail contact (Exchange 2007)
	Script Action: List mail contacts (Exchange 2007)

	User
	Script Action: List users (Exchange 2007)

	Contact
	Script Action: List contacts (Exchange 2007)

	Distribution group
	Script Action: Create distribution group (Exchange 2007)
	Script Action: Enable distribution group (Exchange 2007)
	Script Action: Edit distribution group (Exchange 2007)
	Script Action: Disable distribution group (Exchange 2007)
	Script Action: Remove distribution group (Exchange 2007)
	Script Action: List distribution groups (Exchange 2007)

	Mailbox
	Script Action: List mailbox statistics (Exchange 2007)

	Exchange server
	Script Action: List mailbox databases (Exchange 2007)

	Out-Of-Office
	Script Action: Get Out-Of-Office info (Exchange 2007)
	Script Action: Set Out-Of-Office info (Exchange 2007)

	4.3.2. File System
	Script Action: Create Directory
	Script Action: Get file/directory info
	Script Action: Copy directory
	Script Action: Rename file or directory
	Script Action: Setup Security
	Script Action: Delete file(s)
	Script Action: Delete directory
	Script Action: Create share
	Script Action: Edit share
	Script Action: Delete share
	Properties
	Script Action: List files and/or directories

	4.3.3. Other actions
	Script Action: Execute Command Line
	Script Action: Count licensed - domain/OU accounts

	4.3.4. Windows computer services
	Script Action: List services status
	Script Action: Execute service command
	Script Action: Configure service
	See also:

	4.3.5. Managing printers and printer queues
	Script Action: List printer documents
	Script Action: Execute print job command

	4.3.6. LDAP directory services
	Script Action: Setup LDAP session
	Script Action: Load LDAP modification data
	Script Action: Add directory service object (LDAP)
	Script Action: Modify directory service object (LDAP)
	Script Action: Delete directory service object (LDAP)
	Script Action: Rename directory service object (LDAP)
	Script Action: Search LDAP

	4.3.7. Lotus Notes
	Script Action: Get certifier
	Script Action: Register person
	Script Action: Register person (advanced)
	Script Action: Edit person
	Script Action: Rename person
	Script Action: Recertify person
	Script Action: Delete person
	Script Action: Move person
	Script Action: Move person (advanced)
	Script Action: Generate recovery password
	Script Action: Recover ID file
	Script Action: Set Internet password
	Script Action: Set quota
	Script Action: Get quota
	Script Action: Configure Out-Of-Office
	Script Action: Process all requests
	Script Action: Get database
	Script Action: Get databases
	Script Action: Get views
	Script Action: Get document
	Script Action: Get documents
	Script Action: Create document
	Script Action: Copy document
	Script Action: Delete document
	Script Action: Get item
	Script Action: Get item size
	Script Action: Search documents
	Script Action: Query Document Items
	Script Action: Sign/Unsign document
	Script Action: Set item(s)
	Script Action: Delete Item
	Script Action: Update profile document
	Script Action: Update ACL
	Script Action: Execute agent script

	4.3.8. SAP actions
	SAP actions

	4.3.9. TOPdesk
	4.3.10. Education
	Aura
	N@tSchool
	TeleTOP
	It's Learning

	4.3.11. Variable actions
	Table
	Script Action: Generate generic table
	Script Action: Manage table data
	Script Action: Join table data

	Database
	Script action: Update database
	Script Action: Update database - Database
	Script Action: Update database - Introduction
	Script Action: Update database - SQL Statements

	Next steps:
	Script Action: Update database - Test

	Name generation
	Script Action: Generate name(s)

	Variable operations
	Script Action: Set Variable
	Script Action: Set encrypted variable
	Script Action: Split Variable
	Script Action: Get variable length
	Script Action: Format Variable Value
	Script Action: Update numeric variable
	Script Action: Update date-time variable
	Script Action: Convert value of variable
	Script Action: Convert text to date/time
	Script Action: Convert to multi-value variable
	Script Action: Manage multi-text value variable
	Script Action: Merge multi-text variable values
	Script Action: Export Variables
	Script Action: Delete variable
	Script action: Delete multiple variables
	Script Action: Encrypt text
	Script Action: Generate random number
	Script Action: Generate password
	Script Action: Log Variables
	Script Action: Log Specific Variables
	Script Action: Get session variable
	Script Action: Set session variable
	Script Action: Check session variable
	Script Action: Delete session variable

	4.3.12. Programming
	Script Action: Map variable
	Script Action: Go to Label
	Properties
	Script Action: If-Then- Else
	Script Action: Execute script
	Script Action: For-Each
	For each - Input variables

	Script Action: Delay
	Script Action: No operation

	4.3.13. Mail
	Script Action: Send mail message
	Script Action: Send HTML mail message

	4.3.14. Powershell
	Active Directory permissions
	Script Action: Get AD permissions
	Script Action: Add AD permission
	Script Action: Remove AD permission
	Script Action: Set AD permissions (advanced)
	Script Action: Get owner
	Script Action: Set owner

	Group management
	Script Action: Set Managed By
	Script Action: Get (nested) group memberships

	File system
	Script Action: Get disk space

	Active Directory utility
	Script Action: Get PDC (AD)

	Agent service session
	Script Action: Setup Powershell Agent service session
	Script Action: Check Powershell Agent service session
	Script Action: Release Powershell Agent service session

	5. Context sensitive Help
	5.1. UMRA PSM Domain Controllers Overview
	Domain Controller List
	Small Buttons
	Buttons

	5.2. Installation and upgrade wizard- Installation and upgrade options
	5.3. Installation and upgrade wizard - Specify the target domain
	5.4. Installation and upgrade wizard - Specify the target domain controller
	5.5. Install/upgrade software
	5.6. Delete Options
	5.7. Domain Controller Options
	Configuration
	Status
	Reboot

	5.8. Reboot options
	5.9. Refresh options
	5.10. Advanced Settings - general settings
	General settings regarding the PSM overview

	5.11. Advanced Settings - domains
	5.12. Select domain controller wizard - Specify the target domain
	5.13. Select domain controller wizard - welcome
	5.14. Specify the name of the domain controller
	5.15. Password Synchronisation Manager service settings
	5.16. IDD_TAB_ACTIONITEM_LN_QUERY_ITEMS- forwarded
	5.17. IDD_TAB_ACTIONITEM_LN_ACL -forwarded
	5.18. IDD_TAB_ACTIONITEM_CYCOS_GET_ATTACHMENT
	5.19. IDD_TAB_ACTIONITEM_CYCOS_GET_CUSTOM
	5.20. IDD_TAB_ACTIONITEM_CYCOS_SET_CUSTOM
	5.21. IDD_DIALOG_CYCOS_CUSTOMFIELD_OUTPUT
	5.22. Value of text item.
	5.23. Value of text list item
	5.24. Value of date-time item
	5.25. Value of numeric item
	5.26. Built-in variables
	5.27. Condition criteria - Setup
	5.28. Condition criteria - Setup criterion
	5.29. Configure predefined variables
	See also:

	5.30. Control running UMRA service projects
	5.31. Data specification - Text list
	See also:

	5.32. Database query - Database specification
	5.33. Database query - Query
	5.34. Database setup - MS-Access (Jet)
	5.35. Database setup - Other databases
	5.36. Expiration date
	5.37. For each - Input variables
	5.38. Form action - Check form input
	5.39. Form action - Execute script of form
	5.40. Form action - General
	Setting up the form actions for an action button

	5.41. Form action - Iteratively execute project script
	5.42. Form action - Return current form
	5.43. Form action - Return other form
	5.44. Form action - Set variable value
	5.45. Form action - Execute command line at client workstation
	5.46. Form fields - Button
	5.47. Form fields - Checkbox
	Adding a checkbox form field

	5.48. Form fields - Display
	Configuring the display characteristics

	5.49. Form fields - Input text
	5.50. Form fields - Name
	5.51. Form fields - Picture
	5.52. Form fields - Radio button
	See also:

	5.53. Form fields - Static text
	5.54. Form fields - Table - Columns
	5.55. Form fields - Vertical space
	5.56. Form fields - Table - Data refresh
	5.57. Form fields - Table - Exclusions
	5.58. Form fields - Table - Fixed data
	5.59. Form fields - Table - Generic table
	5.60. Form fields - Table - Network call parameters
	5.61. Form fields - Table - Network table
	See also:

	5.62. Form fields - Table - Options
	5.63. Form fields - Table - Row icon image
	5.64. Form fields - Table - Type
	5.65. Form project - Form fields
	5.66. Function modules
	See also:

	5.67. Generic table - Introduction
	5.68. Generic table - Run test
	5.69. Generic table - Table type
	5.70. Generic table - Column names
	5.71. Generic table - Variable
	5.72. Interface modules
	5.73. LDAP attributes - Attribute specification
	5.74. LDAP attributes - Data conversion
	5.75.
	5.76. LDAP attributes - Data conversion routine
	5.77. LDAP Directory Service - Encrypt input
	Generating a key on the UMRA Service side
	Generating a key on the UMRA Console side
	See also:

	5.78. LDAP Directory Service - LDAP Search
	See also:

	5.79. LDAP Directory Service - LDAP Search Attributes
	See also:

	5.80. LDAP Directory Service - Setup LDAP modification data
	See also:

	5.81. LDAP search - Attributes
	5.82. LDAP search - LDAP binding
	5.83. LDAP search - LDAP Filter
	5.84. LDAP search - Options
	5.85. License code
	See also:

	5.86. License model
	Licensing model

	5.87. License matrix
	5.88. Log information
	5.89. Manage script actions
	5.90. Lotus Notes Document Item Specification
	5.91. Lotus Notes Item Specification: General
	Script Action: Set items(s)

	5.92. Lotus Notes Settings dialog
	5.93. Managing service projects
	5.94. Name Generation Algorithms
	5.95. Name Generation: Default input names
	See also:

	5.96. Name Generation: Embedded algorithms
	See also:

	5.97. Name Generation: Formatting functions
	See also:

	5.98. Name Generation: Iteration
	See also:

	5.99. Name Generation: Manage algorithms
	See also:

	5.100. Network bar - Count users
	5.101. Network data
	5.102. Open UMRA project
	5.103. Name Generation: Setup algorithm methods
	See also:

	5.104. Password generation
	More information:

	5.105. Script action property value
	See also:

	5.106. Scheduler
	Scheduling configuration
	See also:

	5.107. Set items
	Document Specification
	Document Items

	5.108. Setup scheduling
	Scheduling method
	Include these days
	Examples:
	See also:

	5.109. Setup scheduling - Exceptions
	Exception intervals
	Options
	See also:

	5.110. Setup scheduling - Adding an exception
	See also:

	5.111. Setup scheduling - Preview
	Example
	See also:

	5.112. Script action property value with yes/no option
	See also:

	5.113. Script action property value output
	See also:

	5.114. Script action property value - Output only
	5.115. Search and replace
	Text Specification
	Options

	5.116. Security - Access Control Settings
	See also:

	5.117. Security - Adding accounts and permissions
	See also:

	5.118. Security - Detailed permissions settings
	See also:

	5.119. Security - Overview
	See also:

	5.120. Security - Owner
	See also:

	5.121. Specify file input data
	Additional settings
	See also:

	5.122. Specify group names
	5.123. Specify input
	5.124. Specify input name
	5.125. Specify new name for UMRA project
	5.126. Specify radio button text info
	See also:

	5.127. Specify variable info
	5.128. Task scheduler overview settings
	Update Specification
	Update the task scheduler information every ... seconds.

	5.129. Task scheduler overview window
	Available Columns
	Actions available from this window
	Open project

	5.130. UMRA Console - Command Line Options
	5.131. UMRA Project Component - File data
	5.132. UMRA Project Component - Form
	5.133. UMRA Project Component - Network data
	5.134. UMRA Project Component - Preview
	5.135. UMRA Project Component - Script
	5.136. UMRA Project Properties - Description
	5.137. UMRA Project Properties - Form Fonts
	5.138. UMRA Project Properties - Form options
	Initial project
	UMRA Forms client
	Popup message options
	Preview update option

	5.139. UMRA Project Properties - Format
	5.140. UMRA Project Properties - General
	Project identification
	Project location

	5.141. UMRA workspace
	5.142. UMRA Project Properties - Initial variables
	5.143. UMRA Project Properties - Network data
	5.144. UMRA Project Properties - Options
	5.145. UMRA Project Properties - Security
	5.146. UMRA service - Advanced options
	5.147. UMRA service - license
	5.148. UMRA Service - service access
	Adding users
	Editing users
	Deleting users

	5.149. UMRA service deletion - Delete all files
	5.150. UMRA service installation - Admin group
	5.151. UMRA service installation - Server
	5.152. UMRA service installation - Port
	5.153. UMRA service installation - Service account
	5.154. UMRA service installation - Service directory
	5.155. Variable generic table
	Specifying columns for table type variable
	See also:

	5.156. Variable list

	6. No help available
	7. Index
	Kop 1.pdf
	7. Index
	No help available
	Context sensitive Help
	UMRA PSM Domain Controllers Overview
	Domain Controller List
	Small Buttons
	Buttons

	Installation and upgrade wizard- Installation and upgrade options
	Installation and upgrade wizard - Specify the target domain
	Installation and upgrade wizard - Specify the target domain controller
	Install/upgrade software
	Delete Options
	Domain Controller Options
	Configuration
	Status
	Reboot

	Reboot options
	Refresh options
	Advanced Settings - general settings
	General settings regarding the PSM overview

	Advanced Settings - domains
	Select domain controller wizard - Specify the target domain
	Select domain controller wizard - welcome
	Specify the name of the domain controller
	Password Synchronisation Manager service settings
	IDD_TAB_ACTIONITEM_LN_QUERY_ITEMS- forwarded
	IDD_TAB_ACTIONITEM_LN_ACL -forwarded
	IDD_TAB_ACTIONITEM_CYCOS_GET_ATTACHMENT
	IDD_TAB_ACTIONITEM_CYCOS_GET_CUSTOM
	IDD_TAB_ACTIONITEM_CYCOS_SET_CUSTOM
	IDD_DIALOG_CYCOS_CUSTOMFIELD_OUTPUT
	Value of text item.
	Value of text list item
	Value of date-time item
	Value of numeric item
	Built-in variables
	Condition criteria - Setup
	Condition criteria - Setup criterion
	Configure predefined variables
	See also:

	Control running UMRA service projects
	Data specification - Text list
	See also:

	Database query - Database specification
	Database query - Query
	Database setup - MS-Access (Jet)
	Database setup - Other databases
	Expiration date
	For each - Input variables
	Form action - Check form input
	Form action - Execute script of form
	Form action - General
	Setting up the form actions for an action button

	Form action - Iteratively execute project script
	Form action - Return current form
	Form action - Return other form
	Form action - Set variable value
	Form action - Execute command line at client workstation
	Form fields - Button
	Form fields - Checkbox
	Adding a checkbox form field

	Form fields - Display
	Configuring the display characteristics

	Form fields - Input text
	Form fields - Name
	Form fields - Picture
	Form fields - Radio button
	See also:

	Form fields - Static text
	Form fields - Table - Columns
	Form fields - Vertical space
	Form fields - Table - Data refresh
	Form fields - Table - Exclusions
	Form fields - Table - Fixed data
	Form fields - Table - Generic table
	Form fields - Table - Network call parameters
	Form fields - Table - Network table
	See also:

	Form fields - Table - Options
	Form fields - Table - Row icon image
	Form fields - Table - Type
	Form project - Form fields
	Function modules
	See also:

	Generic table - Introduction
	Generic table - Run test
	Generic table - Table type
	Generic table - Column names
	Generic table - Variable
	Interface modules
	LDAP attributes - Attribute specification
	LDAP attributes - Data conversion
	LDAP attributes - Data conversion routine
	LDAP Directory Service - Encrypt input
	Generating a key on the UMRA Service side
	Generating a key on the UMRA Console side
	See also:

	LDAP Directory Service - LDAP Search
	See also:

	LDAP Directory Service - LDAP Search Attributes
	See also:

	LDAP Directory Service - Setup LDAP modification data
	See also:

	LDAP search - Attributes
	LDAP search - LDAP binding
	LDAP search - LDAP Filter
	LDAP search - Options
	License code
	See also:

	License model
	License matrix
	Log information
	Manage script actions
	Lotus Notes Document Item Specification
	Lotus Notes Item Specification: General
	Script Action: Set items(s)

	Lotus Notes Settings dialog
	Managing service projects
	Name Generation Algorithms
	Name Generation: Default input names
	See also:

	Name Generation: Embedded algorithms
	See also:

	Name Generation: Formatting functions
	See also:

	Name Generation: Iteration
	See also:

	Name Generation: Manage algorithms
	See also:

	Network bar - Count users
	Network data
	Open UMRA project
	Name Generation: Setup algorithm methods
	See also:

	Password generation
	More information:

	Script action property value
	See also:

	Scheduler
	Scheduling configuration
	See also:

	Set items
	Document Specification
	Document Items

	Setup scheduling
	Scheduling method
	Include these days
	Examples:
	See also:

	Setup scheduling - Exceptions
	Exception intervals
	Options
	See also:

	Setup scheduling - Adding an exception
	See also:

	Setup scheduling - Preview
	Example
	See also:

	Script action property value with yes/no option
	See also:

	Script action property value output
	See also:

	Script action property value - Output only
	Search and replace
	Text Specification
	Options

	Security - Access Control Settings
	See also:

	Security - Adding accounts and permissions
	See also:

	Security - Detailed permissions settings
	See also:

	Security - Overview
	See also:

	Security - Owner
	See also:

	Specify file input data
	Additional settings
	See also:

	Specify group names
	Specify input
	Specify input name
	Specify new name for UMRA project
	Specify radio button text info
	See also:

	Specify variable info
	Task scheduler overview settings
	Update Specification

	Task scheduler overview window
	Available Columns
	Actions available from this window

	UMRA Console - Command Line Options
	UMRA Project Component - File data
	UMRA Project Component - Form
	UMRA Project Component - Network data
	UMRA Project Component - Preview
	UMRA Project Component - Script
	UMRA Project Properties - Description
	UMRA Project Properties - Form Fonts
	UMRA Project Properties - Form options
	Initial project
	UMRA Forms client
	Popup message options
	Preview update option

	UMRA Project Properties - Format
	UMRA Project Properties - General
	Project identification
	Project location

	UMRA workspace
	UMRA Project Properties - Initial variables
	UMRA Project Properties - Network data
	UMRA Project Properties - Options
	UMRA Project Properties - Security
	UMRA service - Advanced options
	UMRA service - license
	UMRA Service - service access
	Adding users
	Editing users
	Deleting users

	UMRA service deletion - Delete all files
	UMRA service installation - Admin group
	UMRA service installation - Server
	UMRA service installation - Port
	UMRA service installation - Service account
	UMRA service installation - Service directory
	Variable generic table
	Specifying columns for table type variable
	See also:

	Variable list

	UMRA Reference Guide
	Script action overview
	User
	Active Directory
	Script Action: Create user (AD)
	Script Action: Create contact (AD)
	Script Action: Get user (AD)

	Related information:
	Script Action: Edit user (AD)
	Script Action: Edit user logon
	Script Action: Get user table (locked out/disabled/password)
	Script Action: Delete user (AD)
	Script Action: Set user group memberships (AD)
	Script Action: Remove user group memberships (AD)
	Script Action: Move - rename (AD)
	Script Action: Move cross-domain (AD)

	non- Active Directory
	Script Action: Create User (no AD)
	Script Action: Edit user (no AD)
	Script Action: Edit user logon
	Script Action: Delete user (no AD)
	Script Action: Setup User Global Group Memberships
	Script Action: Add account to local group
	Script Action: Create local group
	Script Action: Remove group member
	Script Action: Set primary group (non AD)

	General user Actions
	Script Action: Edit user logon
	Script Action: Get user info
	Script action: Terminal Services user settings
	Script Action: Get terminal services user settings
	Script Action: Dial-in user settings

	Active Directory
	Script Action: Create object (AD)
	Script Action: Delete Object (AD)
	Script Action: Get attribute (AD)
	Script Action: Set attribute (AD)
	Script Action: Delete attribute value (AD)
	Script Action: Remove SID history
	Script Action: Update group memberships (AD)
	Script Action: Set group membership (AD)
	Script Action: Remove specific group memberships (AD)
	Script Action: Create group (AD)
	Script Action: Get Object (AD)
	Script Action: Search object (AD)
	Script Action: Move - rename (AD)
	Script Action: Move cross-domain (AD)
	Script Action: Get primary group
	Script Action: Set primary group (AD)
	Properties

	Exchange
	Exchange 2000/2003
	Script Action: Create Exchange Mailbox (2003/2000)
	Script Action: Edit Exchange mailbox (2000/2003)
	Script Action: Modify Exchange mailbox permissions (2000/2003)
	Script Action: Move Exchange mailbox
	Script Action: Delete Exchange mailbox (2000/2003)

	Properties
	Script Action: Manage Exchange recipient mail addresses (2003/2000)
	Out-Of-Office
	Script Action: Get Out-Of-Office info (Exchange 2000/2003)
	Script Action: Set Out-Of-Office info (Exchange 2000/2003)

	Exchange 2007
	User mailbox
	Script Action: Create user and mailbox (Exchange 2007)
	Script Action: Create (enable) mailbox (Exchange 2007)
	Script Action: Edit mailbox (Exchange2007)
	Script Action: Manage mailbox email addresses (Exchange 2007)
	Script Action: Set client access attributes (Exchange 2007)
	Script Action: Disable mailbox (Exchange 2007)
	Script Action: Remove user - mailbox (Exchange 2007)
	Script Action: Connect mailbox (Exchange 2007)
	Script Action: Move mailbox (Exchange 2007)
	Script Action: Get mailbox permissions (Exchange 2007)
	Script Action: Manage mailbox permissions (Exchange 2007)
	Script Action: List mailboxes (Exchange 2007)

	Mail user
	Script Action: Create mail user (Exchange 2007)
	Script Action: Enable mail user (Exchange 2007)
	Script Action: Edit mail user (Exchange 2007)
	Script Action: Manage mail user email addresses (Exchange 2007)
	Script Action: Disable mail user (Exchange 2007)
	Script Action: Remove mail user (Exchange 2007)
	Script Action: List mail users (Exchange 2007)

	Mail contact
	Script Action: Create mail contact (Exchange 2007)
	Script Action: Enable mail contact (Exchange 2007)
	Script Action: Edit mail contact (Exchange 2007)
	Script Action: Manage mail contact email addresses (Exchange 2007)
	Script Action: Disable mail contact (Exchange 2007)
	Script Action: Remove mail contact (Exchange 2007)
	Script Action: List mail contacts (Exchange 2007)

	User
	Script Action: List users (Exchange 2007)

	Contact
	Script Action: List contacts (Exchange 2007)

	Distribution group
	Script Action: Create distribution group (Exchange 2007)
	Script Action: Enable distribution group (Exchange 2007)
	Script Action: Edit distribution group (Exchange 2007)
	Script Action: Disable distribution group (Exchange 2007)
	Script Action: Remove distribution group (Exchange 2007)
	Script Action: List distribution groups (Exchange 2007)

	Mailbox
	Script Action: List mailbox statistics (Exchange 2007)

	Exchange server
	Script Action: List mailbox databases (Exchange 2007)

	Out-Of-Office
	Script Action: Get Out-Of-Office info (Exchange 2007)
	Script Action: Set Out-Of-Office info (Exchange 2007)

	File System
	Script Action: Create Directory
	Script Action: Get file/directory info
	Script Action: Copy directory
	Script Action: Rename file or directory
	Script Action: Setup Security
	Script Action: Delete file(s)
	Script Action: Delete directory
	Script Action: Create share
	Script Action: Edit share
	Script Action: Delete share
	Properties
	Script Action: List files and/or directories

	Other actions
	Script Action: Execute Command Line
	Script Action: Count licensed - domain/OU accounts

	Windows computer services
	Script Action: List services status
	Script Action: Execute service command
	Script Action: Configure service
	See also:

	Managing printers and printer queues
	Script Action: List printer documents
	Script Action: Execute print job command

	LDAP directory services
	Script Action: Setup LDAP session
	Script Action: Load LDAP modification data
	Script Action: Add directory service object (LDAP)
	Script Action: Modify directory service object (LDAP)
	Script Action: Delete directory service object (LDAP)
	Script Action: Rename directory service object (LDAP)
	Script Action: Search LDAP

	Lotus Notes
	Script Action: Get certifier
	Script Action: Register person
	Script Action: Register person (advanced)
	Script Action: Edit person
	Script Action: Rename person
	Script Action: Recertify person
	Script Action: Delete person
	Script Action: Move person
	Script Action: Move person (advanced)
	Script Action: Generate recovery password
	Script Action: Recover ID file
	Script Action: Set Internet password
	Script Action: Set quota
	Script Action: Get quota
	Script Action: Configure Out-Of-Office
	Script Action: Process all requests
	Script Action: Get database
	Script Action: Get databases
	Script Action: Get views
	Script Action: Get document
	Script Action: Get documents
	Script Action: Create document
	Script Action: Copy document
	Script Action: Delete document
	Script Action: Get item
	Script Action: Get item size
	Script Action: Search documents
	Script Action: Query Document Items
	Script Action: Sign/Unsign document
	Script Action: Set item(s)
	Script Action: Delete Item
	Script Action: Update profile document
	Script Action: Update ACL
	Script Action: Execute agent script

	SAP actions
	SAP actions

	TOPdesk
	Education
	Aura
	N@tSchool
	TeleTOP
	It's Learning

	Variable actions
	Table
	Script Action: Generate generic table
	Script Action: Manage table data
	Script Action: Join table data

	Database
	Script action: Update database
	Script Action: Update database - Database
	Script Action: Update database - Introduction
	Script Action: Update database - SQL Statements

	Next steps:
	Script Action: Update database - Test

	Name generation
	Script Action: Generate name(s)

	Variable operations
	Script Action: Set Variable
	Script Action: Set encrypted variable
	Script Action: Split Variable
	Script Action: Get variable length
	Script Action: Format Variable Value
	Script Action: Update numeric variable
	Script Action: Update date-time variable
	Script Action: Convert value of variable
	Script Action: Convert text to date/time
	Script Action: Convert to multi-value variable
	Script Action: Manage multi-text value variable
	Script Action: Merge multi-text variable values
	Script Action: Export Variables
	Script Action: Delete variable
	Script action: Delete multiple variables
	Script Action: Encrypt text
	Script Action: Generate random number
	Script Action: Generate password
	Script Action: Log Variables
	Script Action: Log Specific Variables
	Script Action: Get session variable
	Script Action: Set session variable
	Script Action: Check session variable
	Script Action: Delete session variable

	Programming
	Script Action: Map variable
	Script Action: Go to Label
	Properties
	Script Action: If-Then- Else
	Script Action: Execute script
	Script Action: For-Each
	For each - Input variables

	Script Action: Delay
	Script Action: No operation

	Mail
	Script Action: Send mail message
	Script Action: Send HTML mail message

	Powershell
	Active Directory permissions
	Script Action: Get AD permissions
	Script Action: Add AD permission
	Script Action: Remove AD permission
	Script Action: Set AD permissions (advanced)
	Script Action: Get owner
	Script Action: Set owner

	Group management
	Script Action: Set Managed By
	Script Action: Get (nested) group memberships

	File system
	Script Action: Get disk space

	Active Directory utility
	Script Action: Get PDC (AD)

	Agent service session
	Script Action: Setup Powershell Agent service session
	Script Action: Check Powershell Agent service session
	Script Action: Release Powershell Agent service session

	UMRA User Guide
	UMRA Basics
	Introduction
	UMRA scripting
	Scripts, actions and properties
	Variables

	UMRA Projects
	File input data
	Script execution

	Form input data
	Form layout
	Script execution

	Application input data
	UMRA COM
	Script execution

	UMRA components
	UMRA Service
	UMRA Forms client
	UMRA COM
	UMRA command line

	UMRA project management
	UMRA projects
	UMRA workspaces
	UMRA XML project and script files

	Getting Started
	Introduction
	Mass updating network resources - Mass module
	3.2.3. Delegating user account management tasks - Forms module
	3.2.4. Working procedure
	3.2.5. User account provisioning - Automation module
	Linking Active Directory to other information systems
	Integrating Active Directory in existing (Sharepoint) web portals

	Installing UMRA
	Which module should I choose?
	System requirements
	Installing the UMRA program files
	Exchange 2000/2003 requirements

	Creating a MASS example project - Mass create users
	Step 1 - Importing your input data
	Step 2 - Building the project script
	Step 3 - Testing the project script
	Step 4 - Executing the project script

	3.2.8. Creating a Forms example project - Reset password
	Introduction
	Step 1 - Designing the form layout
	Step 2 - Building the form script
	Step 3 - Specifying security
	Testing the project script

	Appendix A - Script actions
	3.2.10. Appendix B - Installing the UMRA Service

	3.3. Integrate UMRA with other applications using COM
	UMRA COM
	Component Object Model (COM)
	UMRA COM - Main functions

	UMRA COM objects
	Using UMRA COM
	UMRA COM object reference
	GetVariableText

	UmraFormProject.GetFormTable
	AppendColumn
	AddRow
	CreateTable
	CreateTable2
	CreateTable3
	GetCellText
	GetCellTextEx
	GetColumnCount
	GetColumnName
	GetRowCount
	SetCellText
	SetColumnName
	SetColumnNameEx

	UMRA COM in VB scripts
	Introduction
	Configuring the UMRA project
	MS Access database
	Visual Basic script
	Script section: Connecting to the UMRA Service
	Script section: Executing projects on UMRA Service
	Testing and executing the script

	UMRA COM in IIS
	Introduction
	Security and authentication
	IIS configuration Windows 2003
	Creating the website
	Configuring the UMRA project
	Setting up the IIS website
	UMRA COM on 64-bit platforms
	IIS configuration Windows Server 2008

	References

	Managing printer queues
	Introduction
	Printer queue management - Form result

	UMRA projects for managing printer queues
	Project description
	Project principle
	Auxiliary project - Print job list - HP_1220C
	Print jobs project - Form
	Print jobs project - Table with printer documents
	Table variable specification
	Table columns specification
	Form table return variable

	Print jobs project - Form buttons
	Print jobs project - Script
	Script action 1: Check %DocumentID%
	Script action 2: Check %PrinterCommand%
	Script action 3: Go-To printer command
	Script action 4: Execute print job command
	Script action 5: Reset %DocumentID%

	Linking the auxiliary project to the main project
	Initial project specification

	Project execution
	Project execution log
	Project extensions

	Managing Windows computer services
	Project definition
	Project structure
	Form projects
	Principle of operation

	Step 1: Environment setup
	Prerequisites
	UMRA installation
	UMRA setup

	Step 2: Form project - Collect Services
	Starting the UMRA Console
	Setting up the Set variable action
	Setting up the List services status action
	Setup project security
	Summary

	Step 3: Form project - Manage Services
	Manage Services - Form, part 1
	Manage Services - Adding form fields
	Manage Services - Form table
	Manage Services - Form buttons
	Manage Services - Script
	Manage Services - Link to project Collect Services

	Project execution
	Contacts

	Managing LDAP directory services using UMRA
	Introduction
	Concept
	Security

	UMRA LDAP script actions
	Script action: Setup LDAP session
	Script action: Load LDAP modification data
	Directory service schema
	Script action: Add directory service object (LDAP)
	Script action: Modify directory service object (LDAP)
	Script action: Delete directory service object (LDAP)
	Script action: Search directory service (LDAP)
	Distinguished name

	Directory Service tasks
	Creating a directory service item
	Updating directory service item attributes
	Deleting a directory service item
	Searching a directory service (LDAP)

	Novell eDirectory
	Introduction
	Secure LDAP eDirectory environment
	Creating user accounts in Novell eDirectory
	Setting up an LDAP session
	Loading LDAP modification data
	Add directory service object

	Setting a user account password on Novell eDirectory
	Deleting user accounts in Novell eDirectory
	Setting up user account group memberships on Novell eDirectory
	Managing user account group memberships on Novell eDirectory

	Linux OpenLDAP
	Introduction
	Secure Linux OpenLDAP environment
	Creating directory service items with OpenLDAP on Linux
	Setting up a secure session with Linux LDAP Server
	Specifying LDAP attributes and values of directory service item
	Adding the person directory service item

	Microsoft Active Directory
	Introduction
	Secure LDAP Active Directory environment
	Creating user accounts in Microsoft Active Directory using LDAP
	Setting up a secure session with Active Directory domain controller
	Specifying Active Directory LDAP attributes
	Adding a directory service object

	Searching accounts and resetting passwords in Microsoft Active Directory using LDAP
	Updating group memberships in Microsoft Active Directory using LDAP
	Script action: Modify directory service object (LDAP)

	References

	Name generation
	Generating user names
	Using the built-in name generation algorithms
	Using variables to specify output names
	Customizing name generation algorithms

	UMRA tables
	Introduction
	The concept of tables in UMRA
	General
	Selecting data using form tables
	Form table types
	Network table
	Generic table - LDAP query
	LDAP binding
	LDAP filter
	LDAP Attributes

	Fixed table
	Generic table - Database query

	Specifying columns

	Special table type - Generic table Variable
	Specifying columns for table type Variable
	Generate Generic table - Script
	Programmatically creating and evaluating tables

	Processing user input
	Formatting tables
	Using tables in UMRA - Forms & Delegation - Hands-on
	Example 1 - Creating an LDAP table showing all disabled users in a domain
	LDAP table - Creating a table listing all disabled users in a domain
	Example 2 - Creating a form table to connect to a database
	LDAP table - Linking UMRA to an MS-Access database containing phone numbers for all employees, listed by department
	Example 3 - Creating a variable with table data and showing the content in a form table
	Project A - Collecting services
	Project B - Inserting a form table to display table content in a variable

	Contacts

	Lotus Notes user guide
	Configuring the UMRA console for use with Lotus Notes
	Configuring the UMRA service for use with Lotus Notes
	Administration Requests database
	Move mail files to another server
	Create replica

	Lotus Notes example projects
	ID Vault

	Exchange 2007
	Introduction Exchange 2007
	Requirement UMRA Exchange 2007 support
	Manage Active Directory with the UMRA Powershell Agent service
	Managing Exchange 2003 with the UMRA Powershell Agent service
	Setting up the Exchange 2007 Management Tools on a 32-bit platform
	Using the Exchange Web Services with UMRA
	Exchange 2007 Client Access Role
	UMRA Powershell Agent configuration
	Exchange Web Services certificate
	Access rights of mailboxes when using Out Of Office actions
	Mailbox has never been used.
	Access rights are not propagated to Active Directory
	Deny 'Receive As' access for 'Domain Admins' on mailboxes
	Allow access on the whole organization
	Allow access per mailbox user

	Background information about access rights on mailboxes

	Exchange 2010
	Introduction Exchange 2010
	Accessing Exchange 2010 functionality from an UMRA project

	Office 365
	Introduction Office 365
	Office 365 Users

	Powershell Agent service
	3.13.1. Powershell Agent service
	3.13.2. UMRA - Powershell Agent service
	3.13.3. UMRA action - Powershell script conversion
	3.13.4. UMRA dynamic actions
	Installation
	Powershell Agent service setup - Requirements
	Powershell Agent service setup - Procedure
	Powershell Agent connection settings
	Powershell Agent service - Edit connection settings
	Powershell Agent service wizard - Manage
	Powershell Agent service wizard - Specify server
	Powershell Agent service wizard - Specify port number
	Powershell Agent service wizard - Specify service directory
	Powershell Agent service wizard - Specify account
	Powershell Agent service wizard - Specify account group
	Powershell Agent service wizard - Specify user account group
	Powershell Agent service wizard - Update Powershell Agent service
	Powershell Agent service wizard - Delete all files
	Manual installation of the Powershell Agent service

	Configuration and settings
	Access and Security
	Licensing
	Log information
	Powershell snap-ins
	Registry settings

	UMRA dynamic actions
	XML file specification
	Basic section
	Declaration
	General section
	Configuration section

	Properties section
	Properties specification
	ActionProperties

	Series of properties
	PropertiesSeriesSet section

	Output specification
	Single value output data
	Table value output data
	ReturnData element specification

	Script section
	Simple script phrase
	Action Property script phrase
	Conditional Action Property script phrase
	Value Dependent Action Property script phrase
	Simple Value Dependent Action Property script phrase
	Multi-value Dependent Action Property script phrase
	Boolean Value Dependent Action Property script phrase

	QuoteFormat of a Value Dependent Action Property script phrase
	Variable Conversion of a Value Dependent Action Property script phrase

	Script phrase contents

	Session section
	Encrypted properties

	Dynamic actions library
	Upgrading UMRA dynamic actions
	Signature of UMRA dynamic actions
	Remove a dynamic action

	Example
	UMRA dynamic action example: Goal
	UMRA dynamic action example: XML file
	UMRA dynamic action example: XML file - general section
	UMRA dynamic action example: XML file - ActionProperties section
	UMRA dynamic action example: XML file - Script section
	UMRA dynamic action example: Import the dynamic action
	UMRA dynamic action example: Using the dynamic action

	Manage Active Directory with the UMRA Powershell Agent service
	Managing Exchange 2003 with the UMRA Powershell Agent service
	Setting up the Exchange 2007 Management Tools on a 32-bit platform
	Powershell Agent service session
	UMRA Sessions
	Configuring a secure web-site with IIS
	Step 1: Obtain a certificate
	Step 2 - Windows Server 2003: Install the certificate in the IIS website
	Step 2 - Windows XP: Install the certificate in the IIS website
	Step 3: Install the Certification Authority root certificate on the UMRA Powershell Agent service computer

	UMRA Google Module
	Google - Requirements
	Google - Action: Google Setup Connection
	Google - Connections
	Google - Registry settings

	UMRA SAP module
	SAP - Requirements
	SAP - Action: SAP Setup connection
	SAP - Connections
	SAP - UMRA SAP child process
	SAP - SAP Generic function module
	SAP - Example projects
	SAP - Registry settings

	AFAS Online
	3.17. Setup connection
	3.18. AFAS get employees
	3.19. AFAS get employees contract
	3.20. AFAS Get organigram
	3.21. AFAS Export Date
	3.22. AFAS Update employee
	Password Synchonization Manager
	Goal
	Installing UMRA PSM for the first time
	Prerequisites
	Overview
	Installation of the Notification Package
	Configuration of the Umra Service

	Miscellaneous UMRA PSM topics
	Managing UMRA PSM
	Viewing the current status of PSM Packages
	UMRA PSM Package installation status

	UMRA PSM script variables
	Password related variables
	Umra PSM package variables
	UMRA PSM Package registry values
	Values affecting Registration with Windows
	Values affecting package behaviour.

	Manage Active Directory with the UMRA Powershell Agent service

	Education
	Aura connector installation
	Aura installation 1 - Architecture
	Aura installation 2 - Prerequisites
	Aura installation 3 - Create user account
	Aura installation 4 - Create web site
	Aura installation 5 - IIS / ASP.NET 1.1.4322
	Aura installation 6 - Aura license file
	Aura installation 7 - Aura data access
	Aura installation 8 - Update web.config
	Aura installation 9 - Test the web-site
	Aura installation 10 - Test the UMRA-Aura-WebService

	SOAP Synchronization template project

	Release notes
	User Management Resource Administrator release notes
	Build 1263, May 12th, 2006
	Build 1227, January 6th, 2006
	Build 1225, December 23rd, 2005
	Build 1201, September 30th, 2005
	Build 1164, July 1st, 2005
	Build 1141, April 29, 2005
	Build 1030, July 1, 2004

	Upgrading MASS projects from older versions

	Welcome to UMRA

